1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
/*
Copyright 2014 Google Inc. All rights reserved.
Copyright 2017 Jihyun Yu. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

use std;
use std::f64::consts::PI;

use consts::*;
use r1;
use r3::vector::Vector;
use s1::{self, chordangle, Angle, ChordAngle, Deg, Rad};
use s2::cell::Cell;
use s2::edgeutil::*;
use s2::point::Point;
use s2::rect::Rect;
use s2::region::Region;

const CENTER_POINT: Point = Point(Vector {
    x: 1.,
    y: 0.,
    z: 0.,
});

/// Cap represents a disc-shaped region defined by a center and radius.
/// Technically this shape is called a "spherical cap" (rather than disc)
/// because it is not planar; the cap represents a portion of the sphere that
/// has been cut off by a plane. The boundary of the cap is the circle defined
/// by the intersection of the sphere and the plane. For containment purposes,
/// the cap is a closed set, i.e. it contains its boundary.
///
/// For the most part, you can use a spherical cap wherever you would use a
/// disc in planar geometry. The radius of the cap is measured along the
/// surface of the sphere (rather than the straight-line distance through the
/// interior). Thus a cap of radius π/2 is a hemisphere, and a cap of radius
/// π covers the entire sphere.
///
/// The center is a point on the surface of the unit sphere. (Hence the need for
/// it to be of unit length.)
///
/// A cap can also be defined by its center point and height. The height is the
/// distance from the center point to the cutoff plane. There is also support for
/// "empty" and "full" caps, which contain no points and all points respectively.
///
/// Here are some useful relationships between the cap height (h), the cap
/// radius (r), the maximum chord length from the cap's center (d), and the
/// radius of cap's base (a).
///
/// ```ignore
///     h = 1 - cos(r)
///       = 2 * sin^2(r/2)
///   d^2 = 2 * h
///       = a^2 + h^2
/// ```
///
/// The zero value of Cap is an invalid cap. Use EmptyCap to get a valid empty cap.
#[derive(Clone)]
pub struct Cap {
    pub center: Point,
    pub radius: ChordAngle,
}
impl std::fmt::Debug for Cap {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(
            f,
            "[center={:?}, radius={:?}]",
            self.center.0,
            Deg::from(self.radius()).0
        )
    }
}

impl<'a> From<&'a Point> for Cap {
    /// constructs a cap containing a single point.
    fn from(p: &'a Point) -> Self {
        Cap::from_center_chordangle(p, &ChordAngle(0.))
    }
}

impl Cap {
    /// from_center_angle constructs a cap with the given center and angle.
    pub fn from_center_angle(center: &Point, angle: &Angle) -> Self {
        Cap::from_center_chordangle(center, &ChordAngle::from(angle))
    }

    /// from_center_chordangle constructs a cap where the angle is expressed as an
    /// s1.ChordAngle. This constructor is more efficient than using an s1.Angle.
    pub fn from_center_chordangle(center: &Point, radius: &ChordAngle) -> Self {
        Self {
            center: center.clone(),
            radius: radius.clone(),
        }
    }

    /// from_center_height constructs a cap with the given center and height. A
    /// negative height yields an empty cap; a height of 2 or more yields a full cap.
    /// The center should be unit length.
    pub fn from_center_height(center: &Point, height: f64) -> Self {
        Cap::from_center_chordangle(center, &ChordAngle::from_squared_length(2. * height))
    }

    /// from_center_area constructs a cap with the given center and surface area.
    /// Note that the area can also be interpreted as the solid angle subtended by the
    /// cap (because the sphere has unit radius). A negative area yields an empty cap;
    /// an area of 4*π or more yields a full cap.
    pub fn from_center_area(center: &Point, area: f64) -> Self {
        Cap::from_center_chordangle(center, &ChordAngle::from_squared_length(area / PI))
    }

    /// empty returns a cap that contains no points.
    pub fn empty() -> Cap {
        Cap::from_center_chordangle(&CENTER_POINT, &chordangle::NEGATIVE)
    }

    /// full returns a cap that contains all points.
    pub fn full() -> Cap {
        Cap::from_center_chordangle(&CENTER_POINT, &chordangle::STRAIGHT)
    }

    /// is_valid reports whether the Cap is considered valid.
    pub fn is_valid(&self) -> bool {
        self.center.0.is_unit() && self.radius <= chordangle::STRAIGHT
    }

    /// is_empty reports whether the cap is empty, i.e. it contains no points.
    pub fn is_empty(&self) -> bool {
        self.radius < ChordAngle(0.)
    }

    /// is_full reports whether the cap is empty, i.e. it contains no points.
    pub fn is_full(&self) -> bool {
        self.radius == chordangle::STRAIGHT
    }

    /// center returns the cap's center point.
    pub fn center(&self) -> &Point {
        &self.center
    }

    /// height returns the height of the cap. This is the distance from the center
    /// point to the cutoff plane.
    pub fn height(&self) -> f64 {
        0.5 * self.radius.0
    }

    /// radius returns the cap radius as an Angle. (Note that the cap angle
    /// is stored internally as a ChordAngle, so this method requires a trigonometric
    /// operation and may yield a slightly different result than the value passed
    /// to Cap::from_center_angle).
    pub fn radius(&self) -> Angle {
        Angle::from(&self.radius)
    }

    /// area returns the surface area of the Cap on the unit sphere.
    pub fn area(&self) -> f64 {
        2. * PI * self.height().max(0.)
    }

    /// contains reports whether this cap contains the other.
    pub fn contains(&self, other: &Self) -> bool {
        // In a set containment sense, every cap contains the empty cap.
        if self.is_full() || other.is_empty() {
            true
        } else {
            self.radius >= (&self.center.chordangle(&other.center) + &other.radius)
        }
    }

    /// intersects reports whether this cap intersects the other cap.
    /// i.e. whether they have any points in common.
    pub fn intersects(&self, other: &Self) -> bool {
        if self.is_full() || other.is_empty() {
            false
        } else {
            (&self.radius + &other.radius) >= self.center.chordangle(&other.center)
        }
    }

    /// interior_intersects reports whether this caps interior intersects the other cap.
    pub fn interior_intersects(&self, other: &Self) -> bool {
        // Make sure this cap has an interior and the other cap is non-empty.
        if self.radius.0 <= 0. || other.is_empty() {
            false
        } else {
            (&self.radius + &other.radius) > self.center.chordangle(&other.center)
        }
    }

    /// contains_point reports whether this cap contains the point.
    pub fn contains_point(&self, p: &Point) -> bool {
        self.center.chordangle(p) <= self.radius
    }

    /// interior_contains_point reports whether the point is within the interior of this cap.
    pub fn interior_contains_point(&self, p: &Point) -> bool {
        self.is_full() || self.center.chordangle(p) < self.radius
    }

    /// complement returns the complement of the interior of the cap. A cap and its
    /// complement have the same boundary but do not share any interior points.
    /// The complement operator is not a bijection because the complement of a
    /// singleton cap (containing a single point) is the same as the complement
    /// of an empty cap.
    pub fn complement(&self) -> Cap {
        if self.is_full() {
            Self::empty()
        } else if self.is_empty() {
            Self::full()
        } else {
            Cap::from_center_chordangle(
                &(self.center.clone() * -1.),
                &(chordangle::STRAIGHT - self.radius),
            )
        }
    }

    /// approx_eq reports whether this cap is equal to the other cap within the given tolerance.
    pub fn approx_eq(&self, other: &Self) -> bool {
        const EPSILON: f64 = 1e-14;
        let r2 = self.radius.0;
        let other_r2 = other.radius.0;
        self.center.approx_eq(&other.center) && (r2 - other_r2).abs() <= EPSILON
            || self.is_empty() && other_r2 <= EPSILON
            || other.is_empty() && r2 <= EPSILON
            || self.is_full() && other_r2 >= 2. - EPSILON
            || other.is_full() && r2 >= 2. - EPSILON
    }

    /// expanded returns a new cap expanded by the given angle. If the cap is empty,
    /// it returns an empty cap.
    pub fn expanded(&self, distance: &Angle) -> Cap {
        if self.is_empty() {
            Self::empty()
        } else {
            Self::from_center_chordangle(
                &self.center,
                &(&self.radius + &ChordAngle::from(distance)),
            )
        }
    }
}

impl Region for Cap {
    /// cap_bound returns a bounding spherical cap. This is not guaranteed to be exact.
    fn cap_bound(&self) -> Cap {
        self.clone()
    }

    /// rect_bound returns a bounding latitude-longitude rectangle.
    /// The bounds are not guaranteed to be tight.
    fn rect_bound(&self) -> Rect {
        if self.is_empty() {
            return Rect::empty();
        }

        let cap_angle = self.radius().rad();
        let mut all_longitudes = false;
        let center_lat = self.center.latitude().rad();
        let mut lat = r1::interval::Interval::new(center_lat - cap_angle, center_lat + cap_angle);
        let mut lng = s1::interval::FULL;

        // Check whether cap includes the south pole.
        if lat.lo < PI / -2. {
            lat.lo = PI / 2.;
            all_longitudes = true;
        }

        // Check whether cap includes the north pole.
        if lat.hi > PI / 2. {
            lat.hi = PI / 2.;
            all_longitudes = true;
        }

        if !all_longitudes {
            // Compute the range of longitudes covered by the cap. We use the law
            // of sines for spherical triangles. Consider the triangle ABC where
            // A is the north pole, B is the center of the cap, and C is the point
            // of tangency between the cap boundary and a line of longitude. Then
            // C is a right angle, and letting a,b,c denote the sides opposite A,B,C,
            // we have sin(a)/sin(A) = sin(c)/sin(C), or sin(A) = sin(a)/sin(c).
            // Here "a" is the cap angle, and "c" is the colatitude (90 degrees
            // minus the latitude). This formula also works for negative latitudes.
            //
            // The formula for sin(a) follows from the relationship h = 1 - cos(a).
            let sin_a = self.radius.0.sin();
            let sin_c = self.center.latitude().rad().cos();
            if sin_a <= sin_c {
                let angle_a = (sin_a / sin_c).asin();
                let center_lng = self.center.longitude().rad();
                lng.lo = remainder(center_lng - angle_a, PI * 2.);
                lng.hi = remainder(center_lng + angle_a, PI * 2.);
            }
        }
        Rect { lat: lat, lng: lng }
    }

    /// contains_cell reports whether the cap contains the given cell.
    fn contains_cell(&self, cell: &Cell) -> bool {
        // If the cap does not contain all cell vertices, return false.
        let vertices = cell.vertices();
        for vert in &vertices {
            if !self.contains_point(vert) {
                return false;
            }
        }
        // Otherwise, return true if the complement of the cap does not intersect the cell.
        !self.complement().intersects_cell_vertices(cell, vertices)
    }

    /// intersects_cell reports whether the cap intersects the cell.
    fn intersects_cell(&self, cell: &Cell) -> bool {
        // If the cap contains any cell vertex, return true.
        let vertices = cell.vertices();
        for vert in &vertices {
            if self.contains_point(vert) {
                return true;
            }
        }
        self.intersects_cell_vertices(cell, vertices)
    }
}

impl Cap {
    /// intersects_cell_vertices reports whether the cap intersects any point of the cell excluding
    /// its vertices (which are assumed to already have been checked).
    fn intersects_cell_vertices(&self, cell: &Cell, vertices: [Point; 4]) -> bool {
        // If the cap is a hemisphere or larger, the cell and the complement of the cap
        // are both convex. Therefore since no vertex of the cell is contained, no other
        // interior point of the cell is contained either.
        if self.radius >= chordangle::RIGHT {
            return false;
        }

        // We need to check for empty caps due to the center check just below.
        if self.is_empty() {
            return false;
        }

        // Optimization: return true if the cell contains the cap center. This allows half
        // of the edge checks below to be skipped.
        if cell.contains_point(&self.center) {
            return true;
        }

        // At this point we know that the cell does not contain the cap center, and the cap
        // does not contain any cell vertex. The only way that they can intersect is if the
        // cap intersects the interior of some edge.
        let sin2_angle = self.radius.sin2();
        for k in 0..4 {
            let edge = cell.edge(k).0;
            let dot = self.center.0.dot(&edge);
            if dot > 0. {
                // The center is in the interior half-space defined by the edge. We do not need
                // to consider these edges, since if the cap intersects this edge then it also
                // intersects the edge on the opposite side of the cell, because the center is
                // not contained with the cell.
                continue;
            }

            // The Norm2() factor is necessary because "edge" is not normalized.
            if dot * dot > sin2_angle * edge.norm2() {
                return false;
            }

            // Otherwise, the great circle containing this edge intersects the interior of the cap. We just
            // need to check whether the point of closest approach occurs between the two edge endpoints.
            let dir = edge.cross(&self.center.0);
            if dir.dot(&vertices[k].0) < 0. && dir.dot(&vertices[(k + 1) & 3].0) > 0. {
                return true;
            }
        }
        return false;
    }

    /// Centroid returns the true centroid of the cap multiplied by its surface area
    /// The result lies on the ray from the origin through the cap's center, but it
    /// is not unit length. Note that if you just want the "surface centroid", i.e.
    /// the normalized result, then it is simpler to call Center.
    ///
    /// The reason for multiplying the result by the cap area is to make it
    /// easier to compute the centroid of more complicated shapes. The centroid
    /// of a union of disjoint regions can be computed simply by adding their
    /// Centroid() results. Caveat: for caps that contain a single point
    /// (i.e., zero radius), this method always returns the origin (0, 0, 0).
    /// This is because shapes with no area don't affect the centroid of a
    /// union whose total area is positive.
    pub fn centroid(&self) -> Point {
        // From symmetry, the centroid of the cap must be somewhere on the line
        // from the origin to the center of the cap on the surface of the sphere.
        // When a sphere is divided into slices of constant thickness by a set of
        // parallel planes, all slices have the same surface area. This implies
        // that the radial component of the centroid is simply the midpoint of the
        // range of radial distances spanned by the cap. That is easily computed
        // from the cap height.
        if self.is_empty() {
            Point(Vector {
                x: 0.,
                y: 0.,
                z: 0.,
            })
        } else {
            let r = 1. - 0.5 * self.height();
            Point(self.center.clone().0 * (r * self.area()))
        }
    }

    /// union returns the smallest cap which encloses this cap and other.
    pub fn union(&self, other: &Self) -> Self {
        // If the other cap is larger, swap self and other for the rest of the computations.
        let (a, b) = if self.radius > other.radius {
            (self, other)
        } else {
            (other, self)
        };

        if a.is_full() || b.is_empty() {
            return a.clone();
        }

        // TODO: This calculation would be more efficient using s1.ChordAngles.
        let a_radius = a.radius().rad();
        let b_radius = b.radius().rad();
        let distance = a.center.distance(&b.center).rad();
        if a_radius >= distance + b_radius {
            a.clone()
        } else {
            let res_radius = 0.5 * (distance + a_radius + b_radius);
            let res_center = interpolate_at_distance(
                &Angle::from(Rad(0.5 * (distance - a_radius + b_radius))),
                &self.center,
                &other.center,
            );
            Cap::from_center_chordangle(&res_center, &ChordAngle(res_radius))
        }
    }
}

impl std::cmp::PartialEq for Cap {
    fn eq(&self, other: &Self) -> bool {
        (self.radius == other.radius && self.center == other.center)
            || (self.is_empty() && other.is_empty())
            || (self.is_full() && other.is_full())
    }
}

impl<'a> std::ops::Add<&'a Point> for Cap {
    type Output = Cap;
    /// increases the cap if necessary to include the given point. If this cap is empty,
    /// then the center is set to the point with a zero height. p must be unit-length.
    fn add(self, p: &'a Point) -> Self::Output {
        if self.is_empty() {
            Self::from(p)
        } else {
            // After calling cap.add(p), cap.contains(p) must be true. However
            // we don't need to do anything special to achieve this because Contains()
            // does exactly the same distance calculation that we do here.
            let new_rad = self.center.chordangle(&p).0.max(self.radius.0);
            Self::from_center_chordangle(&self.center, &ChordAngle(new_rad))
        }
    }
}

impl<'a> std::ops::Add<&'a Cap> for Cap {
    type Output = Cap;
    /// increases the cap height if necessary to include the other cap. If this cap is empty,
    /// it is set to the other cap.
    fn add(self, other: &'a Cap) -> Self::Output {
        if self.is_empty() {
            other.clone()
        } else if other.is_empty() {
            self
        } else {
            // We round up the distance to ensure that the cap is actually contained.
            // TODO(roberts): Do some error analysis in order to guarantee this.
            let dist = &self.center.chordangle(&other.center) + &other.radius;
            let new_rad = dist.expanded(DBL_EPSILON * dist.0).0.max(self.radius.0);
            Self::from_center_chordangle(&self.center, &ChordAngle(new_rad))
        }
    }
}
impl std::ops::Add<Cap> for Cap {
    type Output = Cap;
    fn add(self, other: Cap) -> Self::Output {
        self + &other
    }
}

impl std::fmt::Display for Cap {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(
            f,
            "[center={:?}, radius={:?}]",
            self.center.0,
            Deg::from(self.radius()).0
        )
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    impl Angle {
        // radius_to_height converts an Angle into the height of the cap.
        pub fn radius_to_height(&self) -> f64 {
            if self.rad() < 0. {
                chordangle::NEGATIVE.0
            } else if self.rad() >= PI {
                chordangle::RIGHT.0
            } else {
                0.5 * ChordAngle::from(self).0
            }
        }
    }
}

/*
package s2

import (
	"math"
	"testing"

	"github.com/golang/geo/r3"
	"github.com/golang/geo/s1"
)

const (
	tinyRad = 1e-10
)

var (
	emptyCap   = EmptyCap()
	fullCap    = FullCap()
	defaultCap = EmptyCap()

	zeroHeight  = 0.0
	fullHeight  = 2.0
	emptyHeight = -1.0

	xAxisPt = Point{r3.Vector{1, 0, 0}}
	yAxisPt = Point{r3.Vector{0, 1, 0}}

	xAxis = CapFromPoint(xAxisPt)
	yAxis = CapFromPoint(yAxisPt)
	xComp = xAxis.Complement()

	hemi    = CapFromCenterHeight(PointFromCoords(1, 0, 1), 1)
	concave = CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(80, 10)), s1.Angle(150.0)*s1.Degree)
	tiny    = CapFromCenterAngle(PointFromCoords(1, 2, 3), s1.Angle(tinyRad))
)

func TestCapBasicEmptyFullValid(t *testing.T) {
	tests := []struct {
		got                Cap
		empty, full, valid bool
	}{
		{Cap{}, false, false, false},

		{emptyCap, true, false, true},
		{emptyCap.Complement(), false, true, true},
		{fullCap, false, true, true},
		{fullCap.Complement(), true, false, true},
		{defaultCap, true, false, true},

		{xComp, false, true, true},
		{xComp.Complement(), true, false, true},

		{tiny, false, false, true},
		{concave, false, false, true},
		{hemi, false, false, true},
		{tiny, false, false, true},
	}
	for _, test := range tests {
		if e := test.got.IsEmpty(); e != test.empty {
			t.Errorf("%v.IsEmpty() = %t; want %t", test.got, e, test.empty)
		}
		if f := test.got.IsFull(); f != test.full {
			t.Errorf("%v.IsFull() = %t; want %t", test.got, f, test.full)
		}
		if v := test.got.IsValid(); v != test.valid {
			t.Errorf("%v.IsValid() = %t; want %t", test.got, v, test.valid)
		}
	}
}

func TestCapCenterHeightRadius(t *testing.T) {
	if xAxis == xAxis.Complement().Complement() {
		t.Errorf("the complement of the complement is not the original. %v == %v",
			xAxis, xAxis.Complement().Complement())
	}

	if fullCap.Height() != fullHeight {
		t.Error("full Caps should be full height")
	}
	if fullCap.Radius().Degrees() != 180.0 {
		t.Error("radius of x-axis cap should be 180 degrees")
	}

	if emptyCap.center != defaultCap.center {
		t.Error("empty Caps should be have the same center as the default")
	}
	if emptyCap.Height() != defaultCap.Height() {
		t.Error("empty Caps should be have the same height as the default")
	}

	if yAxis.Height() != zeroHeight {
		t.Error("y-axis cap should not be empty height")
	}

	if xAxis.Height() != zeroHeight {
		t.Error("x-axis cap should not be empty height")
	}
	if xAxis.Radius().Radians() != zeroHeight {
		t.Errorf("radius of x-axis cap got %f want %f", xAxis.Radius().Radians(), emptyHeight)
	}

	hc := Point{hemi.center.Mul(-1.0)}
	if hc != hemi.Complement().center {
		t.Error("hemi center and its complement should have the same center")
	}
	if hemi.Height() != 1.0 {
		t.Error("hemi cap should be 1.0 in height")
	}
}

func TestCapContains(t *testing.T) {
	tests := []struct {
		c1, c2 Cap
		want   bool
	}{
		{emptyCap, emptyCap, true},
		{fullCap, emptyCap, true},
		{fullCap, fullCap, true},
		{emptyCap, xAxis, false},
		{fullCap, xAxis, true},
		{xAxis, fullCap, false},
		{xAxis, xAxis, true},
		{xAxis, emptyCap, true},
		{hemi, tiny, true},
		{hemi, CapFromCenterAngle(xAxisPt, s1.Angle(math.Pi/4-epsilon)), true},
		{hemi, CapFromCenterAngle(xAxisPt, s1.Angle(math.Pi/4+epsilon)), false},
		{concave, hemi, true},
		{concave, CapFromCenterHeight(Point{concave.center.Mul(-1.0)}, 0.1), false},
	}
	for _, test := range tests {
		if got := test.c1.Contains(test.c2); got != test.want {
			t.Errorf("%v.Contains(%v) = %t; want %t", test.c1, test.c2, got, test.want)
		}
	}
}

func TestCapContainsPoint(t *testing.T) {
	// We don't use the standard epsilon in this test due different compiler
	// math optimizations that are permissible (FMA vs no FMA) that yield
	// slightly different floating point results between gccgo and gc.
	const epsilon = 1e-14
	tangent := tiny.center.Cross(r3.Vector{3, 2, 1}).Normalize()
	tests := []struct {
		c    Cap
		p    Point
		want bool
	}{
		{xAxis, xAxisPt, true},
		{xAxis, Point{r3.Vector{1, 1e-20, 0}}, false},
		{yAxis, xAxis.center, false},
		{xComp, xAxis.center, true},
		{xComp.Complement(), xAxis.center, false},
		{tiny, Point{tiny.center.Add(tangent.Mul(tinyRad * 0.99))}, true},
		{tiny, Point{tiny.center.Add(tangent.Mul(tinyRad * 1.01))}, false},
		{hemi, PointFromCoords(1, 0, -(1 - epsilon)), true},
		{hemi, xAxisPt, true},
		{hemi.Complement(), xAxisPt, false},
		{concave, PointFromLatLng(LatLngFromDegrees(-70*(1-epsilon), 10)), true},
		{concave, PointFromLatLng(LatLngFromDegrees(-70*(1+epsilon), 10)), false},
		// This test case is the one where the floating point values end up
		// different in the 15th place and beyond.
		{concave, PointFromLatLng(LatLngFromDegrees(-50*(1-epsilon), -170)), true},
		{concave, PointFromLatLng(LatLngFromDegrees(-50*(1+epsilon), -170)), false},
	}
	for _, test := range tests {
		if got := test.c.ContainsPoint(test.p); got != test.want {
			t.Errorf("%v.ContainsPoint(%v) = %t, want %t", test.c, test.p, got, test.want)
		}
	}
}

func TestCapInteriorIntersects(t *testing.T) {
	tests := []struct {
		c1, c2 Cap
		want   bool
	}{
		{emptyCap, emptyCap, false},
		{emptyCap, xAxis, false},
		{fullCap, emptyCap, false},
		{fullCap, fullCap, true},
		{fullCap, xAxis, true},
		{xAxis, fullCap, false},
		{xAxis, xAxis, false},
		{xAxis, emptyCap, false},
		{concave, hemi.Complement(), true},
	}
	for _, test := range tests {
		if got := test.c1.InteriorIntersects(test.c2); got != test.want {
			t.Errorf("%v.InteriorIntersects(%v); got %t want %t", test.c1, test.c2, got, test.want)
		}
	}
}

func TestCapInteriorContains(t *testing.T) {
	if hemi.InteriorContainsPoint(Point{r3.Vector{1, 0, -(1 + epsilon)}}) {
		t.Errorf("hemi (%v) should not contain point just past half way(%v)", hemi,
			Point{r3.Vector{1, 0, -(1 + epsilon)}})
	}
}

func TestCapExpanded(t *testing.T) {
	cap50 := CapFromCenterAngle(xAxisPt, 50.0*s1.Degree)
	cap51 := CapFromCenterAngle(xAxisPt, 51.0*s1.Degree)

	if !emptyCap.Expanded(s1.Angle(fullHeight)).IsEmpty() {
		t.Error("Expanding empty cap should return an empty cap")
	}
	if !fullCap.Expanded(s1.Angle(fullHeight)).IsFull() {
		t.Error("Expanding a full cap should return an full cap")
	}

	if !cap50.Expanded(0).ApproxEqual(cap50) {
		t.Error("Expanding a cap by 0° should be equal to the original")
	}
	if !cap50.Expanded(1 * s1.Degree).ApproxEqual(cap51) {
		t.Error("Expanding 50° by 1° should equal the 51° cap")
	}

	if cap50.Expanded(129.99 * s1.Degree).IsFull() {
		t.Error("Expanding 50° by 129.99° should not give a full cap")
	}
	if !cap50.Expanded(130.01 * s1.Degree).IsFull() {
		t.Error("Expanding 50° by 130.01° should give a full cap")
	}
}

func TestCapRadiusToHeight(t *testing.T) {
	tests := []struct {
		got  s1.Angle
		want float64
	}{
		// Above/below boundary checks.
		{s1.Angle(-0.5), emptyHeight},
		{s1.Angle(0), 0},
		{s1.Angle(math.Pi), fullHeight},
		{s1.Angle(2 * math.Pi), fullHeight},
		// Degree tests.
		{-7.0 * s1.Degree, emptyHeight},
		{-0.0 * s1.Degree, 0},
		{0.0 * s1.Degree, 0},
		{12.0 * s1.Degree, 0.0218523992661943},
		{30.0 * s1.Degree, 0.1339745962155613},
		{45.0 * s1.Degree, 0.2928932188134525},
		{90.0 * s1.Degree, 1.0},
		{179.99 * s1.Degree, 1.9999999847691292},
		{180.0 * s1.Degree, fullHeight},
		{270.0 * s1.Degree, fullHeight},
		// Radians tests.
		{-1.0 * s1.Radian, emptyHeight},
		{-0.0 * s1.Radian, 0},
		{0.0 * s1.Radian, 0},
		{1.0 * s1.Radian, 0.45969769413186},
		{math.Pi / 2.0 * s1.Radian, 1.0},
		{2.0 * s1.Radian, 1.4161468365471424},
		{3.0 * s1.Radian, 1.9899924966004454},
		{math.Pi * s1.Radian, fullHeight},
		{4.0 * s1.Radian, fullHeight},
	}
	for _, test := range tests {
		// float64Eq comes from s2latlng_test.go
		if got := radiusToHeight(test.got); !float64Eq(got, test.want) {
			t.Errorf("radiusToHeight(%v) = %v; want %v", test.got, got, test.want)
		}
	}
}

func TestCapRectBounds(t *testing.T) {
	const epsilon = 1e-13
	var tests = []struct {
		desc     string
		have     Cap
		latLoDeg float64
		latHiDeg float64
		lngLoDeg float64
		lngHiDeg float64
		isFull   bool
	}{
		{
			"Cap that includes South Pole.",
			CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(-45, 57)), s1.Degree*50),
			-90, 5, -180, 180, true,
		},
		{
			"Cap that is tangent to the North Pole.",
			CapFromCenterAngle(PointFromCoords(1, 0, 1), s1.Radian*(math.Pi/4.0+1e-16)),
			0, 90, -180, 180, true,
		},
		{
			"Cap that at 45 degree center that goes from equator to the pole.",
			CapFromCenterAngle(PointFromCoords(1, 0, 1), s1.Degree*(45+5e-15)),
			0, 90, -180, 180, true,
		},
		{
			"The eastern hemisphere.",
			CapFromCenterAngle(Point{r3.Vector{0, 1, 0}}, s1.Radian*(math.Pi/2+2e-16)),
			-90, 90, -180, 180, true,
		},
		{
			"A cap centered on the equator.",
			CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(0, 50)), s1.Degree*20),
			-20, 20, 30, 70, false,
		},
		{
			"A cap centered on the North Pole.",
			CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(90, 123)), s1.Degree*10),
			80, 90, -180, 180, true,
		},
	}

	for _, test := range tests {
		r := test.have.RectBound()
		if !float64Near(s1.Angle(r.Lat.Lo).Degrees(), test.latLoDeg, epsilon) {
			t.Errorf("%s: %v.RectBound(), Lat.Lo not close enough, got %0.20f, want %0.20f",
				test.desc, test.have, s1.Angle(r.Lat.Lo).Degrees(), test.latLoDeg)
		}
		if !float64Near(s1.Angle(r.Lat.Hi).Degrees(), test.latHiDeg, epsilon) {
			t.Errorf("%s: %v.RectBound(), Lat.Hi not close enough, got %0.20f, want %0.20f",
				test.desc, test.have, s1.Angle(r.Lat.Hi).Degrees(), test.latHiDeg)
		}
		if !float64Near(s1.Angle(r.Lng.Lo).Degrees(), test.lngLoDeg, epsilon) {
			t.Errorf("%s: %v.RectBound(), Lng.Lo not close enough, got %0.20f, want %0.20f",
				test.desc, test.have, s1.Angle(r.Lng.Lo).Degrees(), test.lngLoDeg)
		}
		if !float64Near(s1.Angle(r.Lng.Hi).Degrees(), test.lngHiDeg, epsilon) {
			t.Errorf("%s: %v.RectBound(), Lng.Hi not close enough, got %0.20f, want %0.20f",
				test.desc, test.have, s1.Angle(r.Lng.Hi).Degrees(), test.lngHiDeg)
		}
		if got := r.Lng.IsFull(); got != test.isFull {
			t.Errorf("%s: RectBound(%v).isFull() = %t, want %t", test.desc, test.have, got, test.isFull)
		}
	}

	// Empty and full caps.
	if !EmptyCap().RectBound().IsEmpty() {
		t.Errorf("RectBound() on EmptyCap should be empty.")
	}

	if !FullCap().RectBound().IsFull() {
		t.Errorf("RectBound() on FullCap should be full.")
	}
}

func TestCapAddPoint(t *testing.T) {
	const epsilon = 1e-14
	tests := []struct {
		have Cap
		p    Point
		want Cap
	}{
		// Cap plus its center equals itself.
		{xAxis, xAxisPt, xAxis},
		{yAxis, yAxisPt, yAxis},

		// Cap plus opposite point equals full.
		{xAxis, Point{r3.Vector{-1, 0, 0}}, fullCap},
		{yAxis, Point{r3.Vector{0, -1, 0}}, fullCap},

		// Cap plus orthogonal axis equals half cap.
		{xAxis, Point{r3.Vector{0, 0, 1}}, CapFromCenterAngle(xAxisPt, s1.Angle(math.Pi/2.0))},
		{xAxis, Point{r3.Vector{0, 0, -1}}, CapFromCenterAngle(xAxisPt, s1.Angle(math.Pi/2.0))},

		// The 45 degree angled hemisphere plus some points.
		{
			hemi,
			PointFromCoords(0, 1, -1),
			CapFromCenterAngle(Point{r3.Vector{1, 0, 1}},
				s1.Angle(120.0)*s1.Degree),
		},
		{
			hemi,
			PointFromCoords(0, -1, -1),
			CapFromCenterAngle(Point{r3.Vector{1, 0, 1}},
				s1.Angle(120.0)*s1.Degree),
		},
		{
			hemi,
			PointFromCoords(-1, -1, -1),
			CapFromCenterAngle(Point{r3.Vector{1, 0, 1}},
				s1.Angle(math.Acos(-math.Sqrt(2.0/3.0)))),
		},
		{hemi, Point{r3.Vector{0, 1, 1}}, hemi},
		{hemi, Point{r3.Vector{1, 0, 0}}, hemi},
	}

	for _, test := range tests {
		got := test.have.AddPoint(test.p)
		if !got.ApproxEqual(test.want) {
			t.Errorf("%v.AddPoint(%v) = %v, want %v", test.have, test.p, got, test.want)
		}

		if !got.ContainsPoint(test.p) {
			t.Errorf("%v.AddPoint(%v) did not contain added point", test.have, test.p)
		}
	}
}

func TestCapAddCap(t *testing.T) {
	tests := []struct {
		have  Cap
		other Cap
		want  Cap
	}{
		// Identity cases.
		{emptyCap, emptyCap, emptyCap},
		{fullCap, fullCap, fullCap},

		// Anything plus empty equals itself.
		{fullCap, emptyCap, fullCap},
		{emptyCap, fullCap, fullCap},
		{xAxis, emptyCap, xAxis},
		{emptyCap, xAxis, xAxis},
		{yAxis, emptyCap, yAxis},
		{emptyCap, yAxis, yAxis},

		// Two halves make a whole.
		{xAxis, xComp, fullCap},

		// Two zero-height orthogonal axis caps make a half-cap.
		{xAxis, yAxis, CapFromCenterAngle(xAxisPt, s1.Angle(math.Pi/2.0))},
	}

	for _, test := range tests {
		got := test.have.AddCap(test.other)
		if !got.ApproxEqual(test.want) {
			t.Errorf("%v.AddCap(%v) = %v, want %v", test.have, test.other, got, test.want)
		}
	}
}

func TestCapContainsCell(t *testing.T) {
	faceRadius := math.Atan(math.Sqrt2)
	for face := 0; face < 6; face++ {
		// The cell consisting of the entire face.
		rootCell := CellFromCellID(CellIDFromFace(face))

		// A leaf cell at the midpoint of the v=1 edge.
		edgeCell := CellFromPoint(Point{faceUVToXYZ(face, 0, 1-epsilon)})

		// A leaf cell at the u=1, v=1 corner
		cornerCell := CellFromPoint(Point{faceUVToXYZ(face, 1-epsilon, 1-epsilon)})

		// Quick check for full and empty caps.
		if !fullCap.ContainsCell(rootCell) {
			t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", fullCap, rootCell, false, true)
		}

		// Check intersections with the bounding caps of the leaf cells that are adjacent to
		// cornerCell along the Hilbert curve.  Because this corner is at (u=1,v=1), the curve
		// stays locally within the same cube face.
		first := cornerCell.id.Advance(-3)
		last := cornerCell.id.Advance(4)
		for id := first; id < last; id = id.Next() {
			c := CellFromCellID(id).CapBound()
			if got, want := c.ContainsCell(cornerCell), id == cornerCell.id; got != want {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", c, cornerCell, got, want)
			}
		}

		for capFace := 0; capFace < 6; capFace++ {
			// A cap that barely contains all of capFace.
			center := unitNorm(capFace)
			covering := CapFromCenterAngle(center, s1.Angle(faceRadius+epsilon))
			if got, want := covering.ContainsCell(rootCell), capFace == face; got != want {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", covering, rootCell, got, want)
			}
			if got, want := covering.ContainsCell(edgeCell), center.Vector.Dot(edgeCell.id.Point().Vector) > 0.1; got != want {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", covering, edgeCell, got, want)
			}
			if got, want := covering.ContainsCell(edgeCell), covering.IntersectsCell(edgeCell); got != want {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", covering, edgeCell, got, want)
			}
			if got, want := covering.ContainsCell(cornerCell), capFace == face; got != want {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", covering, cornerCell, got, want)
			}

			// A cap that barely intersects the edges of capFace.
			bulging := CapFromCenterAngle(center, s1.Angle(math.Pi/4+epsilon))
			if bulging.ContainsCell(rootCell) {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", bulging, rootCell, true, false)
			}
			if got, want := bulging.ContainsCell(edgeCell), capFace == face; got != want {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", bulging, edgeCell, got, want)
			}
			if bulging.ContainsCell(cornerCell) {
				t.Errorf("Cap(%v).ContainsCell(%v) = %t; want = %t", bulging, cornerCell, true, false)
			}
		}
	}
}

func TestCapIntersectsCell(t *testing.T) {
	faceRadius := math.Atan(math.Sqrt2)
	for face := 0; face < 6; face++ {
		// The cell consisting of the entire face.
		rootCell := CellFromCellID(CellIDFromFace(face))

		// A leaf cell at the midpoint of the v=1 edge.
		edgeCell := CellFromPoint(Point{faceUVToXYZ(face, 0, 1-epsilon)})

		// A leaf cell at the u=1, v=1 corner
		cornerCell := CellFromPoint(Point{faceUVToXYZ(face, 1-epsilon, 1-epsilon)})

		// Quick check for full and empty caps.
		if emptyCap.IntersectsCell(rootCell) {
			t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", emptyCap, rootCell, true, false)
		}

		// Check intersections with the bounding caps of the leaf cells that are adjacent to
		// cornerCell along the Hilbert curve.  Because this corner is at (u=1,v=1), the curve
		// stays locally within the same cube face.
		first := cornerCell.id.Advance(-3)
		last := cornerCell.id.Advance(4)
		for id := first; id < last; id = id.Next() {
			c := CellFromCellID(id).CapBound()
			if got, want := c.IntersectsCell(cornerCell), id.immediateParent().Contains(cornerCell.id); got != want {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", c, cornerCell, got, want)
			}
		}

		antiFace := (face + 3) % 6
		for capFace := 0; capFace < 6; capFace++ {
			// A cap that barely contains all of capFace.
			center := unitNorm(capFace)
			covering := CapFromCenterAngle(center, s1.Angle(faceRadius+epsilon))
			if got, want := covering.IntersectsCell(rootCell), capFace != antiFace; got != want {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", covering, rootCell, got, want)
			}
			if got, want := covering.IntersectsCell(edgeCell), covering.ContainsCell(edgeCell); got != want {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", covering, edgeCell, got, want)
			}
            if got, want := covering.IntersectsCell(cornerCell),
            center.Vector.Dot(cornerCell.id.Point().Vector) > 0; got != want {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", covering, cornerCell, got, want)
			}

			// A cap that barely intersects the edges of capFace.
			bulging := CapFromCenterAngle(center, s1.Angle(math.Pi/4+epsilon))
			if got, want := bulging.IntersectsCell(rootCell), capFace != antiFace; got != want {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", bulging, rootCell, got, want)
			}
			if got, want := bulging.IntersectsCell(edgeCell), center.Vector.Dot(edgeCell.id.Point().Vector) > 0.1; got != want {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", bulging, edgeCell, got, want)
			}
			if bulging.IntersectsCell(cornerCell) {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", bulging, cornerCell, true, false)
			}

			// A singleton cap.
			singleton := CapFromCenterAngle(center, 0)
			if got, want := singleton.IntersectsCell(rootCell), capFace == face; got != want {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", singleton, rootCell, got, want)
			}
			if singleton.IntersectsCell(edgeCell) {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", singleton, edgeCell, true, false)
			}
			if singleton.IntersectsCell(cornerCell) {
				t.Errorf("Cap(%v).IntersectsCell(%v) = %t; want = %t", singleton, cornerCell, true, false)
			}
		}
	}
}

func TestCapCentroid(t *testing.T) {
	// Empty and full caps.
	if got, want := EmptyCap().Centroid(), (Point{}); !got.ApproxEqual(want) {
		t.Errorf("Centroid of EmptyCap should be zero point, got %v", want)
	}
	if got, want := FullCap().Centroid().Norm(), 1e-15; got > want {
		t.Errorf("Centroid of FullCap should have a Norm of 0, got %v", want)
	}

	// Random caps.
	for i := 0; i < 100; i++ {
		center := randomPoint()
		height := randomUniformFloat64(0.0, 2.0)
		c := CapFromCenterHeight(center, height)
		got := c.Centroid()
		want := center.Mul((1.0 - height/2.0) * c.Area())
		if delta := got.Sub(want).Norm(); delta > 1e-15 {
			t.Errorf("%v.Sub(%v).Norm() = %v, want %v", got, want, delta, 1e-15)
		}
	}
}

func TestCapUnion(t *testing.T) {
	// Two caps which have the same center but one has a larger radius.
	a := CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(50.0, 10.0)), s1.Degree*0.2)
	b := CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(50.0, 10.0)), s1.Degree*0.3)
	if !b.Contains(a) {
		t.Errorf("%v.Contains(%v) = false, want true", b, a)
	}
	if got := b.ApproxEqual(a.Union(b)); !got {
		t.Errorf("%v.ApproxEqual(%v) = %v, want true", b, a.Union(b), got)
	}

	// Two caps where one is the full cap.
	if got := a.Union(FullCap()); !got.IsFull() {
		t.Errorf("%v.Union(%v).IsFull() = %v, want true", a, got, got.IsFull())
	}

	// Two caps where one is the empty cap.
	if got := a.Union(EmptyCap()); !a.ApproxEqual(got) {
		t.Errorf("%v.Union(EmptyCap) = %v, want %v", a, got, a)
	}

	// Two caps which have different centers, one entirely encompasses the other.
	c := CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(51.0, 11.0)), s1.Degree*1.5)
	if !c.Contains(a) {
		t.Errorf("%v.Contains(%v) = false, want true", c, a)
	}
	if got := a.Union(c).center; !got.ApproxEqual(c.center) {
		t.Errorf("%v.Union(%v).center = %v, want %v", a, c, got, c.center)
	}
	if got := a.Union(c); !float64Eq(float64(got.Radius()), float64(c.Radius())) {
		t.Errorf("%v.Union(%v).Radius = %v, want %v", a, c, got.Radius(), c.Radius())
	}

	// Two entirely disjoint caps.
	d := CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(51.0, 11.0)), s1.Degree*0.1)
	if d.Contains(a) {
		t.Errorf("%v.Contains(%v) = true, want false", d, a)
	}
	if d.Intersects(a) {
		t.Errorf("%v.Intersects(%v) = true, want false", d, a)
	}

	// Check union and reverse direction are the same.
	aUnionD := a.Union(d)
	if !aUnionD.ApproxEqual(d.Union(a)) {
		t.Errorf("%v.Union(%v).ApproxEqual(%v.Union(%v)) = false, want true", a, d, d, a)
	}
	if got, want := LatLngFromPoint(aUnionD.center).Lat.Degrees(), 50.4588; !float64Near(got, want, 0.001) {
		t.Errorf("%v.Center.Lat = %v, want %v", aUnionD, got, want)
	}
	if got, want := LatLngFromPoint(aUnionD.center).Lng.Degrees(), 10.4525; !float64Near(got, want, 0.001) {
		t.Errorf("%v.Center.Lng = %v, want %v", aUnionD, got, want)
	}
	if got, want := aUnionD.Radius().Degrees(), 0.7425; !float64Near(got, want, 0.001) {
		t.Errorf("%v.Radius = %v, want %v", aUnionD, got, want)
	}

	// Two partially overlapping caps.
	e := CapFromCenterAngle(PointFromLatLng(LatLngFromDegrees(50.3, 10.3)), s1.Degree*0.2)
	aUnionE := a.Union(e)
	if e.Contains(a) {
		t.Errorf("%v.Contains(%v) = false, want true", e, a)
	}
	if !e.Intersects(a) {
		t.Errorf("%v.Intersects(%v) = false, want true", e, a)
	}
	if !aUnionE.ApproxEqual(e.Union(a)) {
		t.Errorf("%v.Union(%v).ApproxEqual(%v.Union(%v)) = false, want true", a, e, e, a)
	}
	if got, want := LatLngFromPoint(aUnionE.center).Lat.Degrees(), 50.1500; !float64Near(got, want, 0.001) {
		t.Errorf("%v.Center.Lat = %v, want %v", aUnionE, got, want)
	}
	if got, want := LatLngFromPoint(aUnionE.center).Lng.Degrees(), 10.1495; !float64Near(got, want, 0.001) {
		t.Errorf("%v.Center.Lng = %v, want %v", aUnionE, got, want)
	}
	if got, want := aUnionE.Radius().Degrees(), 0.3781; !float64Near(got, want, 0.001) {
		t.Errorf("%v.Radius = %v, want %v", aUnionE, got, want)
	}

	p1 := Point{r3.Vector{0, 0, 1}}
	p2 := Point{r3.Vector{0, 1, 0}}
	// Two very large caps, whose radius sums to in excess of 180 degrees, and
	// whose centers are not antipodal.
	f := CapFromCenterAngle(p1, s1.Degree*150)
	g := CapFromCenterAngle(p2, s1.Degree*150)
	if !f.Union(g).IsFull() {
		t.Errorf("%v.Union(%v).IsFull() = false, want true", f, g)
	}

	// Two non-overlapping hemisphere caps with antipodal centers.
	hemi := CapFromCenterHeight(p1, 1)
	if !hemi.Union(hemi.Complement()).IsFull() {
		t.Errorf("%v.Union(%v).Complement().IsFull() = false, want true", hemi, hemi.Complement())
	}
}

func TestCapEqual(t *testing.T) {
	tests := []struct {
		a, b Cap
		want bool
	}{
		{EmptyCap(), EmptyCap(), true},
		{EmptyCap(), FullCap(), false},
		{FullCap(), FullCap(), true},
		{
			CapFromCenterAngle(PointFromCoords(0, 0, 1), s1.Degree*150),
			CapFromCenterAngle(PointFromCoords(0, 0, 1), s1.Degree*151),
			false,
		},
		{xAxis, xAxis, true},
		{xAxis, yAxis, false},
		{xComp, xAxis.Complement(), true},
	}

	for _, test := range tests {
		if got := test.a.Equal(test.b); got != test.want {
			t.Errorf("%v.Equal(%v) = %t, want %t", test.a, test.b, got, test.want)
		}
	}
}
*/