1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*!
**Salva** is a 2 and 3-dimensional particle-based fluid simulation engine for games and animations.
It uses [nalgebra](https://nalgebra.org) for vector/matrix math and can optionally interface with
[nphysics](https://nphysics.org) for two-way coupling with rigid bodies, multibodies, and deformable bodies.
2D and 3D implementations both share (mostly) the same code!


Examples are available in the `examples2d` and `examples3d` directories.  Because those demos are based on
WASM and WebGl 1.0 they should work on most modern browsers. Feel free to ask for help
and discuss features on the official [user forum](https://discourse.nphysics.org).

## Why the name Salva?

The name of this library is inspired from the famous surrealist artist `Salvador Dalì`. The logo of `Salva`
 is inspired from its renown painting [The Persistence of Memory](https://en.wikipedia.org/wiki/The_Persistence_of_Memory).

## Features
- **Pressure resolution:** DFSPH and IISPH.
- **Viscosity:** DFSPH viscosity, Artificial viscosity, and XSPH viscosity.
- **Surface tension:** WCSPH surface tension, and methods from He et al. 2014 and Akinci et al. 2013
- **Elasticity:** method from Becker et al. 2009
- **Multiphase fluids**: mix several fluids with different characteristics (densities, viscosities, etc.)
- Optional **two-way coupling** with bodies from **nphysics**.
- **WASM** support
*/
#![deny(non_camel_case_types)]
#![deny(unused_parens)]
#![deny(non_upper_case_globals)]
#![deny(unused_qualifications)]
#![warn(missing_docs)] // FIXME: deny this
#![deny(unused_results)]
#![allow(type_alias_bounds)]
#![warn(non_camel_case_types)]
#![allow(missing_copy_implementations)]
#![doc(html_root_url = "https://salva.rs/rustdoc/")]
#![doc(html_logo_url = "https://salva.rs/img/logo_salva_rustdoc.svg")]

extern crate nalgebra as na;
#[cfg(all(feature = "dim2", feature = "ncollide"))]
extern crate ncollide2d as ncollide;
#[cfg(all(feature = "dim3", feature = "ncollide"))]
extern crate ncollide3d as ncollide;
extern crate num_traits as num;
#[cfg(all(feature = "dim2", feature = "parry"))]
pub extern crate parry2d as parry;
#[cfg(all(feature = "dim3", feature = "parry"))]
pub extern crate parry3d as parry;
#[cfg(all(feature = "dim2", feature = "rapier"))]
pub extern crate rapier2d as rapier;
#[cfg(all(feature = "dim3", feature = "rapier"))]
pub extern crate rapier3d as rapier;
#[cfg(all(feature = "dim2", feature = "rapier-testbed"))]
extern crate rapier_testbed2d as rapier_testbed;
#[cfg(all(feature = "dim3", feature = "rapier-testbed"))]
extern crate rapier_testbed3d as rapier_testbed;

macro_rules! par_iter {
    ($t: expr) => {{
        #[cfg(not(feature = "parallel"))]
        let it = $t.iter();

        #[cfg(feature = "parallel")]
        let it = $t.par_iter();
        it
    }};
}

macro_rules! par_iter_mut {
    ($t: expr) => {{
        #[cfg(not(feature = "parallel"))]
        let it = $t.iter_mut();

        #[cfg(feature = "parallel")]
        let it = $t.par_iter_mut();
        it
    }};
}

macro_rules! par_reduce_sum {
    ($identity: expr, $t: expr) => {{
        #[cfg(not(feature = "parallel"))]
        let res = $t.fold($identity, |a, b| a + b);
        #[cfg(feature = "parallel")]
        let res = $t.reduce(|| $identity, |a, b| a + b);
        res
    }};
}

pub mod counters;
pub mod coupling;
pub mod geometry;
pub mod helper;
pub mod integrations;
pub mod kernel;
mod liquid_world;
pub mod object;
#[cfg(feature = "sampling")]
pub mod sampling;
pub mod solver;
mod timestep_manager;
pub(crate) mod z_order;

pub use crate::liquid_world::LiquidWorld;
pub use crate::timestep_manager::TimestepManager;

/// Compilation flags dependent aliases for mathematical types.
#[cfg(feature = "dim3")]
pub mod math {
    use na::{
        Dynamic, Isometry3, Matrix3, Matrix6, MatrixMN, MatrixSlice6xX, MatrixSliceMut6xX, Point3,
        Rotation3, Translation3, UnitQuaternion, Vector3, Vector6, U3, U6,
    };

    /// The maximum number of possible rotations and translations of a rigid body.
    pub const SPATIAL_DIM: usize = 6;
    /// The maximum number of possible rotations of a rigid body.
    pub const ANGULAR_DIM: usize = 3;
    /// The maximum number of possible translations of a rigid body.
    pub const DIM: usize = 3;

    /// The scalar type.
    pub type Real = f32;

    /// The dimension of the ambient space.
    pub type Dim = U3;

    /// The dimension of a spatial vector.
    pub type SpatialDim = U6;

    /// The dimension of the rotations.
    pub type AngularDim = U3;

    /// The point type.
    pub type Point<Real> = Point3<Real>;

    /// The angular vector type.
    pub type AngularVector<Real> = Vector3<Real>;

    /// The vector type.
    pub type Vector<Real> = Vector3<Real>;

    /// The vector type with dimension `SpatialDim × 1`.
    pub type SpatialVector<Real> = Vector6<Real>;

    /// The orientation type.
    pub type Orientation<Real> = Vector3<Real>;

    /// The transformation matrix type.
    pub type Isometry<Real> = Isometry3<Real>;

    /// The rotation type.
    pub type Rotation<Real> = UnitQuaternion<Real>;

    /// The rotation matrix type.
    pub type RotationMatrix<Real> = Rotation3<Real>;

    /// The translation type.
    pub type Translation<Real> = Translation3<Real>;

    /// The inertia tensor type.
    pub type AngularInertia<Real> = Matrix3<Real>;

    /// The inertia matrix type.
    pub type InertiaMatrix<Real> = Matrix6<Real>;

    /// Square matrix with dimension `Dim × Dim`.
    pub type Matrix<Real> = Matrix3<Real>;

    /// Square matrix with dimension `SpatialDim × SpatialDim`.
    pub type SpatialMatrix<Real> = Matrix6<Real>;

    /// The type of a constraint jacobian in twist coordinates.
    pub type Jacobian<Real> = MatrixMN<Real, U6, Dynamic>;

    /// The type of a slice of the constraint jacobian in twist coordinates.
    pub type JacobianSlice<'a, Real> = MatrixSlice6xX<'a, Real>;

    /// The type of a mutable slice of the constraint jacobian in twist coordinates.
    pub type JacobianSliceMut<'a, Real> = MatrixSliceMut6xX<'a, Real>;

    /// The cross-product matrix for the given vector.
    pub fn gcross_matrix(v: &Vector<Real>) -> Matrix<Real> {
        v.cross_matrix()
    }
}

/// Compilation flags dependent aliases for mathematical types.
#[cfg(feature = "dim2")]
pub mod math {
    use na::{
        Dynamic, Isometry2, Matrix1, Matrix2, Matrix3, MatrixMN, MatrixSlice3xX, MatrixSliceMut3xX,
        Point2, Rotation2, RowVector2, Translation2, UnitComplex, Vector1, Vector2, Vector3, U1,
        U2, U3,
    };

    /// The maximum number of possible rotations and translations of a rigid body.
    pub const SPATIAL_DIM: usize = 3;
    /// The maximum number of possible rotations of a rigid body.
    pub const ANGULAR_DIM: usize = 1;
    /// The maximum number of possible translations of a rigid body.
    pub const DIM: usize = 2;

    /// The scalar type.
    pub type Real = f32;

    /// The dimension of the ambient space.
    pub type Dim = U2;

    /// The dimension of the rotation.
    pub type AngularDim = U1;

    /// The dimension of a spatial vector.
    pub type SpatialDim = U3;

    /// The point type.
    pub type Point<Real> = Point2<Real>;

    /// The vector type with dimension `SpatialDim × 1`.
    pub type SpatialVector<Real> = Vector3<Real>;

    /// The angular vector type.
    pub type AngularVector<Real> = Vector1<Real>;

    /// The vector type.
    pub type Vector<Real> = Vector2<Real>;

    /// The orientation type.
    pub type Orientation<Real> = Vector1<Real>;

    /// The transformation matrix type.
    pub type Isometry<Real> = Isometry2<Real>;

    /// The rotation type.
    pub type Rotation<Real> = UnitComplex<Real>;

    /// The rotation matrix type.
    pub type RotationMatrix<Real> = Rotation2<Real>;

    /// The translation type.
    pub type Translation<Real> = Translation2<Real>;

    /// The inertia tensor type.
    pub type AngularInertia<Real> = Matrix1<Real>;

    /// The inertia matrix type.
    pub type InertiaMatrix<Real> = Matrix3<Real>;

    /// Square matrix with dimension `Dim × Dim`.
    pub type Matrix<Real> = Matrix2<Real>;

    /// Square matrix with dimension `SpatialDim × SpatialDim`.
    pub type SpatialMatrix<Real> = Matrix3<Real>;

    /// The type of a constraint jacobian in twist coordinates.
    pub type Jacobian<Real> = MatrixMN<Real, U3, Dynamic>;

    /// The type of a slice of the constraint jacobian in twist coordinates.
    pub type JacobianSlice<'a, Real> = MatrixSlice3xX<'a, Real>;

    /// The type of a mutable slice of the constraint jacobian in twist coordinates.
    pub type JacobianSliceMut<'a, Real> = MatrixSliceMut3xX<'a, Real>;

    /// The cross-product matrix for the given vector, generalized in 2D.
    pub fn gcross_matrix(v: &Vector<Real>) -> RowVector2<Real> {
        RowVector2::new(-v.y, v.x)
    }
}