1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
//! An implementation of B trees. The core operations on B trees
//! (lookup, iterate, put and del) are generic in the actual
//! implementation of nodes, via the [`BTreePage`] and
//! [`BTreeMutPage`]. This allows for a simpler code for the
//! high-level functions, as well as specialised, high-performance
//! implementations for the nodes.
//!
//! Two different implementations are supplied: one in [`page`] for
//! types with a size known at compile-time, which yields denser
//! leaves, and hence shallower trees (if the values are really using
//! the space). The other one, in [`page_unsized`], is for
//! dynamic-sized types, or types whose representation is dynamic, for
//! example enums that are `Sized` in Rust, but whose cases vary
//! widely in size.
use crate::*;
#[doc(hidden)]
pub mod cursor;
pub use cursor::{iter, rev_iter, Cursor, Iter, RevIter};
pub mod del;
pub use del::del;
pub mod put;
pub use put::put;
pub mod page;
pub mod page_unsized;

pub trait BTreePage<K: ?Sized, V: ?Sized>: Sized {
    type Cursor: Clone + Copy + core::fmt::Debug;

    /// Whether this cursor is at the end of the page.
    fn is_empty(c: &Self::Cursor) -> bool;

    /// Whether this cursor is strictly before the first element.
    fn is_init(c: &Self::Cursor) -> bool;

    /// Returns a cursor set before the first element of the page
    /// (i.e. set to -1).
    fn cursor_before(p: &CowPage) -> Self::Cursor;

    /// Returns a cursor set to the first element of the page
    /// (i.e. 0). If the page is empty, the returned cursor might be
    /// empty.
    fn cursor_first(p: &CowPage) -> Self::Cursor {
        let mut c = Self::cursor_before(p);
        Self::move_next(&mut c);
        c
    }

    /// Returns a cursor set after the last element of the page
    /// (i.e. to element n)
    fn cursor_after(p: &CowPage) -> Self::Cursor;

    /// Returns a cursor set to the last element of the page. If the
    /// cursor is empty, this is the same as `cursor_before`.
    fn cursor_last(p: &CowPage) -> Self::Cursor {
        let mut c = Self::cursor_after(p);
        Self::move_prev(&mut c);
        c
    }

    /// Return the element currently pointed to by the cursor (if the
    /// cursor is not before or after the elements of the page), and
    /// move the cursor to the next element.
    fn next<'b, T: LoadPage>(
        txn: &T,
        p: Page<'b>,
        c: &mut Self::Cursor,
    ) -> Option<(&'b K, &'b V, u64)> {
        if let Some((k, v, r)) = Self::current(txn, p, c) {
            Self::move_next(c);
            Some((k, v, r))
        } else {
            None
        }
    }

    /// Move the cursor to the previous element, and return that
    /// element. In that sense, this is not the symmetric of `next`.
    fn prev<'b, T: LoadPage>(
        txn: &T,
        p: Page<'b>,
        c: &mut Self::Cursor,
    ) -> Option<(&'b K, &'b V, u64)> {
        if Self::move_prev(c) {
            Self::current(txn, p, c)
        } else {
            None
        }
    }

    /// Move the cursor to the next position. Returns whether the
    /// cursor was actually moved (i.e. `true` if and only if the
    /// cursor isn't already after the last element).
    fn move_next(c: &mut Self::Cursor) -> bool;

    /// Move the cursor to the previous position. Returns whether the
    /// cursor was actually moved (i.e. `true` if and only if the
    /// cursor isn't strictly before the page).
    fn move_prev(c: &mut Self::Cursor) -> bool;

    /// Returns the current element, if the cursor is pointing at one.
    fn current<'a, T: LoadPage>(
        txn: &T,
        p: Page<'a>,
        c: &Self::Cursor,
    ) -> Option<(&'a K, &'a V, u64)>;

    /// Returns the left child of the entry pointed to by the cursor.
    fn left_child(p: Page, c: &Self::Cursor) -> u64;

    /// Returns the right child of the entry pointed to by the cursor.
    fn right_child(p: Page, c: &Self::Cursor) -> u64;

    /// Sets the cursor to the last element less than or equal to `k0`
    /// if `v0.is_none()`, and to `(k0, v0)` if `v0.is_some()`.
    fn set_cursor<'a, T: LoadPage>(
        txn: &'a T,
        page: Page,
        c: &mut Self::Cursor,
        k0: &K,
        v0: Option<&V>,
    ) -> Result<(&'a K, &'a V, u64), usize>;
    fn split_at(c: &Self::Cursor) -> (Self::Cursor, Self::Cursor);
}

pub struct PageIterator<'a, T: LoadPage, K: ?Sized, V: ?Sized, P: BTreePage<K, V>> {
    cursor: P::Cursor,
    txn: &'a T,
    page: Page<'a>,
}

impl<'a, T: LoadPage, K: ?Sized + 'a, V: ?Sized + 'a, P: BTreePage<K, V>> Iterator
    for PageIterator<'a, T, K, V, P>
{
    type Item = (&'a K, &'a V, u64);
    fn next(&mut self) -> Option<Self::Item> {
        P::next(self.txn, self.page, &mut self.cursor)
    }
}

pub trait BTreeMutPage<K: ?Sized, V: ?Sized>: BTreePage<K, V> + core::fmt::Debug {
    /// Initialise a page.
    fn init(page: &mut MutPage);

    /// Add an entry to the page, possibly splitting the page in the
    /// process.
    ///
    /// Makes the assumption that `k1v1.is_some()` implies
    /// `replace`. The "double insertion" is only ever used when
    /// deleting, and when the right child of a deleted entry (in an
    /// internal node) has split while we were looking for a
    /// replacement for the deleted entry.
    ///
    /// Since we only look for replacements in the right child, the
    /// left child of the insertion isn't modified, in which case `l`
    /// and `r` are interpreted as the left and right child of the new
    /// entry, `k1v1`.
    fn put<'a, T: AllocPage>(
        txn: &mut T,
        page: CowPage,
        mutable: bool,
        replace: bool,
        c: &Self::Cursor,
        k0: &'a K,
        v0: &'a V,
        k1v1: Option<(&'a K, &'a V)>,
        l: u64,
        r: u64,
    ) -> Result<crate::btree::put::Put<'a, K, V>, T::Error>;


    /// Add an entry to `page`, at position `c`. Does not check
    /// whether there is enough space to do so. This method is mostly
    /// useful for cloning pages.
    #[allow(unused_variables)]
    unsafe fn put_mut(
        page: &mut MutPage,
        c: &Self::Cursor,
        k0: &K,
        v0: &V,
        r: u64,
    ) {
        unimplemented!()
    }

    #[allow(unused_variables)]
    unsafe fn set_left_child(
        page: &mut MutPage,
        c: &Self::Cursor,
        l: u64
    ) {
        unimplemented!()
    }


    /// Update the left child of the position pointed to by the
    /// cursor.
    fn update_left_child<T: AllocPage>(
        txn: &mut T,
        page: CowPage,
        mutable: bool,
        c: &Self::Cursor,
        r: u64,
    ) -> Result<crate::btree::put::Ok, T::Error>;

    type Saved;

    /// Save a leaf entry as a replacement, when we delete at an
    /// internal node. This can be a pointer to the leaf if the leaf
    /// isn't mutated, or the actual value, or something else.
    fn save_deleted_leaf_entry(k: &K, v: &V) -> Self::Saved;

    /// Recover the saved value.
    unsafe fn from_saved<'a>(s: &Self::Saved) -> (&'a K, &'a V);

    /// Delete an entry on the page, returning the resuting page along
    /// with the offset of the freed page (or 0 if no page was freed,
    /// i.e. if `page` is mutable).
    fn del<T: AllocPage>(
        txn: &mut T,
        page: CowPage,
        mutable: bool,
        c: &Self::Cursor,
        l: u64,
    ) -> Result<(MutPage, u64), T::Error>;

    /// Merge, rebalance or update a concatenation.
    fn merge_or_rebalance<'a, 'b, T: AllocPage>(
        txn: &mut T,
        m: del::Concat<'a, K, V, Self>,
    ) -> Result<del::Op<'a, T, K, V>, T::Error>;
}

/// A database, which is essentially just a page offset along with markers.
#[derive(Debug)]
pub struct Db_<K: ?Sized, V: ?Sized, P: BTreePage<K, V>> {
    pub db: u64,
    pub k: core::marker::PhantomData<K>,
    pub v: core::marker::PhantomData<V>,
    pub p: core::marker::PhantomData<P>,
}

/// A database of sized values.
pub type Db<K, V> = Db_<K, V, page::Page<K, V>>;

/// A database of unsized values.
pub type UDb<K, V> = Db_<K, V, page_unsized::Page<K, V>>;

impl<K: ?Sized, V: ?Sized, P: BTreePage<K, V>> Db_<K, V, P> {
    /// Load a database from a page offset.
    pub fn from_page(db: u64) -> Self {
        Db_ {
            db,
            k: core::marker::PhantomData,
            v: core::marker::PhantomData,
            p: core::marker::PhantomData,
        }
    }
}

/// Create a database with an arbitrary page implementation.
pub fn create_db_<T: AllocPage, K: ?Sized, V: ?Sized, P: BTreeMutPage<K, V>>(
    txn: &mut T,
) -> Result<Db_<K, V, P>, T::Error> {
    let mut page = txn.alloc_page()?;
    P::init(&mut page);
    Ok(Db_ {
        db: page.0.offset,
        k: core::marker::PhantomData,
        v: core::marker::PhantomData,
        p: core::marker::PhantomData,
    })
}

/// Create a database for sized keys and values.
pub fn create_db<T: AllocPage, K: Storable, V: Storable>(
    txn: &mut T,
) -> Result<Db_<K, V, page::Page<K, V>>, T::Error> {
    create_db_(txn)
}

/// Fork a database.
pub fn fork_db<T: AllocPage, K: Storable + ?Sized, V: Storable + ?Sized, P: BTreeMutPage<K, V>>(
    txn: &mut T,
    db: &Db_<K, V, P>,
) -> Result<Db_<K, V, P>, T::Error> {
    txn.incr_rc(db.db)?;
    Ok(Db_ {
        db: db.db,
        k: core::marker::PhantomData,
        v: core::marker::PhantomData,
        p: core::marker::PhantomData,
    })
}

/// Get the first entry of a database greater than or equal to `k` (or
/// to `(k, v)` if `v.is_some()`).
pub fn get<'a, T: LoadPage, K: Storable + ?Sized, V: Storable + ?Sized, P: BTreePage<K, V>>(
    txn: &'a T,
    db: &Db_<K, V, P>,
    k: &K,
    v: Option<&V>,
) -> Result<Option<(&'a K, &'a V)>, T::Error> {
    // Set the "cursor stack" by setting a skip list cursor in
    // each page from the root to the appropriate leaf.
    let mut last_match = None;
    let mut page = txn.load_page(db.db)?;
    // This is a for loop, to allow the compiler to unroll (maybe).
    for _ in 0..cursor::N_CURSORS {
        let mut cursor = P::cursor_before(&page);
        if let Ok((kk, vv, _)) = P::set_cursor(txn, page.as_page(), &mut cursor, k, v) {
            if v.is_some() {
                return Ok(Some((kk, vv)));
            }
            last_match = Some((kk, vv));
        } else if let Some((k, v, _)) = P::current(txn, page.as_page(), &cursor) {
            // Here, Rust says that `k` and `v` have the same lifetime
            // as `page`, but we actually know that they're alive for
            // as long as `txn` doesn't change, so we can safely
            // extend their lifetimes:
            unsafe { last_match = Some((core::mem::transmute(k), core::mem::transmute(v))) }
        }
        // The cursor is set to the first element greater than or
        // equal to the (k, v) we're looking for, so we need to
        // explore the left subtree.
        let next_page = P::left_child(page.as_page(), &cursor);
        if next_page > 0 {
            page = txn.load_page(next_page)?;
        } else {
            break;
        }
    }
    Ok(last_match)
}

/// Drop a database recursively, dropping all referenced keys and
/// values that aren't shared with other databases.
pub fn drop<T: AllocPage, K: Storable + ?Sized, V: Storable + ?Sized, P: BTreePage<K, V>>(
    txn: &mut T,
    db: Db_<K, V, P>,
) -> Result<(), T::Error> {
    // In order to make this function tail-recursive, we simulate a
    // stack with the following:
    use core::mem::MaybeUninit;
    let mut stack: [MaybeUninit<cursor::PageCursor<K, V, P>>; cursor::N_CURSORS] = [
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
        MaybeUninit::uninit(),
    ];
    let mut ptr = 0;

    // Push the root page of `db` onto the stack.
    let page = txn.load_page(db.db)?;
    stack[0] = MaybeUninit::new(cursor::PageCursor {
        cursor: P::cursor_before(&page),
        page,
    });

    // Then perform a DFS:
    loop {
        // Look at the top element of the stack.
        let cur = unsafe { &mut *stack[ptr].as_mut_ptr() };
        // If it needs to be dropped (i.e. if its RC is <= 1), iterate
        // its cursor and drop all its referenced pages.
        let rc = txn.rc(cur.page.offset)?;
        if rc <= 1 {
            // if there's a current element in the cursor (i.e. we
            // aren't before or after the elements), decrease its RC.
            if let Some((k, v, _)) = P::current(txn, cur.page.as_page(), &cur.cursor) {
                for o in k.page_references().chain(v.page_references()) {
                    txn.decr_rc(o)?;
                }
            }
            // In all cases, move next and push the left child onto
            // the stack. This works because pushed cursors are
            // initially set to before the page's elements.
            if P::move_next(&mut cur.cursor) {
                let r = P::left_child(cur.page.as_page(), &cur.cursor);
                if r > 0 {
                    ptr += 1;
                    let page = txn.load_page(r)?;
                    stack[ptr] = MaybeUninit::new(cursor::PageCursor {
                        cursor: P::cursor_before(&page),
                        page,
                    })
                }
                continue;
            }
        }
        // Here, either rc > 1, or else `P::move_next` returned
        // `false`, meaning that the cursor is after the last element.
        if cur.page.is_dirty() {
            txn.decr_rc_owned(cur.page.offset)?;
        } else {
            txn.decr_rc(cur.page.offset)?;
        }
        // If this was the bottom element of the stack, stop, else, pop.
        if ptr == 0 {
            break;
        } else {
            ptr -= 1;
        }
    }
    Ok(())
}