1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
//! RustType is a pure Rust alternative to libraries like FreeType.
//!
//! The current capabilities of RustType:
//!
//! * Reading TrueType formatted fonts and font collections. This includes
//!   `*.ttf` as well as a subset of `*.otf` font files.
//! * Retrieving glyph shapes and commonly used properties for a font and its
//!   glyphs.
//! * Laying out glyphs horizontally using horizontal and vertical metrics, and
//!   glyph-pair-specific kerning.
//! * Rasterising glyphs with sub-pixel positioning using an accurate analytical
//!   algorithm (not based on sampling).
//! * Managing a font cache on the GPU with the `gpu_cache` module. This keeps
//!   recently used glyph renderings in a dynamic cache in GPU memory to
//!   minimise texture uploads per-frame. It also allows you keep the draw call
//!   count for text very low, as all glyphs are kept in one GPU texture.
//!
//! Notable things that RustType does not support *yet*:
//!
//! * OpenType formatted fonts that are not just TrueType fonts (OpenType is a
//!   superset of TrueType). Notably there is no support yet for cubic Bezier
//!   curves used in glyphs.
//! * Font hinting.
//! * Ligatures of any kind.
//! * Some less common TrueType sub-formats.
//! * Right-to-left and vertical text layout.
//!
//! # Getting Started
//!
//! Add the following to your Cargo.toml:
//!
//! ```toml
//! [dependencies]
//! rusttype = "0.4.1"
//! ```
//!
//! To hit the ground running with RustType, look at the `simple.rs` example
//! supplied with the crate. It demonstrates loading a font file, rasterising an
//! arbitrary string, and displaying the result as ASCII art. If you prefer to
//! just look at the documentation, the entry point for loading fonts is
//! `FontCollection`, from which you can access individual fonts, then their
//! glyphs.
//!
//! # Glyphs
//!
//! The glyph API uses wrapper structs to augment a glyph with information such
//! as scaling and positioning, making relevant methods that make use of this
//! information available as appropriate. For example, given a `Glyph` `glyph`
//! obtained directly from a `Font`:
//!
//! ```no_run
//! # use rusttype::*;
//! # let glyph: Glyph<'static> = unimplemented!();
//! // One of the few things you can do with an unsized, positionless glyph is get its id.
//! let id = glyph.id();
//! let glyph = glyph.scaled(Scale::uniform(10.0));
//! // Now glyph is a ScaledGlyph, you can do more with it, as well as what you can do with Glyph.
//! // For example, you can access the correctly scaled horizontal metrics for the glyph.
//! let h_metrics = glyph.h_metrics();
//! let glyph = glyph.positioned(point(5.0, 3.0));
//! // Now glyph is a PositionedGlyph, and you can do even more with it, e.g. drawing.
//! glyph.draw(|x, y, v| {}); // In this case the pixel values are not used.
//! ```
//!
//! # Unicode terminology
//!
//! This crate uses terminology for computerised typography as specified by the
//! Unicode standard. If you are not sure of the differences between a code
//! point, a character, and a glyph, you may want to check the [official Unicode
//! glossary](http://unicode.org/glossary/), or alternatively, here's my take on
//! it from a practical perspective:
//!
//! * A character is what you would conventionally call a single symbol,
//!   independent of its appearance or representation in a particular font.
//!   Examples include `a`, `A`, `ä`, `å`, `1`, `*`, `Ω`, etc.
//! * A Unicode code point is the particular number that the Unicode standard
//!   associates with a particular character. Note however that code points also
//!   exist for things not conventionally thought of as characters by
//!   themselves, but can be combined to form characters, such as diacritics
//!   like accents. These "characters" are known in Unicode as "combining
//!   characters". E.g., a diaeresis (`¨`) has the code point U+0308. If this
//!   code point follows the code point U+0055 (the letter `u`), this sequence
//!   represents the character `ü`. Note that there is also a single codepoint
//!   for `ü`, U+00FC. This means that what visually looks like the same string
//!   can have multiple different Unicode representations. Some fonts will have
//!   glyphs (see below) for one sequence of codepoints, but not another that
//!   has the same meaning. To deal with this problem it is recommended to use
//!   Unicode normalisation, as provided by, for example, the
//!   [unicode-normalization](http://crates.io/crates/unicode-normalization)
//!   crate, to convert to code point sequences that work with the font in
//!   question. Typically a font is more likely to support a single code point
//!   vs. a sequence with the same meaning, so the best normalisation to use is
//!   "canonical recomposition", known as NFC in the normalisation crate.
//! * A glyph is a particular font's shape to draw the character for a
//!   particular Unicode code point. This will have its own identifying number
//!   unique to the font, its ID.

#![allow(unknown_lints)]
#![warn(clippy)]
#![allow(cyclomatic_complexity, doc_markdown, cast_lossless, many_single_char_names)]
#![cfg_attr(feature = "bench", feature(test))]
#[cfg(feature = "bench")]
extern crate test;
#[cfg(test)]
extern crate unicode_normalization;
#[cfg(test)]
#[cfg_attr(feature = "bench", macro_use)]
extern crate lazy_static;

#[macro_use]
extern crate approx;
extern crate arrayvec;
extern crate ordered_float;
extern crate stb_truetype;

mod geometry;
mod rasterizer;

#[cfg(feature = "gpu_cache")]
pub mod gpu_cache;

pub use geometry::{point, vector, Curve, Line, Point, Rect, Vector};
use stb_truetype as tt;
use std::fmt;
use std::sync::Arc;

/// A collection of fonts read straight from a font file's data. The data in the
/// collection is not validated. This structure may or may not own the font
/// data.
#[derive(Clone, Debug)]
pub struct FontCollection<'a>(SharedBytes<'a>);
/// A single font. This may or may not own the font data.
#[derive(Clone)]
pub struct Font<'a> {
    info: tt::FontInfo<SharedBytes<'a>>,
}

/// `SharedBytes` handles the lifetime of font data used in RustType. The data
/// is either a shared reference to externally owned data, or managed by
/// reference counting. `SharedBytes` can be conveniently used with `From` and
/// `Into`, and dereferences to the contained bytes.
#[derive(Clone, Debug)]
pub enum SharedBytes<'a> {
    ByRef(&'a [u8]),
    ByArc(Arc<[u8]>),
}

impl<'a> ::std::ops::Deref for SharedBytes<'a> {
    type Target = [u8];
    fn deref(&self) -> &[u8] {
        match *self {
            SharedBytes::ByRef(bytes) => bytes,
            SharedBytes::ByArc(ref bytes) => &**bytes,
        }
    }
}
impl<'a> From<&'a [u8]> for SharedBytes<'a> {
    fn from(bytes: &'a [u8]) -> SharedBytes<'a> {
        SharedBytes::ByRef(bytes)
    }
}
impl From<Arc<[u8]>> for SharedBytes<'static> {
    fn from(bytes: Arc<[u8]>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes)
    }
}
impl From<Box<[u8]>> for SharedBytes<'static> {
    fn from(bytes: Box<[u8]>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes.into())
    }
}
impl From<Vec<u8>> for SharedBytes<'static> {
    fn from(bytes: Vec<u8>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes.into())
    }
}

/// Represents a Unicode code point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Codepoint(pub u32);
/// Represents a glyph identifier for a particular font. This identifier will not necessarily
/// correspond to the correct glyph in a font other than the one that it was obtained from.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct GlyphId(pub u32);
/// A single glyph of a font. this may either be a thin wrapper referring to the
/// font and the glyph id, or it may be a standalone glyph that owns the data
/// needed by it.
///
/// A `Glyph` does not have an inherent scale or position associated with it. To
/// augment a glyph with a size, give it a scale using `scaled`. You can then
/// position it using `positioned`.
#[derive(Clone)]
pub struct Glyph<'a> {
    inner: GlyphInner<'a>,
}

#[derive(Clone)]
enum GlyphInner<'a> {
    Proxy(Font<'a>, u32),
    Shared(Arc<SharedGlyphData>),
}

#[derive(Debug)]
pub struct SharedGlyphData {
    pub id: u32,
    pub extents: Option<Rect<i32>>,
    pub scale_for_1_pixel: f32,
    pub unit_h_metrics: HMetrics,
    pub shape: Option<Vec<tt::Vertex>>,
}
/// The "horizontal metrics" of a glyph. This is useful for calculating the
/// horizontal offset of a glyph from the previous one in a string when laying a
/// string out horizontally.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
pub struct HMetrics {
    /// The horizontal offset that the origin of the next glyph should be from
    /// the origin of this glyph.
    pub advance_width: f32,
    /// The horizontal offset between the origin of this glyph and the leftmost
    /// edge/point of the glyph.
    pub left_side_bearing: f32,
}
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
/// The "vertical metrics" of a font at a particular scale. This is useful for
/// calculating the amount of vertical space to give a line of text, and for
/// computing the vertical offset between successive lines.
pub struct VMetrics {
    /// The highest point that any glyph in the font extends to above the
    /// baseline. Typically positive.
    pub ascent: f32,
    /// The lowest point that any glyph in the font extends to below the
    /// baseline. Typically negative.
    pub descent: f32,
    /// The gap to leave between the descent of one line and the ascent of the
    /// next. This is of course only a guideline given by the font's designers.
    pub line_gap: f32,
}

impl From<tt::VMetrics> for VMetrics {
    fn from(vm: tt::VMetrics) -> Self {
        Self {
            ascent: vm.ascent as f32,
            descent: vm.descent as f32,
            line_gap: vm.line_gap as f32,
        }
    }
}

impl ::std::ops::Mul<f32> for VMetrics {
    type Output = VMetrics;

    fn mul(self, rhs: f32) -> Self {
        Self {
            ascent: self.ascent * rhs,
            descent: self.descent * rhs,
            line_gap: self.line_gap * rhs,
        }
    }
}

/// A glyph augmented with scaling information. You can query such a glyph for
/// information that depends on the scale of the glyph.
#[derive(Clone)]
pub struct ScaledGlyph<'a> {
    g: Glyph<'a>,
    api_scale: Scale,
    scale: Vector<f32>,
}
/// A glyph augmented with positioning and scaling information. You can query
/// such a glyph for information that depends on the scale and position of the
/// glyph.
#[derive(Clone)]
pub struct PositionedGlyph<'a> {
    sg: ScaledGlyph<'a>,
    position: Point<f32>,
    bb: Option<Rect<i32>>,
}
/// Defines the size of a rendered face of a font, in pixels, horizontally and
/// vertically. A vertical scale of `y` pixels means that the distance betwen
/// the ascent and descent lines (see `VMetrics`) of the face will be `y`
/// pixels. If `x` and `y` are equal the scaling is uniform. Non-uniform scaling
/// by a factor *f* in the horizontal direction is achieved by setting `x` equal
/// to *f* times `y`.
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct Scale {
    /// Horizontal scale, in pixels.
    pub x: f32,
    /// Vertical scale, in pixels.
    pub y: f32,
}

impl Scale {
    /// Uniform scaling, equivalent to `Scale { x: s, y: s }`.
    pub fn uniform(s: f32) -> Scale {
        Scale { x: s, y: s }
    }
}
/// A trait for types that can be converted into a `GlyphId`, in the context of
/// a specific font.
///
/// Many `rusttype` functions that operate on characters accept values of any
/// type that implements `IntoGlyphId`. Such types include `char`, `Codepoint`,
/// and obviously `GlyphId` itself.
pub trait IntoGlyphId {
    /// Convert `self` into a `GlyphId`, consulting the index map of `font` if
    /// necessary.
    fn into_glyph_id(self, &Font) -> GlyphId;
}
impl IntoGlyphId for char {
    fn into_glyph_id(self, font: &Font) -> GlyphId {
        GlyphId(font.info.find_glyph_index(self as u32))
    }
}
impl IntoGlyphId for Codepoint {
    fn into_glyph_id(self, font: &Font) -> GlyphId {
        GlyphId(font.info.find_glyph_index(self.0))
    }
}
impl IntoGlyphId for GlyphId {
    fn into_glyph_id(self, _font: &Font) -> GlyphId {
        self
    }
}
impl<'a> FontCollection<'a> {
    /// Constructs a font collection from an array of bytes, typically loaded
    /// from a font file, which may be a single font or a TrueType Collection
    /// holding a number of fonts. This array may be owned (e.g. `Vec<u8>`), or
    /// borrowed (`&[u8]`). As long as `From<T>` is implemented for `Bytes` for
    /// some type `T`, `T` can be used as input.
    ///
    /// This returns an error if `bytes` does not seem to be font data in a
    /// format we recognize.
    pub fn from_bytes<B: Into<SharedBytes<'a>>>(bytes: B) -> Result<FontCollection<'a>, Error> {
        let bytes = bytes.into();
        // We should use tt::is_collection once it lands in stb_truetype-rs:
        // https://github.com/redox-os/stb_truetype-rs/pull/15
        if !tt::is_font(&bytes) && &bytes[0..4] != b"ttcf" {
            return Err(Error::UnrecognizedFormat);
        }

        Ok(FontCollection(bytes))
    }
    /// If this `FontCollection` holds a single font, or a TrueType Collection
    /// containing only one font, return that as a `Font`. The `FontCollection`
    /// is consumed.
    ///
    /// If this `FontCollection` holds multiple fonts, return a
    /// `CollectionContainsMultipleFonts` error.
    ///
    /// If an error occurs, the `FontCollection` is lost, since this function
    /// takes ownership of it, and the error values don't give it back. If that
    /// is a problem, use the `font_at` or `into_fonts` methods instead, which
    /// borrow the `FontCollection` rather than taking ownership of it.
    pub fn into_font(self) -> Result<Font<'a>, Error> {
        let offset = if tt::is_font(&self.0) {
            0
        } else if tt::get_font_offset_for_index(&self.0, 1).is_some() {
            return Err(Error::CollectionContainsMultipleFonts);
        } else {
            // We now know that either a) `self.0` is a collection with only one
            // font, or b) `get_font_offset_for_index` found data it couldn't
            // recognize. Request the first font's offset, distinguishing
            // those two cases.
            match tt::get_font_offset_for_index(&self.0, 0) {
                None => return Err(Error::IllFormed),
                Some(offset) => offset,
            }
        };
        let info = tt::FontInfo::new(self.0, offset as usize).ok_or(Error::IllFormed)?;
        Ok(Font { info })
    }
    /// Gets the font at index `i` in the font collection, if it exists and is
    /// valid. The produced font borrows the font data that is either borrowed
    /// or owned by this font collection.
    pub fn font_at(&self, i: usize) -> Result<Font<'a>, Error> {
        let offset = tt::get_font_offset_for_index(&self.0, i as i32)
            .ok_or(Error::CollectionIndexOutOfBounds)?;
        let info = tt::FontInfo::new(self.0.clone(), offset as usize).ok_or(Error::IllFormed)?;
        Ok(Font { info })
    }
    /// Converts `self` into an `Iterator` yielding each `Font` that exists
    /// within the collection.
    pub fn into_fonts(self) -> IntoFontsIter<'a> {
        IntoFontsIter {
            collection: self,
            next_index: 0,
        }
    }
}
pub struct IntoFontsIter<'a> {
    next_index: usize,
    collection: FontCollection<'a>,
}
impl<'a> Iterator for IntoFontsIter<'a> {
    type Item = Result<Font<'a>, Error>;
    fn next(&mut self) -> Option<Self::Item> {
        let result = self.collection.font_at(self.next_index);
        if let Err(Error::CollectionIndexOutOfBounds) = result {
            return None;
        }
        self.next_index += 1;
        Some(result)
    }
}
impl<'a> Font<'a> {
    /// Constructs a font from an array of bytes, this is a shortcut for
    /// `FontCollection::from_bytes` for collections comprised of a single font.
    pub fn from_bytes<B: Into<SharedBytes<'a>>>(bytes: B) -> Result<Font<'a>, Error> {
        FontCollection::from_bytes(bytes).and_then(|c| c.into_font())
    }

    /// The "vertical metrics" for this font at a given scale. These metrics are
    /// shared by all of the glyphs in the font. See `VMetrics` for more detail.
    pub fn v_metrics(&self, scale: Scale) -> VMetrics {
        let vm = self.info.get_v_metrics();
        let scale = self.info.scale_for_pixel_height(scale.y);
        VMetrics::from(vm) * scale
    }

    /// Get the unscaled VMetrics for this font, shared by all glyphs.
    /// See `VMetrics` for more detail.
    pub fn v_metrics_unscaled(&self) -> VMetrics {
        VMetrics::from(self.info.get_v_metrics())
    }

    /// Returns the units per EM square of this font
    pub fn units_per_em(&self) -> u16 {
        self.info.units_per_em()
    }

    /// The number of glyphs present in this font. Glyph identifiers for this
    /// font will always be in the range `0..self.glyph_count()`
    pub fn glyph_count(&self) -> usize {
        self.info.get_num_glyphs() as usize
    }

    /// Returns the corresponding glyph for a Unicode code point or a glyph id
    /// for this font.
    ///
    /// If `id` is a `GlyphId`, it must be valid for this font; otherwise, this
    /// function panics. `GlyphId`s should always be produced by looking up some
    /// other sort of designator (like a Unicode code point) in a font, and
    /// should only be used to index the font they were produced for.
    ///
    /// Note that code points without corresponding glyphs in this font map to
    /// the ".notdef" glyph, glyph 0.
    pub fn glyph<C: IntoGlyphId>(&self, id: C) -> Glyph<'a> {
        let gid = id.into_glyph_id(self);
        assert!((gid.0 as usize) < self.glyph_count());
        // font clone either a reference clone, or arc clone
        Glyph::new(GlyphInner::Proxy(self.clone(), gid.0))
    }
    /// A convenience function.
    ///
    /// Returns an iterator that produces the glyphs corresponding to the code
    /// points or glyph ids produced by the given iterator `itr`.
    ///
    /// This is equivalent in behaviour to `itr.map(|c| font.glyph(c))`.
    pub fn glyphs_for<I: Iterator>(&self, itr: I) -> GlyphIter<I>
    where
        I::Item: IntoGlyphId,
    {
        GlyphIter { font: self, itr }
    }
    /// Returns an iterator over the names for this font.
    pub fn font_name_strings(&self) -> tt::FontNameIter<SharedBytes<'a>> {
        self.info.get_font_name_strings()
    }
    /// A convenience function for laying out glyphs for a string horizontally.
    /// It does not take control characters like line breaks into account, as
    /// treatment of these is likely to depend on the application.
    ///
    /// Note that this function does not perform Unicode normalisation.
    /// Composite characters (such as ö constructed from two code points, ¨ and
    /// o), will not be normalised to single code points. So if a font does not
    /// contain a glyph for each separate code point, but does contain one for
    /// the normalised single code point (which is common), the desired glyph
    /// will not be produced, despite being present in the font. Deal with this
    /// by performing Unicode normalisation on the input string before passing
    /// it to `layout`. The crate
    /// [unicode-normalization](http://crates.io/crates/unicode-normalization)
    /// is perfect for this purpose.
    ///
    /// Calling this function is equivalent to a longer sequence of operations
    /// involving `glyphs_for`, e.g.
    ///
    /// ```no_run
    /// # use rusttype::*;
    /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
    /// # let font: Font = unimplemented!();
    /// font.layout("Hello World!", scale, start)
    /// # ;
    /// ```
    ///
    /// produces an iterator with behaviour equivalent to the following:
    ///
    /// ```no_run
    /// # use rusttype::*;
    /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
    /// # let font: Font = unimplemented!();
    /// font.glyphs_for("Hello World!".chars())
    ///     .scan((None, 0.0), |&mut (mut last, mut x), g| {
    ///         let g = g.scaled(scale);
    ///         if let Some(last) = last {
    ///             x += font.pair_kerning(scale, last, g.id());
    ///         }
    ///         let w = g.h_metrics().advance_width;
    ///         let next = g.positioned(start + vector(x, 0.0));
    ///         last = Some(next.id());
    ///         x += w;
    ///         Some(next)
    ///     })
    /// # ;
    /// ```
    pub fn layout<'b, 'c>(
        &'b self,
        s: &'c str,
        scale: Scale,
        start: Point<f32>,
    ) -> LayoutIter<'b, 'c> {
        LayoutIter {
            font: self,
            chars: s.chars(),
            caret: 0.0,
            scale,
            start,
            last_glyph: None,
        }
    }
    /// Returns additional kerning to apply as well as that given by HMetrics
    /// for a particular pair of glyphs.
    pub fn pair_kerning<A, B>(&self, scale: Scale, first: A, second: B) -> f32
    where
        A: IntoGlyphId,
        B: IntoGlyphId,
    {
        let (first, second) = (self.glyph(first), self.glyph(second));
        let factor = self.info.scale_for_pixel_height(scale.y) * (scale.x / scale.y);
        let kern = self.info
            .get_glyph_kern_advance(first.id().0, second.id().0);
        factor * kern as f32
    }
}
#[derive(Clone)]
pub struct GlyphIter<'a, I: Iterator>
where
    I::Item: IntoGlyphId,
{
    font: &'a Font<'a>,
    itr: I,
}
impl<'a, I: Iterator> Iterator for GlyphIter<'a, I>
where
    I::Item: IntoGlyphId,
{
    type Item = Glyph<'a>;
    fn next(&mut self) -> Option<Glyph<'a>> {
        self.itr.next().map(|c| self.font.glyph(c))
    }
}
#[derive(Clone)]
pub struct LayoutIter<'a, 'b> {
    font: &'a Font<'a>,
    chars: ::std::str::Chars<'b>,
    caret: f32,
    scale: Scale,
    start: Point<f32>,
    last_glyph: Option<GlyphId>,
}
impl<'a, 'b> Iterator for LayoutIter<'a, 'b> {
    type Item = PositionedGlyph<'a>;
    fn next(&mut self) -> Option<PositionedGlyph<'a>> {
        self.chars.next().map(|c| {
            let g = self.font.glyph(c).scaled(self.scale);
            if let Some(last) = self.last_glyph {
                self.caret += self.font.pair_kerning(self.scale, last, g.id());
            }
            let g = g.positioned(point(self.start.x + self.caret, self.start.y));
            self.caret += g.sg.h_metrics().advance_width;
            self.last_glyph = Some(g.id());
            g
        })
    }
}
impl<'a> Glyph<'a> {
    fn new(inner: GlyphInner<'a>) -> Glyph<'a> {
        Glyph { inner }
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph
    /// that owns its resources, it no longer has a reference to the font which
    /// it was created from (using `standalone()`). In which case, `None` is
    /// returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        match self.inner {
            GlyphInner::Proxy(ref f, _) => Some(f),
            GlyphInner::Shared(_) => None,
        }
    }
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        match self.inner {
            GlyphInner::Proxy(_, id) => GlyphId(id),
            GlyphInner::Shared(ref data) => GlyphId(data.id),
        }
    }
    /// Augments this glyph with scaling information, making methods that depend
    /// on the scale of the glyph available.
    pub fn scaled(self, scale: Scale) -> ScaledGlyph<'a> {
        let (scale_x, scale_y) = match self.inner {
            GlyphInner::Proxy(ref font, _) => {
                let scale_y = font.info.scale_for_pixel_height(scale.y);
                let scale_x = scale_y * scale.x / scale.y;
                (scale_x, scale_y)
            }
            GlyphInner::Shared(ref data) => {
                let scale_y = data.scale_for_1_pixel * scale.y;
                let scale_x = scale_y * scale.x / scale.y;
                (scale_x, scale_y)
            }
        };
        ScaledGlyph {
            g: self,
            api_scale: scale,
            scale: vector(scale_x, scale_y),
        }
    }
    /// Turns a `Glyph<'a>` into a `Glyph<'static>`. This produces a glyph that
    /// owns its resources, extracted from the font. This glyph can outlive the
    /// font that it comes from.
    ///
    /// Calling `standalone()` on a standalone glyph shares the resources, and
    /// is equivalent to `clone()`.
    pub fn standalone(&self) -> Glyph<'static> {
        match self.inner {
            GlyphInner::Proxy(ref font, id) => {
                Glyph::new(GlyphInner::Shared(Arc::new(SharedGlyphData {
                    id,
                    scale_for_1_pixel: font.info.scale_for_pixel_height(1.0),
                    unit_h_metrics: {
                        let hm = font.info.get_glyph_h_metrics(id);
                        HMetrics {
                            advance_width: hm.advance_width as f32,
                            left_side_bearing: hm.left_side_bearing as f32,
                        }
                    },
                    extents: font.info.get_glyph_box(id).map(|bb| Rect {
                        min: point(bb.x0 as i32, -(bb.y1 as i32)),
                        max: point(bb.x1 as i32, -(bb.y0 as i32)),
                    }),
                    shape: font.info.get_glyph_shape(id),
                })))
            }
            GlyphInner::Shared(ref data) => Glyph::new(GlyphInner::Shared(data.clone())),
        }
    }
    /// Get the data from this glyph (such as width, extents, vertices, etc.).
    /// Only possible if the glyph is a shared glyph.
    pub fn get_data(&self) -> Option<Arc<SharedGlyphData>> {
        match self.inner {
            GlyphInner::Proxy(..) => None,
            GlyphInner::Shared(ref s) => Some(s.clone()),
        }
    }
}
/// Part of a `Contour`, either a `Line` or a `Curve`.
#[derive(Copy, Clone, Debug)]
pub enum Segment {
    Line(Line),
    Curve(Curve),
}
/// A closed loop consisting of a sequence of `Segment`s.
#[derive(Clone, Debug)]
pub struct Contour {
    pub segments: Vec<Segment>,
}
impl<'a> ScaledGlyph<'a> {
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        self.g.id()
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph
    /// that owns its resources, it no longer has a reference to the font which
    /// it was created from (using `standalone()`). In which case, `None` is
    /// returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        self.g.font()
    }
    /// A reference to this glyph without the scaling
    pub fn into_unscaled(self) -> Glyph<'a> {
        self.g
    }
    /// Removes the scaling from this glyph
    pub fn unscaled(&self) -> &Glyph<'a> {
        &self.g
    }
    /// Augments this glyph with positioning information, making methods that
    /// depend on the position of the glyph available.
    pub fn positioned(self, p: Point<f32>) -> PositionedGlyph<'a> {
        let bb = match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info
                .get_glyph_bitmap_box_subpixel(id, self.scale.x, self.scale.y, p.x, p.y)
                .map(|bb| Rect {
                    min: point(bb.x0, bb.y0),
                    max: point(bb.x1, bb.y1),
                }),
            GlyphInner::Shared(ref data) => data.extents.map(|bb| Rect {
                min: point(
                    (bb.min.x as f32 * self.scale.x + p.x).floor() as i32,
                    (bb.min.y as f32 * self.scale.y + p.y).floor() as i32,
                ),
                max: point(
                    (bb.max.x as f32 * self.scale.x + p.x).ceil() as i32,
                    (bb.max.y as f32 * self.scale.y + p.y).ceil() as i32,
                ),
            }),
        };
        PositionedGlyph {
            sg: self,
            position: p,
            bb,
        }
    }
    pub fn scale(&self) -> Scale {
        self.api_scale
    }
    /// Retrieves the "horizontal metrics" of this glyph. See `HMetrics` for
    /// more detail.
    pub fn h_metrics(&self) -> HMetrics {
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => {
                let hm = font.info.get_glyph_h_metrics(id);
                HMetrics {
                    advance_width: hm.advance_width as f32 * self.scale.x,
                    left_side_bearing: hm.left_side_bearing as f32 * self.scale.x,
                }
            }
            GlyphInner::Shared(ref data) => HMetrics {
                advance_width: data.unit_h_metrics.advance_width * self.scale.x,
                left_side_bearing: data.unit_h_metrics.left_side_bearing * self.scale.y,
            },
        }
    }
    fn shape_with_offset(&self, offset: Point<f32>) -> Option<Vec<Contour>> {
        use stb_truetype::VertexType;
        use std::mem::replace;
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info.get_glyph_shape(id),
            GlyphInner::Shared(ref data) => data.shape.clone(),
        }.map(|shape| {
            let mut result = Vec::new();
            let mut current = Vec::new();
            let mut last = point(0.0, 0.0);
            for v in shape {
                let end = point(
                    v.x as f32 * self.scale.x + offset.x,
                    v.y as f32 * self.scale.y + offset.y,
                );
                match v.vertex_type() {
                    VertexType::MoveTo if !current.is_empty() => result.push(Contour {
                        segments: replace(&mut current, Vec::new()),
                    }),
                    VertexType::LineTo => current.push(Segment::Line(Line { p: [last, end] })),
                    VertexType::CurveTo => {
                        let control = point(
                            v.cx as f32 * self.scale.x + offset.x,
                            v.cy as f32 * self.scale.y + offset.y,
                        );
                        current.push(Segment::Curve(Curve {
                            p: [last, control, end],
                        }))
                    }
                    _ => (),
                }
                last = end;
            }
            if !current.is_empty() {
                result.push(Contour {
                    segments: replace(&mut current, Vec::new()),
                });
            }
            result
        })
    }
    /// Produces a list of the contours that make up the shape of this glyph.
    /// Each contour consists of a sequence of segments. Each segment is either
    /// a straight `Line` or a `Curve`.
    ///
    /// The winding of the produced contours is clockwise for closed shapes,
    /// anticlockwise for holes.
    pub fn shape(&self) -> Option<Vec<Contour>> {
        self.shape_with_offset(point(0.0, 0.0))
    }
    /// The bounding box of the shape of this glyph, not to be confused with
    /// `pixel_bounding_box`, the conservative pixel-boundary bounding box. The
    /// coordinates are relative to the glyph's origin.
    pub fn exact_bounding_box(&self) -> Option<Rect<f32>> {
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info.get_glyph_box(id).map(|bb| Rect {
                min: point(bb.x0 as f32 * self.scale.x, -bb.y1 as f32 * self.scale.y),
                max: point(bb.x1 as f32 * self.scale.x, -bb.y0 as f32 * self.scale.y),
            }),
            GlyphInner::Shared(ref data) => data.extents.map(|bb| Rect {
                min: point(
                    bb.min.x as f32 * self.scale.x,
                    bb.min.y as f32 * self.scale.y,
                ),
                max: point(
                    bb.max.x as f32 * self.scale.x,
                    bb.max.y as f32 * self.scale.y,
                ),
            }),
        }
    }
    /// Constructs a glyph that owns its data from this glyph. This is similar
    /// to `Glyph::standalone`. See that function for more details.
    pub fn standalone(&self) -> ScaledGlyph<'static> {
        ScaledGlyph {
            g: self.g.standalone(),
            api_scale: self.api_scale,
            scale: self.scale,
        }
    }
}

impl<'a> PositionedGlyph<'a> {
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        self.sg.id()
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph
    /// that owns its resources, it no longer has a reference to the font which
    /// it was created from (using `standalone()`). In which case, `None` is
    /// returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        self.sg.font()
    }
    /// A reference to this glyph without positioning
    pub fn unpositioned(&self) -> &ScaledGlyph<'a> {
        &self.sg
    }
    /// Removes the positioning from this glyph
    pub fn into_unpositioned(self) -> ScaledGlyph<'a> {
        self.sg
    }
    /// The conservative pixel-boundary bounding box for this glyph. This is the
    /// smallest rectangle aligned to pixel boundaries that encloses the shape
    /// of this glyph at this position.
    pub fn pixel_bounding_box(&self) -> Option<Rect<i32>> {
        self.bb
    }
    /// Similar to `ScaledGlyph::shape()`, but with the position of the glyph
    /// taken into account.
    pub fn shape(&self) -> Option<Vec<Contour>> {
        self.sg.shape_with_offset(self.position)
    }
    pub fn scale(&self) -> Scale {
        self.sg.api_scale
    }
    pub fn position(&self) -> Point<f32> {
        self.position
    }
    /// Rasterises this glyph. For each pixel in the rect given by
    /// `pixel_bounding_box()`, `o` is called:
    ///
    /// ```ignore
    /// o(x, y, v)
    /// ```
    ///
    /// where `x` and `y` are the coordinates of the pixel relative to the `min`
    /// coordinates of the bounding box, and `v` is the analytically calculated
    /// coverage of the pixel by the shape of the glyph. Calls to `o` proceed in
    /// horizontal scanline order, similar to this pseudo-code:
    ///
    /// ```ignore
    /// let bb = glyph.pixel_bounding_box();
    /// for y in 0..bb.height() {
    ///     for x in 0..bb.width() {
    ///         o(x, y, calc_coverage(&glyph, x, y));
    ///     }
    /// }
    /// ```
    pub fn draw<O: FnMut(u32, u32, f32)>(&self, o: O) {
        use geometry::{Curve, Line};
        use stb_truetype::VertexType;
        let shape = match self.sg.g.inner {
            GlyphInner::Proxy(ref font, id) => {
                font.info.get_glyph_shape(id).unwrap_or_else(Vec::new)
            }
            GlyphInner::Shared(ref data) => data.shape.clone().unwrap_or_else(Vec::new),
        };
        let bb = if let Some(bb) = self.bb.as_ref() {
            bb
        } else {
            return;
        };
        let offset = vector(bb.min.x as f32, bb.min.y as f32);
        let mut lines = Vec::new();
        let mut curves = Vec::new();
        let mut last = point(0.0, 0.0);
        for v in shape {
            let end = point(
                v.x as f32 * self.sg.scale.x + self.position.x,
                -v.y as f32 * self.sg.scale.y + self.position.y,
            ) - offset;
            match v.vertex_type() {
                VertexType::LineTo => lines.push(Line { p: [last, end] }),
                VertexType::CurveTo => {
                    let control = point(
                        v.cx as f32 * self.sg.scale.x + self.position.x,
                        -v.cy as f32 * self.sg.scale.y + self.position.y,
                    ) - offset;
                    curves.push(Curve {
                        p: [last, control, end],
                    })
                }
                VertexType::MoveTo => {}
            }
            last = end;
        }
        rasterizer::rasterize(
            &lines,
            &curves,
            (bb.max.x - bb.min.x) as u32,
            (bb.max.y - bb.min.y) as u32,
            o,
        );
    }
    /// Constructs a glyph that owns its data from this glyph. This is similar
    /// to `Glyph::standalone`. See that function for more details.
    pub fn standalone(&self) -> PositionedGlyph<'static> {
        PositionedGlyph {
            sg: self.sg.standalone(),
            bb: self.bb,
            position: self.position,
        }
    }
}

/// The type for errors returned by rusttype.
#[derive(Debug)]
pub enum Error {
    /// Font data presented to rusttype is not in a format that the library
    /// recognizes.
    UnrecognizedFormat,

    /// Font data presented to rusttype was ill-formed (lacking necessary
    /// tables, for example).
    IllFormed,

    /// The caller tried to access the `i`'th font from a `FontCollection`, but
    /// the collection doesn't contain that many fonts.
    CollectionIndexOutOfBounds,

    /// The caller tried to convert a `FontCollection` into a font via `into_font`,
    /// but the `FontCollection` contains more than one font.
    CollectionContainsMultipleFonts,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> std::result::Result<(), fmt::Error> {
        f.write_str(std::error::Error::description(self))
    }
}

impl std::error::Error for Error {
    fn description(&self) -> &str {
        use self::Error::*;
        match *self {
            UnrecognizedFormat => "Font data in unrecognized format",
            IllFormed => "Font data is ill-formed",
            CollectionIndexOutOfBounds => "Font collection has no font at the given index",
            CollectionContainsMultipleFonts => {
                "Attempted to convert collection into a font, \
                 but collection contais more than one font"
            }
        }
    }
}

impl std::convert::From<Error> for std::io::Error {
    fn from(error: Error) -> Self {
        std::io::Error::new(std::io::ErrorKind::Other, error)
    }
}