1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
//! A common conjugate prior for Gaussians with unknown mean and variance
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

use crate::data::GaussianSuffStat;
use crate::dist::{Gamma, Gaussian};
use crate::impl_display;
use crate::traits::*;
use rand::Rng;
use std::fmt;

mod gaussian_prior;

/// Prior for Gaussian
///
/// Given `x ~ N(μ, σ)`, the Normal Gamma prior implies that `μ ~ N(m, 1/(rρ))`
/// and `ρ ~ Gamma(ν/2, s/2)`.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct NormalGamma {
    m: f64,
    r: f64,
    s: f64,
    v: f64,
}

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum NormalGammaError {
    /// The m parameter is infinite or NaN
    MNotFinite { m: f64 },
    /// The r parameter is less than or equal to zero
    RTooLow { r: f64 },
    /// The r parameter is infinite or NaN
    RNotFinite { r: f64 },
    /// The s parameter is less than or equal to zero
    STooLow { s: f64 },
    /// The s parameter is infinite or NaN
    SNotFinite { s: f64 },
    /// The v parameter is less than or equal to zero
    VTooLow { v: f64 },
    /// The v parameter is infinite or NaN
    VNotFinite { v: f64 },
}

impl NormalGamma {
    /// Create a new Normal Gamma distribution
    ///
    /// # Arguments
    /// - m: The prior mean
    /// - r: Relative precision of μ versus data
    /// - s: The mean of rho (the precision) is v/s.
    /// - v: Degrees of freedom of precision of rho
    pub fn new(
        m: f64,
        r: f64,
        s: f64,
        v: f64,
    ) -> Result<Self, NormalGammaError> {
        if !m.is_finite() {
            Err(NormalGammaError::MNotFinite { m })
        } else if !r.is_finite() {
            Err(NormalGammaError::RNotFinite { r })
        } else if !s.is_finite() {
            Err(NormalGammaError::SNotFinite { s })
        } else if !v.is_finite() {
            Err(NormalGammaError::VNotFinite { v })
        } else if r <= 0.0 {
            Err(NormalGammaError::RTooLow { r })
        } else if s <= 0.0 {
            Err(NormalGammaError::STooLow { s })
        } else if v <= 0.0 {
            Err(NormalGammaError::VTooLow { v })
        } else {
            Ok(NormalGamma { m, r, s, v })
        }
    }

    /// Creates a new NormalGamma without checking whether the parameters are
    /// valid.
    #[inline]
    pub fn new_unchecked(m: f64, r: f64, s: f64, v: f64) -> Self {
        NormalGamma { m, r, s, v }
    }

    /// Get the m parameter
    #[inline]
    pub fn m(&self) -> f64 {
        self.m
    }

    /// Set the value of m
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::NormalGamma;
    ///
    /// let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert_eq!(ng.m(), 0.0);
    ///
    /// ng.set_m(-1.1).unwrap();
    /// assert_eq!(ng.m(), -1.1);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::NormalGamma;
    /// # let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert!(ng.set_m(-1.1).is_ok());
    /// assert!(ng.set_m(std::f64::INFINITY).is_err());
    /// assert!(ng.set_m(std::f64::NEG_INFINITY).is_err());
    /// assert!(ng.set_m(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_m(&mut self, m: f64) -> Result<(), NormalGammaError> {
        if m.is_finite() {
            self.set_m_unchecked(m);
            Ok(())
        } else {
            Err(NormalGammaError::MNotFinite { m })
        }
    }

    /// Set the value of m without input validation
    #[inline]
    pub fn set_m_unchecked(&mut self, m: f64) {
        self.m = m;
    }

    /// Get the r parameter
    #[inline]
    pub fn r(&self) -> f64 {
        self.r
    }

    /// Set the value of r
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::NormalGamma;
    ///
    /// let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert_eq!(ng.r(), 1.2);
    ///
    /// ng.set_r(2.1).unwrap();
    /// assert_eq!(ng.r(), 2.1);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::NormalGamma;
    /// # let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert!(ng.set_r(2.1).is_ok());
    ///
    /// // must be greater than zero
    /// assert!(ng.set_r(0.0).is_err());
    /// assert!(ng.set_r(-1.0).is_err());
    ///
    ///
    /// assert!(ng.set_r(std::f64::INFINITY).is_err());
    /// assert!(ng.set_r(std::f64::NEG_INFINITY).is_err());
    /// assert!(ng.set_r(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_r(&mut self, r: f64) -> Result<(), NormalGammaError> {
        if !r.is_finite() {
            Err(NormalGammaError::RNotFinite { r })
        } else if r <= 0.0 {
            Err(NormalGammaError::RTooLow { r })
        } else {
            self.set_r_unchecked(r);
            Ok(())
        }
    }

    /// Set the value of r without input validation
    #[inline]
    pub fn set_r_unchecked(&mut self, r: f64) {
        self.r = r;
    }

    /// Get the s parameter
    #[inline]
    pub fn s(&self) -> f64 {
        self.s
    }

    /// Set the value of s
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::NormalGamma;
    ///
    /// let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert_eq!(ng.s(), 2.3);
    ///
    /// ng.set_s(3.2).unwrap();
    /// assert_eq!(ng.s(), 3.2);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::NormalGamma;
    /// # let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert!(ng.set_s(2.1).is_ok());
    ///
    /// // must be greater than zero
    /// assert!(ng.set_s(0.0).is_err());
    /// assert!(ng.set_s(-1.0).is_err());
    ///
    ///
    /// assert!(ng.set_s(std::f64::INFINITY).is_err());
    /// assert!(ng.set_s(std::f64::NEG_INFINITY).is_err());
    /// assert!(ng.set_s(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_s(&mut self, s: f64) -> Result<(), NormalGammaError> {
        if !s.is_finite() {
            Err(NormalGammaError::SNotFinite { s })
        } else if s <= 0.0 {
            Err(NormalGammaError::STooLow { s })
        } else {
            self.set_s_unchecked(s);
            Ok(())
        }
    }

    /// Set the value of s without input validation
    #[inline]
    pub fn set_s_unchecked(&mut self, s: f64) {
        self.s = s;
    }

    /// Get the v parameter
    #[inline]
    pub fn v(&self) -> f64 {
        self.v
    }

    /// Set the value of v
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::NormalGamma;
    ///
    /// let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert_eq!(ng.v(), 3.4);
    ///
    /// ng.set_v(4.3).unwrap();
    /// assert_eq!(ng.v(), 4.3);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::NormalGamma;
    /// # let mut ng = NormalGamma::new(0.0, 1.2, 2.3, 3.4).unwrap();
    /// assert!(ng.set_v(2.1).is_ok());
    ///
    /// // must be greater than zero
    /// assert!(ng.set_v(0.0).is_err());
    /// assert!(ng.set_v(-1.0).is_err());
    ///
    ///
    /// assert!(ng.set_v(std::f64::INFINITY).is_err());
    /// assert!(ng.set_v(std::f64::NEG_INFINITY).is_err());
    /// assert!(ng.set_v(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_v(&mut self, v: f64) -> Result<(), NormalGammaError> {
        if !v.is_finite() {
            Err(NormalGammaError::VNotFinite { v })
        } else if v <= 0.0 {
            Err(NormalGammaError::VTooLow { v })
        } else {
            self.set_v_unchecked(v);
            Ok(())
        }
    }

    /// Set the value of v without input validation
    #[inline]
    pub fn set_v_unchecked(&mut self, v: f64) {
        self.v = v;
    }

    /// Return (m, r, s, v)
    #[inline]
    pub fn params(&self) -> (f64, f64, f64, f64) {
        (self.m, self.r, self.s, self.v)
    }
}

impl From<&NormalGamma> for String {
    fn from(ng: &NormalGamma) -> String {
        format!(
            "Normal-Gamma(m: {}, r: {}, s: {}, ν: {})",
            ng.m, ng.r, ng.s, ng.v
        )
    }
}

impl_display!(NormalGamma);

impl Rv<Gaussian> for NormalGamma {
    fn ln_f(&self, x: &Gaussian) -> f64 {
        // TODO: could cache the gamma and Gaussian distributions
        let rho = (x.sigma() * x.sigma()).recip();
        let lnf_rho =
            Gamma::new_unchecked(self.v / 2.0, self.s / 2.0).ln_f(&rho);
        let prior_sigma = (self.r * rho).recip().sqrt();
        let lnf_mu = Gaussian::new_unchecked(self.m, prior_sigma).ln_f(&x.mu());
        lnf_rho + lnf_mu
    }

    fn draw<R: Rng>(&self, mut rng: &mut R) -> Gaussian {
        // NOTE: The parameter errors in this fn shouldn't happen if the prior
        // parameters are valid.
        // BAX: The problem is, in another library, I've been having trouble
        // with the posterior having invalid parameters, or with a valid
        // posterior drawing Inf sigma, which I suppose means it is drawing a
        // zero rho. Since things seem to go wrong in normal use, I'm using the
        // `new` constructors here rather than `new_unchecked` because I want to
        // catch things when they go wrong here so they don't spread. Of course,
        // all this input validation hurts performance 😞.
        let rho: f64 = Gamma::new(self.v / 2.0, self.s / 2.0)
            .map_err(|err| {
                panic!("Invalid ρ params when drawing Gaussian: {}", err)
            })
            .unwrap()
            .draw(&mut rng);

        let sigma = if rho.is_infinite() {
            std::f64::EPSILON
        } else {
            rho.recip().sqrt()
        };

        let post_sigma: f64 = self.r.recip().sqrt() * sigma;
        let mu: f64 = Gaussian::new(self.m, post_sigma)
            .map_err(|err| {
                panic!("Invalid μ params when drawing Gaussian: {}", err)
            })
            .unwrap()
            .draw(&mut rng);

        Gaussian::new(mu, rho.sqrt().recip()).expect("Invalid params")
    }
}

impl Support<Gaussian> for NormalGamma {
    fn supports(&self, x: &Gaussian) -> bool {
        // NOTE: Could replace this with Gaussian::new(mu, sigma).is_ok(),
        // but this is more explicit.
        x.mu().is_finite() && x.sigma() > 0.0 && x.sigma().is_finite()
    }
}

impl HasSuffStat<f64> for NormalGamma {
    type Stat = GaussianSuffStat;
    fn empty_suffstat(&self) -> Self::Stat {
        GaussianSuffStat::new()
    }
}

impl ContinuousDistr<Gaussian> for NormalGamma {}

impl std::error::Error for NormalGammaError {}

impl fmt::Display for NormalGammaError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::MNotFinite { m } => write!(f, "non-finite m: {}", m),
            Self::RNotFinite { r } => write!(f, "non-finite r: {}", r),
            Self::SNotFinite { s } => write!(f, "non-finite s: {}", s),
            Self::VNotFinite { v } => write!(f, "non-finite v: {}", v),
            Self::RTooLow { r } => {
                write!(f, "r ({}) must be greater than zero", r)
            }
            Self::STooLow { s } => {
                write!(f, "s ({}) must be greater than zero", s)
            }
            Self::VTooLow { v } => {
                write!(f, "v ({}) must be greater than zero", v)
            }
        }
    }
}

// TODO: tests!