
CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

Sample-Based Motion Planning: Space, Compute, and

Sampling Techniques

1 Abstract

Motion planning is an area of active research and sample-based methods provide a potentially
efficient way of tackling high dimensional systems. This report will briefly survey a few general
approaches within sample-based motion planning that aim to reduce space and compute resources,
namely sparsity, motion primitives and importance sampling. In particular, methods from the
survey papers range from shooting-based technique to 2-point boundary value problems with a
gridded approach as well as incrementally improving trajectory via updating sample distributions.
The report begins with a brief background, followed by reviews of surveyed papers, and finally
follow up with a hybrid implementation integrating main ideas from these papers. Additionally,
several parameters in the SST propagation algorithm are adjusted and studied. Through these,
sample based methods enable a feasible way to compute a rough estimate of a feasible open loop
control suitable for further optimization. Demonstration of the implementation in several scenarios
that involve 2 point motion planning problems in planar and 3D domains will also be shown.

2 Background

Motion planning of dynamical system can be formulated as a transition system coupled with ad-
ditional constraints of the system dynamics and the environment. Assuming an accurate model of
the system, the state space, X, gives all possible instances of the system. The three dimensional
space of the physical world as we know will be referred to as the configuration space, Q. Q is further
partitioned into free Qfree and obstructed Qobs(includes unavoidable obstacles due to inertia).

A general system of equation that describes a dynamical system is formulated as

x ∈ X := system state space

u ∈ U := control space

ẋ = f(x, u) (1)

u̇ = g(x, u)

. Reachability of the 2 point motion planning problem is formulated as finding a feasible control(out
of possibly many)

{u | x(τ) =

∫ τ

0
f(x(t), u(t)) dt} (2)

x(0) = xstart (3)

x(τ) = xdest (4)

Q := configuration space

projQ(x(t)) ∈ Qfree, t ∈ [0, τ]

1

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

. Additionally, optimality can be further imposed as an addition constraint. One such form is

u∗ = argmin
u(t)

∫ τ

0
cost(x(t), ˙x(t), u(t), ˙u(t)) dt (5)

.
In general, the following assumptions are made for the applicability of the approaches in the

surveyed papers:

• bounded change (Lipschitz) in cost function,

• bounded change (Lipschitz) in system states and control states,

• system is Small-Time Locally Accessible.

In the considered approaches in the surveyed papers, computing a propagation amounts to
constructing a propagation tree for search consisting of discretized sequence of states and controls
approximating the continuous system.

2

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

3 Models

The following system dynamics are used for simulation and benchmark.

3.1 Dubins Car xy
θ

 ∈ X,u ∈ U (6)

ẋẏ
θ̇

 =

V cos(θ)V sin(θ)
u

u ∈ [−40, 40] ∗ 2π/180

.

3.2 Dubins Airplane

x
y
z
θ

 ∈ X, [uv
]
∈ U (7)

ẋ
ẏ
ż

θ̇

 =

V cos(θ)
V sin(θ)

v
u

u ∈ [−40, 40] ∗ 2π/180

v ∈ [−0.5, 0.5]

.

3

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

4 Metric

All demonstrations for the above models use a state space metric that is the square root of equal
weighted linear combination of L2 squared positional displacement and squared rotational displace-
ment (only 1 angle in the sample models), each normalized to the unit interval.

Distss(a, b) =

[d∑
i=0

(a.posi − b.posi)2 +

(
(a.theta− b.theta+ 2π) mod 2π

2π

)2]1/2
a.posi ∈ [0, 1]

b.posi ∈ [0, 1]

a.theta ∈ [0, 2π]

b.theta ∈ [0, 2π]

The quality metric used for trajectory optimization in demonstrations is the minimization of
total time duration of the trajectory. Then, (5) reduces to

u∗ = argmin
u(t)

∫ τ

0
dt

, subject to other previously given constraints.

5 Environment

All environment samples are processed so that the physical space are normalized to be contained
within [0,1] for each dimension (eg: 1x1 for 2D, 1x1x1 for 3D). Sample demonstrations are performed
on randomly generated domains as well as structured maps taken from Dragon Age (available from
https://www.movingai.com/benchmarks/grids.html).

4

https://www.movingai.com/benchmarks/grids.html

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

6 Sparsity

Stable Sparse Rapidly Exploring Random Tree (SST) that is introduced by Yanbo Li, Zakary Lit-
tlefield, and Kostas E. Bekris is a sample-based planner that encourages sparseness by partitioning
space into witness neighbourhood regions that is parameterized by some measure of closeness [4].
Given assumptions of Lipschitz continuity of system dynamics, cost function, Small-Time Locally
Accessible of the system, and appropriate propagation parameters, this approach enables proba-
bilistic guarantee of finding a trajectory that is within the parameterized neighbourhood if there is
one.

Sparsity is enforced by the following:

• samples are considered to be within a neighbourhood if the sample is within some measure
of closeness (δs) to the witness of the neighbourhood,

• each neighbourhood has one representative that is computed with respect to a given measure
(such as propagation distance/time from xstart),

• a sample that is not a representative of any neighbourhood is marked as inactive,

• samples in the propagation tree that are leaves and inactive are eligible for pruning (samples
that are not leaves and inactive cannot be pruned since there exists descendent samples that
may be active),

• adding a sample that does not belong to any witness neighbourhood with the considered
measure of closeness (δs), then that sample itself becomes a witness and this creates a new
neighbourhood,

• adding a sample to an existing neighbourhood challenges the representative of that neigh-
bourhood with respect to a quality metric (such as total propagation time from xstart).

Propagation mechanism is done via generating a sample in state space and querying the best
existing sample within neighbourhood (δv) of the query with respect to a quality metric (such as
total propagation time from xstart). If no sample is within δv, a nearest sample is used. The selected
existing sample is used for Monte Carlo propagation by selecting a random propagation duration
and control input within constraints of the system.

Given the described approach by the authors, SST has some interesting properties:

• witnesses are only added and not deleted; this allows precomputation of pseudo-randomly
spaced witness nodes ahead of time if desired,

• sample generation, propagation, and propagation tree are computed in the state space of the
system and ignores configuration space, however it needs projection onto configuration space
for obstruction checking,

• nodes can be pruned from an inactive leaf towards the root of the propagation tree via local
parent pointer of each node,

• parameter controlling the witness neighbourhood size (δs) affects propagation tree sparseness
which is related to the resolution of coverage in the configuration space,

5

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

• propagation delta has to be effectively larger than than some threshold to overcome neigh-
bourhood size in order to explore unexplored regions,

• Monte Carlo propagation may lead to unuseful new sample due to sparsity constraints,

In the analysis of the algorithm, the authors use parameters δs (neighbourhood size of wit-
ness) and δv (neighbourhood size of selecting the best node with respect to some quality metric
for propagation) in a series of steps in showing δ-robustness which is a probabilistic guarantee that
a trajectory is generated going from a sample in a hypersphere to another hypersphere of neigh-
bourhood as the number of iterations approaches infinity. This requires Lipschitz continuity of the
system dynamics. Furthermore, Lipschitz continuity and monotonicity of the quality metric can
affect generated trajectory classes. An important assumption is that Monte Carlo propagation has
a non-zero probability of generation propagation from one hypersphere to another which must be
taken into account when setting appropriate parameters for propagation.

Asymptotic near-optimality is shown by reducing δ to an arbitrary small amount, however this
seems to limits the practical advantages of being a sparse approach in the first place. It is notable
this idea can be incorporated into a practical implementation by dynamically changing parameters
related to δ such as through annealing to quickly flood vast empty space at the start, however this
can still be limiting for configuration spaces with critical path having multiple small bottleneck
areas.

6

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

7 Motion Primitives

Sampling-based optimal kinodynamic planning with motion primitives by Sakcak, B and Bascetta,
L and Ferretti, G and Prandini, M explores motion planning by a combination of precomputation
of motion primitives and gridding to allow cheap lookup queries at runtime [5]. This approach re-
quires Small-Time Locally Accessible of the system, and invariances of the system dynamics (with
respect to translation and rotation in the demonstrated example), and transformations from the
global space to the reference frame of the database lookup.

During the precomputation stage, a database is constructed on a small region of grids in which
different combinations of control inputs are computed in order to achieve 2 point boundary value
problem from the reference origin point to every other point in the grid. Thus, the price of compu-
tation via custom solvers for 2 point boundary value problem is paid up front. Subsequent planning
in the larger space of the domain uses transformations in order to map global states to the reference
frame of the database lookup. If such transformations exist, then the lookup procedure cheaply
produces a potential propagation control input.

During runtime, tree rewiring is done to improve trajectory quality via triangle inequality com-
parison of transitivity between two nodes via a third node.

Given the described approach by the authors, motion primitives have the following properties:

• precomputation of motion primitives lookup can be done by minimizing a cost function (such
as cost of control input magnitude) over 2 point boundary value problem,

• different primitives can be chained together since they obey invariance of staying on prede-
termined grid,

• database lookup effectively serves as encoding with additional opportunity for space require-
ment reduction from symmetric dynamics of the system,

• grid regularity eases lookup implementation, however the regularity may cause aliasing prob-
lems if resolution of the grid does not play well with problem specific configuration domain,

• guarantee of transition on uniform grid allows discrete algorithms to be applied to find a
solution (eg: A∗),

• grid may need to be adjusted to allow grid point to coincide or near an acceptable neighbour-
hood of start and destination points,

• having finer grids impacts the number of connectible edges in the configuration domain
(O(α2d), α := resolution factor),

• collision checking is done after lookup query to check validity of the proposed trajectory.

Assuming Lipschitz continuity of cost function, asymptotic optimality of the algorithm is shown
by setting arbitrarily small grid spacing. It is also notable that the quality of the trajectory is
impacted by the precomputation stage of the motion primitive lookup. It is important that the
precomputation step covers sufficient range of classes of trajectory or else a possibly smaller solution
space is available for search at runtime. Considering only a finite number of trajectory classes are
generated and available for lookup, it is apparent that the algorithm is incomplete for a given fixed
size of grid resolution and arbitrarily hard configuration space.

7

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

8 Importance Sampling

Cross-entropy motion planning by Marin Kobilarov provides a general method for improving the
quality of motion planning in a incremental way using estimation of rare events such that the
model of the planner uses distributions that approach an optimal [3]. This can be applied glob-
ally or locally depending on the tradeoff of optimality and computation time of the problem at hand.

Proposed implementation of this method uses a given quality metric to rank samples and iter-
atively adapt the threshold of cutoff of quality based on qualities of observed samples. Practical
implementation typically uses a certain quantile of samples (ranked with respect to the quality
metric) for monotonically changing the quality threshold for the next iteration of optimization.
This assumes that the rare event occurrence of obtaining good quality of trajectory path is not too
low, which is reflected in the quantile parameter, such as 1% to 10%. Importantly, the flexibility of
this framework allows use of wide range of distributions (such as Gaussian mixture model) to be
used for sampling and allow any parameterizations that is used for generation of samples.

The general framework of importance sampling and use of cross entropy in the paper has the
following characteristics.

• stochastic optimization,

• optimization that is not restricted to gradient based methods,

• allow use of mixture of large range of different distributions that can sufficiently be adapted
to approximate the optimal distribution,

• iteratively changing sub-level-set of solutions by monotonically adjusting quality threshold
used in evaluation of a rare event, assuming some constant quantile parameter for optimization
ranking,

• has a similar flavour compared to Expectation Maximization and evolutionary approaches.

The authors of the paper demonstrated this framework by using RRT based variants (RRT,RRT*),
parameterizing for forward chained end-to-end trajectory generation with heuristic estimate of cost-
to-go from the tip of the trajectory to the goal and a Gaussian mixture model with 4 components.
Parameters for trajectory generation is updated via Expectation Maximization. It is notable for
certain distributions such as ones in the natural exponential family, analytical solutions exist and
are suitable for parameter update. This optimization is done globally and reported results show
that this is feasible for spaces with low obstruction counts.

8

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

9 Implementation

9.1 SST

The SST algorithm is implemented with adjustable parameters for experimentation. This forms
the basis for additional features such as motion primitives and importance sampling.

In encouraging efficiency, Monte Carlo propagation is further clamped on possible propagation
durations. Due to sparseness constraint of having one active node within a witness neighbourhood,
propagation delta that is too small have higher chance in landing in the same witness region as
the node, thus wasting iterations. Therefore it is reasonable to set sufficiently large propagation
duration in order for higher chance of going to neighbouring spaces.

Below shows a comparison of observed metrics with different sparseness parameters for a given
Dubins car scenario, going from green to red point, that records statistics leading up to finding a
first feasible path. Total iterations includes iterations changed plus iterations unchanged (due to
collision and witness neighbourhood contentions).

Figure 1: Start: pos=[0.2,0.1], θ = 0. Goal: pos[0.8,0.8] +/- [0.01,0.01]. Baseline parameters: δs =
0.0001, δv = 0.0002, tprop = 0.03 ∗ [0.05, 1]. Sparse parameters: δs = 0.07, δv = 0.12, tprop = 0.06 ∗ [0.05, 1].
tprop corresponds to Monte Carlo propagation duration constraints. Note that all sample scenarios have
environment normalized within [0,1] for each dimension. 200 experiments are performed for each type.

9

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

9.2 Motion Primitive

Instead of gridding approach, motion primitive is stochastically stored and looked up. It is notable
that a ML approach for learning “steering” function of the motion primitive might be possible, but
given time constraints this is not considered.

Due to possible degenerate control of the system, it is generally not possible that the motion
primitive will steer in a way that guarantees a solution especially when the cost metric is not suf-
ficiently accurate and the current node being propagated is still far away from the goal. Thus,
the heuristic that is used in implementation is to use motion primitives only when it is sufficiently
close to the goal. Ideally the use of a motion primitive will snap right into the goal region thus
completing the very last portion of a feasible trajectory. Below are some examples of “ideal” ways
in which motion primitives can help propagate towards the goal in a map taken from Dragon Age.

Figure 2: Top and bottom rows, 2 sample solutions with motion primitives and frontier expansion node
selection(see Frontier Expansion Node Selection section) enabled. Propagation parameters set to δs =
0.01, δv = 0.02, tprop = 0.035 ∗ [0.1, 1]. Motion primitive triggering: within 0.25 L2 distance away from goal
in configuration space with a probability of 50%, primitive lookup table capacity: 500, lookup filling after
a propagation: fill if lookup table not full or else fill with 15% probability. Note that all sample scenarios
have environment normalized within [0,1] for each dimension.

10

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

Below shows a comparison of observed metrics with motion primitives enabled and disabled for
a Dubins car scenario that records statistics leading up to finding a first feasible path. In general,
its effects is small due to constraining trigger condition to a small neighbourhood around the goal.

Figure 3: Start: pos=[0.2,0.1], θ = 0. Goal: pos[0.8,0.8] +/- [0.01,0.01]. Common parameters: δs =
0.0001, δv = 0.0002, tprop = 0.03 ∗ [0.05, 1]. 200 experiments are performed for each type.

11

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

9.3 Approximate Nearest Neighbour Query

Nearest neighbour is optionally implemented with a approximate method that is suitable for large
node counts (equivalently small witness neighbourhood size). Due to dynamical insertions and dele-
tions of nodes, approximate nearest neighbour is implemented with a connectivity graph that tries
to maintain a connected graph with each node having edges connecting to K neighbours such that
K is proportional to logarithm of the current total node count. Additional rewiring is performed
when nodes are detected with fewer valence connections than a current threshold.

Querying for nearest neighbours samples a number of nodes proportional to square root or log-
arithm (optional compile-time configurable) of the the existing node count to preliminary obtain
a node with the nearest estimate distance. Neighbours of this node is further expanded in order
to find nearby nodes with even better closeness metric. This is done recursively to find the best K
nodes such that K is proportional to logarithm of the total node count. Fixed point convergence of
the best K node set finishes the algorithm and an optimal node within the K candidates is selected
as the nearest node.

In practice, the overhead of the approximate method is justified when a large number of nodes
(equivalently small neighbourhood size) is expected to exist during search. Empirical observation
on a personal laptop shows that linear nearest neighbour search is more effective for node count
that is under a few thousand.

12

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

9.4 Stochastic Disturbance Injection

Additional disturbance for witness representative replacement is adaptively injected when the cur-
rent propagation tree is not making enough progress in terms of rate of new witness neighbourhood
discoveries. A sliding window keeping record of a brief history of new witness neighbourhood ex-
pansion enables probabilistic witness representative replacement when a trajectory is propagated
within an existing witness neighbourhood. The reason for this is to allow a range of trajectory
classes to be tried by temporally adjusting witness representatives such that the resulting change
allows further propagation into new territories.

Contrasting with lack of disturbances, the propagation tree is vulnerable to become stuck in a
certain structure without further progress in cluttered environment. This method is found to be
quite effective in example scenarios of simple to moderate configuration space complexity. Due to
the stochasticity of witness representative changes, this method allows effective exploration using
larger neighbourhood that would still give good change of finding feasible trajectories as time passes.

Below shows a comparison of observed metrics with witness disturbance enabled and disabled
for a Dubins car scenario that records statistics leading up to finding a first feasible path. It is
observable that the expected iterations to find a first feasible trajectory is slightly lowered and the
expected iterations that results in some change is increased.

Figure 4: Start: pos=[0.2,0.1], θ = 0. Goal: pos[0.8,0.8] +/- [0.01,0.01]. Common parameters: δs =
0.07, δv = 0.12, tprop = 0.06 ∗ [0.05, 1]. Disturbance is activated when new witness discovery rate is lower
than 10% of recent iterations using a sliding window. 200 experiments are performed for each type.

13

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

Below shows a comparison of observed metrics with witness disturbance and motion primitves
for a Dubins car scenario.

Figure 5: Start: pos=[0.2,0.1], θ = 0. Goal: pos[0.8,0.8] +/- [0.01,0.01]. Common parameters: δs =
0.07, δv = 0.12, tprop = 0.06 ∗ [0.05, 1]. Disturbance is activated when new witness discovery rate is lower
than 10% of recent iterations using a sliding window. 200 experiments are performed for each type.

Another approach that is similar in effect of altering existing propagation structure in hopes of
further exploration is through neighbourhood size augmentation such as using a periodic function.
This would allow propagation node to deposit in new smaller neighbourhood while still maintain-
ing a level of sparseness due to periodic return to larger neighbourhood size. This approach is
not implemented due to extra overhead for sweeping to clean up for nodes when neighbourhood
parameter grows back up.

14

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

9.5 Importance Sampling

Global optimization is possible using importance sampling, however this might require an infeasible
amount of computation for search in the early iterations of importance sampling. For fast local
optimization, a first feasible trajectory that is discovered is bootstrapped for an initial sampling dis-
tribution that is optimized. The overal algorithm for trajectory optimization is outlined in alg. (1).

In the implementation, a sample is defined as a first feasible trajectory found. Rounds of im-
portance sampling are performed with previous sampling distributions and expected to improve in
quality with use of a provided fitness function and retaining an elite set of samples with respect to a
current fitness cost. Fitness cost is updated using the cost of a sample at some specified quantile of
the samples evaluated with respect to the fitness function. Multivariate Gaussian mixture is used
for change of sampling distribution and the available parameterizations are thus mean and variance.

Algorithm 1: Trajectory Optimization

input : F(trajectory generator, SST in this case), S(quality metric, assume lower score is
better), ε(quality convergence constant), ρ(percentile for quality narrowing)

output: quality score, desirable trajectory parameterization

1 begin
2 trajectoryinitial ← F.generate()
3 quality ←∞
4 G ← GenerateGaussianComponents(trajectoryinitial.waypoints)
5 repeat
6 //generate n samples; a sample := a first feasible trajectory found by SST algo
7 X[0, .., n− 1] ← (0..n).map(| | F.reset(); F.useSampleDistr(G); F.generate())
8 Xfilt ← X.filter(| x | S(x) ≤ quality)
9 Xfilt.sortDescendingBy(| x | S(x))

10 i ← floor(len(Xfilt) * ρ)
11 //take quality value of ρ percentile as threshold for next iteration
12 qualityt ← S(Xfilt[i])
13 Elite ← Xfilt[i+1, ...]
14 GS ← Elite.iter().map(| x | GenerateGaussianComponents(x.waypoints))
15 G ← MergeAndAverage(GS) // update parameterization here(eg: µ), potentially

use Cross-Entropy Clustering

16 until |quality − qualityt|≤ ε, else quality ← qualityt;
17 return (quality, G.parameterization)

Using the sparseness of SST, all witness regions that are touched by the found feasible trajectory
are converted into Gaussian mixture model with the number of components equal to the number
of touched witness regions. A sample is defined in this implementation as a first feasible trajectory
found and a number of these are generated afresh each time by executing the SST algorithm. Once
a sufficient number of samples are generated, they are evaluated according to a quality function
ranking the sample and importance sampling framework is applied to update the quality threshold
and use samples of sufficient quality to update parameters for the next round of sample generation.
The parameters in this implementation are the mean and variance(or standard deviation) of Gaus-
sian components. For simplicity, standard deviation is set to a constant proportional to the witness
neighbourhood size of the SST so the Gaussian components are isotropic. In sample generation, the
SST algorithm is modified to select nodes for propagation using a compositional Gaussian mixture

15

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

model from the previous optimization iteration and this is done in order to generate a prescribed
number of samples for the current optimization iteration.

As simplification, only state space is used for importance sampling in the implementation, how-
ever this can be extended for (state space, control space) pair such as conditioning control space
importance sampling for each state space region, which is in turn also importance sampled.

In this simplified implementation, Gaussian mixture model is generated anew for each new op-
timization iteration by using the witness neighbourhood of sampled quality trajectories. It may be
more stable to incrementally adjust mixtures model of previous iteration with the current quality
trajectory as suggested in Cross Entropy tutorial [1]. More sophisticated methods such as Cross-
Entropy Clustering for automatic clustering and cluster redundancy elimination for mixtures can
be used [2]. These are left for future investigations.

Rounds of importance sampling on the Dubins car in a relatively simple map taken from Dragon
Age is shown below.

Figure 6: Start: pos=[0.2,0.1,0], θ = 0. Goal: pos[0.8,0.8,0] +/- [0.01,0.01,0]. Optimization parameters:
number of samples = 20, elite set percentile cutoff = 10%, fitness function = duration of travel, standard
deviation of Gaussian components set to a constant of 2δs of the SST. δs = 0.004, δv = 0.008, tprop ∈
[0.025, 1.0] ∗ 0.07. Snapshots of initial feasible trajectory found, bootstrapped distribution components with
positional means indicated by yellow points, subsequent importance sampling with mixture distributions at
iterations: 1, 2, 4, 8, 12 ,16. Quality threshold scores for elite set at iterations: 1(1.008956), 2(0.9829887),
4(0.96761334), 8(0.9411696), 12(0.9142173), 16(0.8817812).

16

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

Rounds of importance sampling of the Dubins airplane model in a relatively obstruction-free
3D scenario is shown below.

Figure 7: Start: pos=[0.2,0.2,0], θ = 0. Goal: pos[0.8,0.8,0.4] +/- [0.075,0.075,0.075]. Frontier node se-
lection with 50% activation is used (see next section) to encourage exploration. Optimization parameters:
number of samples = 20, elite set percentile cutoff = 10%, fitness function = duration of travel, standard
deviation of Gaussian components set to 1δs of the SST. δs = 0.075, δv = 0.12, tprop ∈ [0.05, 1.0]∗0.12. Snap-
shots of bootstrapped distribution components with positional means indicated by yellow points, subsequent
importance sampling with mixture distributions at iterations: 1, 2, 4, 6, 8, 12 ,16. Quality threshold scores
for elite set at iterations: 1(2.9550786), 2(2.5031433), 4(2.359734), 6(1.3488877), 8(1.1966971), 12(1.053702),
16(0.95340395).

17

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

Rounds of importance sampling of the Dubins airplane model in a moderately obstructed 3D
scenario is shown below.

Figure 8: Start: pos=[0.1,0.1,0], θ = 0. Goal: pos[0.5,0.5,0.6] +/- [0.075,0.075,0.075]. Frontier node
selection with 50% activation is used (see next section) to encourage exploration. Optimization parameters:
number of samples = 20, elite set percentile cutoff = 10%, fitness function = duration of travel, standard
deviation of Gaussian components set to 1δs of the SST. δs = 0.075, δv = 0.12, tprop ∈ [0.05, 1.0] ∗ 0.12.
Snapshots of initial feasible trajectory found, subsequent importance sampling with mixture distributions
at iterations: 1, 2, 3, 4, 8, 12, and side view of scenario. Quality threshold scores for elite set at iterations:
1(4.366925), 2(4.0489664), 3(3.4321098), 4(3.2385962), 8(2.5732057), 12(2.14029).

Further optimization beyond 12 iterations is observed to have no changed, hence it is around
the limit of optimization with the given system and optimization parameters. It is notable that the
quality function being optimizated is not convex since the parameterization domain in state space
is itself not convex due to certain arbitrary“subspaces” being occupied by the obstructions of the
physical space as well as potentially degenerate control regions in a dynamical system.

18

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

10 Node Selection & Control Selection

10.1 Node Selection

It is desirable to choose nodes in frontiers for expansion in that they are closer to regions of unex-
plored space. The idea is to randomly sample multiple locations and find out which sample is the
furthest away from already propagated region, then selecting a node that is close to the randomly
selected state in hopes of filling space toward the unexplored region.

Local averaging using k-hop neighbourhood of a nearest node to a sample location is used
to approximate a score of closeness to the sample. This is integrated with SST algorithm for
selecting a node for Monte Carlo propagation. Several random states are selected and a nearest
node for each of these are scored based on average distance of its neighbourhood within k hops to
the corresponding randomly selected state. The node corresponding to the largest neighbourhood
distance score to a randomly selected state is eligible for propagation. By using the existing graph
from the approximate nearest neighbour algorithm, k-hop neighbourhood can be identified for a
node.

10.2 Control Selection

The control parameter used for a node expansion can be altered by considering control that allow
far propagation from a selected node. Multiple control sample points are considered and scored
according to propagation length after they are considered to be obstruction free. The effects of
node selection and control selection are observed below for a Dubins car scenario (where there is
relatively low number of obstructions and no target goal to purely observe expansion properties)
that records statistics in the first 4000 total iterations.

Figure 9: Parameters: δs = 0.02, δv = 0.04, tprop ∈ [0.1, 1.0] ∗ 0.03, total iterations = 4000. Total iterations
= iterations changed + iterations no change (witness contention + collision). Number of samples for node
selection: 10. Number of samples for control selection: 10. Goal is omitted to observe expansion properties.

19

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

It is notable that using frontier node expansion, the amount of expansion measured in number
of witness nodes is lower than the baseline that does not use it. It is perhaps related to somehow
selecting certain nodes repeatedly but failing to propagate it due to Monte Carlo propagation du-
ration as this is evidence in the amount of increased node pruning. In the case of control selection,
propagation is enouraged due to seleciton of a candidate with max propagate distance.

Use of these allows faster expansion in uncluttered space, however it restricts exploration due
to lack of knowledge of obstructions. It can be observed that a combination of heuristics can cause
adverse effects in the below scenario in which there are failures to expand to different partitions of
the configuration space.

Figure 10: Top row: node selection and control selection applied all of the time. 2nd row: node selec-
tion(parameterized to be triggered 100% of time), control selection (parameterized to be triggered 50% of
time). 3rd row: node selection (50%), control selection (50%). 4th row: node selection (50%), control
selection (25%). Number of nodes for each run ≈ 3200. Propagation parameters set to δs = 0.003, δv =
0.006, tprop ∈ [0.0015, 0.015].

20

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

11 Main Algorithm

Below is an outline of the main SST algorithm implemented.

Algorithm 2: Main SST Algorithm

input : xstart, xgoal, X, U, δs, δv, distss, Q, quality(assume lower is better), dynamics
output: feasible trajectory

1 begin
2 traj ← ∅
3 Treeprop ← ({xstart}, {})
4 Witnesses ← {xstart}
5 repeat
6 xrand ← selState(X)
7 xs ← getExistingWithinDist(Tree, xrand, δv) //optional: frontier node sampling
8 if xs = ∅
9 x ← getExistingNearest(Tree, xrand)

10 else
11 x ← xs.getMinBy(| i | quality(i))

12 //optional: motion primitive, control sample selection, defaults to Monte Carlo prop
13 u,t ← selPropParam(Q,X,U,x,t)
14 xprop ← propagate(x, u, t, dynamics)
15 w ← getNodesWithinDist(Witnesses, xprop, δs)
16 if project(xprop) ∈ Qfree
17 if w = ∅
18 Witnesses ← Witnesses ∪ w //sliding window to track witness expansion

rate
19 Treeprop.extend(x, xprop, u, t)
20 markActive(xprop)

21 else if w 6= ∅
22 xrepr ← w.representative
23 if xrepr = ∅ ∨ quality(xprop) ≤ quality(xrepr)

∨ WitnessExpansionRateTooSlow
24 markInactive(xrepr)
25 Treeprop.extend(x, xprop, u, t)
26 markActive(xprop)
27 w.representative ← xprop
28 xprune ← xrepr
29 while xprune 6= ∅ ∧ ¬isActive(xprune) ∧ ¬hasDescendents(xprune) ∧

¬isRoot(xprune)
30 xp ← xprune.parent
31 Treeprop ← Treeprop \ Edgexp,xprune

32 xprune ← xp

33 if xprop ∈ xgoal
34 traj ← πxstart,u1,...,un,xprop

35 until traj 6= ∅;
36 return traj

21

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

12 Summary

Several ideas that are relevant in sample based motion planning are explored in the literature and
this is further realized in a hybrid implementation with benchmarks that empirically examine their
effects on several quantified metrics in different scenarios.

In particular, there exist tradeoffs between sparseness efficiencies and the ability to explore in
depth in complex configuration spaces. Motion primitives also provide some degree of sparseness
by precomputing for a subset of the available solution space in a local grid and presenting these
discretized primitives for discrete algorithms. However, this efficiency is counterbalanced by con-
straining to the solved canonical trajectory classes and may not provide a trajectory that is feasible
or in sufficient quality even given infinite run-time compute resource. Finally, importance sampling
enables flexible optimization for multi-extremal problems while allowing reparameterization tech-
niques, however, efficiencies of this method depends on sample generation techniques in general
and thus may take a lot of resource for sampling especially in the early optimization iterations.

Additional attempts of optimization are investigated. Disturbances are injected when new wit-
ness expansion rate falls below a threshold in order to stimulate propagation tree rewiring so that
altered structure allows further movement in already explore spaces. Approximate nearest neigh-
bour using graph based approach is implemented using authors’ approach, however it seems the
overhead outweighs its benefits especially at low node counts which is the ideal regime that a sparse
algorithm would like to be in.

Furthermore, biasing node selection for expansion is investigated by stochastically sampling
multiple states and choosing a nearby node that is most likely to be near spaces that are not
densely populated with existing nodes. This uses graph based approximate nearest neighbour to
obtain a k-hop neighbourhood for distance summary to a target sample. Propagation length is
investigated by selecting a propagation duration that tries to maximize propagation distance from
a selected node. This approach seems to work well to cover large spaces but may fail to expand with
varied trajectory classes in cluttered spaces. A combination of the node selection and propagation
length are experimented and these have non-desirable effects especially in cluttered configuration
spaces.

Other improvements such as automated clustering to Gaussian mixture model for trajectory
optimization and better steering function prediction via machine learning techniques would be a
great enhancement to the existing algorithms and these are topics for future exploration.

13 Code

Code implementation can be found at https://github.com/clearlycloudy/sample_planning.

22

https://github.com/clearlycloudy/sample_planning

CSC2542 Project Yuan Liu, Date: 2019/07/08, v5

14 References

[1] PT de Boer et al. “A Tutorial on the Cross-Entropy Method”. In: Annals of Operations
Reesearch (2005).

[2] P Spurek J Tabor. “Cross-entropy clustering”. In: Pattern Recognition (2014).

[3] M Kobilarov. “Cross-entropy motion planning”. In: The International Journal of Robotics
Research (2012).

[4] Y Li, Z Littlefield, and KE Bekris. “Sparse Methods for Efficient Asymptotically Optimal
Kinodynamic Planning”. In: Workshop on the Algorithmic Foundations of Robotics (WAFR)
(2014).

[5] B Sakcak et al. “Sampling-based optimal kinodynamic planning with motion primitives”. In:
Autonomous Robots (2018).

23

	Abstract
	Background
	Models
	Dubins Car
	Dubins Airplane

	Metric
	Environment
	Sparsity
	Motion Primitives
	Importance Sampling
	Implementation
	SST
	Motion Primitive
	Approximate Nearest Neighbour Query
	Stochastic Disturbance Injection
	Importance Sampling

	Node Selection & Control Selection
	Node Selection
	Control Selection

	Main Algorithm
	Summary
	Code
	References

