1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright 2020 MaidSafe.net limited.
//
// This SAFE Network Software is licensed to you under The General Public License (GPL), version 3.
// Unless required by applicable law or agreed to in writing, the SAFE Network Software distributed
// under the GPL Licence is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. Please review the Licences for the specific language governing
// permissions and limitations relating to use of the SAFE Network Software.

/// Common utility functions for writing test cases.
#[cfg(any(test, feature = "test-utils"))]
pub mod test_utils;

use crate::types::{Encryption, PublicKey, Result as TypesResult};
use crate::url::Scope;
use backoff::ExponentialBackoff;
use bytes::Bytes;
use futures::Future;
use rand::{self, distributions::Alphanumeric, rngs::OsRng, Rng};
use std::time::Duration;

pub(crate) fn retry<R, E, Fn, Fut>(
    op: Fn,
    initial_interval: Duration,
    max_elapsed_time: Duration,
) -> impl Future<Output = Result<R, E>>
where
    Fn: FnMut() -> Fut,
    Fut: Future<Output = Result<R, backoff::Error<E>>>,
{
    let backoff = ExponentialBackoff {
        initial_interval,
        max_interval: max_elapsed_time,
        max_elapsed_time: Some(max_elapsed_time),
        ..Default::default()
    };

    backoff::future::retry(backoff, op)
}

struct DummyEncryption {
    public_key: PublicKey,
}

impl DummyEncryption {
    pub(crate) fn new(public_key: PublicKey) -> Self {
        Self { public_key }
    }
}

impl Encryption for DummyEncryption {
    fn public_key(&self) -> &PublicKey {
        &self.public_key
    }
    fn encrypt(&self, data: Bytes) -> TypesResult<Bytes> {
        Ok(data)
    }
    fn decrypt(&self, encrypted_data: Bytes) -> TypesResult<Bytes> {
        Ok(encrypted_data)
    }
}

///
pub fn encryption(scope: Scope, public_key: PublicKey) -> Option<impl Encryption> {
    match scope {
        Scope::Public => None,
        Scope::Private => Some(DummyEncryption::new(public_key)),
    }
}

/// Generates a `String` from `length` random UTF-8 `char`s.  Note that the NULL character will be
/// excluded to allow conversion to a `CString` if required, and that the actual `len()` of the
/// returned `String` will likely be around `4 * length` as most of the randomly-generated `char`s
/// will consume 4 elements of the `String`.
pub fn generate_random_string(length: usize) -> String {
    let mut rng = OsRng;
    ::std::iter::repeat(())
        .map(|()| rng.gen::<char>())
        .filter(|c| *c != '\u{0}')
        .take(length)
        .collect()
}

/// Generates a readable `String` using provided `length` and only ASCII characters.
pub fn generate_readable_string(length: usize) -> String {
    let mut rng = OsRng;
    ::std::iter::repeat(())
        .map(|()| rng.sample(Alphanumeric))
        .take(length)
        .collect()
}

/// Convert binary data to a displayable format
#[inline]
pub fn bin_data_format(data: &[u8]) -> String {
    let len = data.len();
    if len < 8 {
        return format!("[ {:?} ]", data);
    }

    format!(
        "[ {:02x} {:02x} {:02x} {:02x}..{:02x} {:02x} {:02x} {:02x} ]",
        data[0],
        data[1],
        data[2],
        data[3],
        data[len - 4],
        data[len - 3],
        data[len - 2],
        data[len - 1]
    )
}

#[cfg(test)]
mod tests {
    use crate::types::utils::random_bytes;

    use super::*;

    const SIZE: usize = 10;

    // Test `generate_random_string` and that the results are not repeated.
    #[test]
    fn random_string() {
        let str0 = generate_random_string(SIZE);
        let str1 = generate_random_string(SIZE);
        let str2 = generate_random_string(SIZE);

        assert_ne!(str0, str1);
        assert_ne!(str0, str2);
        assert_ne!(str1, str2);

        assert_eq!(str0.chars().count(), SIZE);
        assert_eq!(str1.chars().count(), SIZE);
        assert_eq!(str2.chars().count(), SIZE);
    }

    // Test `random_bytes` and that the results are not repeated.
    #[test]
    fn random_vector() {
        let vec0 = random_bytes(SIZE);
        let vec1 = random_bytes(SIZE);
        let vec2 = random_bytes(SIZE);

        assert_ne!(vec0, vec1);
        assert_ne!(vec0, vec2);
        assert_ne!(vec1, vec2);

        assert_eq!(vec0.len(), SIZE);
        assert_eq!(vec1.len(), SIZE);
        assert_eq!(vec2.len(), SIZE);
    }
}