1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Machinery for hygienic macros, inspired by the `MTWT[1]` paper.
//!
//! `[1]` Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. 2012.
//! *Macros that work together: Compile-time bindings, partial expansion,
//! and definition contexts*. J. Funct. Program. 22, 2 (March 2012), 181-216.
//! DOI=10.1017/S0956796812000093 <https://doi.org/10.1017/S0956796812000093>

use GLOBALS;
use Span;
use edition::Edition;
use symbol::{Ident, Symbol};

use serialize::{Encodable, Decodable, Encoder, Decoder};
use std::collections::HashMap;
use rustc_data_structures::fx::FxHashSet;
use std::fmt;

/// A SyntaxContext represents a chain of macro expansions (represented by marks).
#[derive(Clone, Copy, PartialEq, Eq, Default, PartialOrd, Ord, Hash)]
pub struct SyntaxContext(pub(super) u32);

#[derive(Copy, Clone)]
pub struct SyntaxContextData {
    pub outer_mark: Mark,
    pub prev_ctxt: SyntaxContext,
    pub modern: SyntaxContext,
}

/// A mark is a unique id associated with a macro expansion.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Mark(u32);

struct MarkData {
    parent: Mark,
    kind: MarkKind,
    expn_info: Option<ExpnInfo>,
}

#[derive(Copy, Clone, PartialEq, Eq)]
pub enum MarkKind {
    Modern,
    Builtin,
    Legacy,
}

impl Mark {
    pub fn fresh(parent: Mark) -> Self {
        HygieneData::with(|data| {
            data.marks.push(MarkData { parent: parent, kind: MarkKind::Legacy, expn_info: None });
            Mark(data.marks.len() as u32 - 1)
        })
    }

    /// The mark of the theoretical expansion that generates freshly parsed, unexpanded AST.
    #[inline]
    pub fn root() -> Self {
        Mark(0)
    }

    #[inline]
    pub fn as_u32(self) -> u32 {
        self.0
    }

    #[inline]
    pub fn from_u32(raw: u32) -> Mark {
        Mark(raw)
    }

    #[inline]
    pub fn expn_info(self) -> Option<ExpnInfo> {
        HygieneData::with(|data| data.marks[self.0 as usize].expn_info.clone())
    }

    #[inline]
    pub fn set_expn_info(self, info: ExpnInfo) {
        HygieneData::with(|data| data.marks[self.0 as usize].expn_info = Some(info))
    }

    pub fn modern(mut self) -> Mark {
        HygieneData::with(|data| {
            loop {
                if self == Mark::root() || data.marks[self.0 as usize].kind == MarkKind::Modern {
                    return self;
                }
                self = data.marks[self.0 as usize].parent;
            }
        })
    }

    #[inline]
    pub fn kind(self) -> MarkKind {
        HygieneData::with(|data| data.marks[self.0 as usize].kind)
    }

    #[inline]
    pub fn set_kind(self, kind: MarkKind) {
        HygieneData::with(|data| data.marks[self.0 as usize].kind = kind)
    }

    pub fn is_descendant_of(mut self, ancestor: Mark) -> bool {
        HygieneData::with(|data| {
            while self != ancestor {
                if self == Mark::root() {
                    return false;
                }
                self = data.marks[self.0 as usize].parent;
            }
            true
        })
    }

    /// Computes a mark such that both input marks are descendants of (or equal to) the returned
    /// mark. That is, the following holds:
    ///
    /// ```rust
    /// let la = least_ancestor(a, b);
    /// assert!(a.is_descendant_of(la))
    /// assert!(b.is_descendant_of(la))
    /// ```
    pub fn least_ancestor(mut a: Mark, mut b: Mark) -> Mark {
        HygieneData::with(|data| {
            // Compute the path from a to the root
            let mut a_path = FxHashSet::<Mark>();
            while a != Mark::root() {
                a_path.insert(a);
                a = data.marks[a.0 as usize].parent;
            }

            // While the path from b to the root hasn't intersected, move up the tree
            while !a_path.contains(&b) {
                b = data.marks[b.0 as usize].parent;
            }

            b
        })
    }
}

pub struct HygieneData {
    marks: Vec<MarkData>,
    syntax_contexts: Vec<SyntaxContextData>,
    markings: HashMap<(SyntaxContext, Mark), SyntaxContext>,
    gensym_to_ctxt: HashMap<Symbol, Span>,
    default_edition: Edition,
}

impl HygieneData {
    pub fn new() -> Self {
        HygieneData {
            marks: vec![MarkData {
                parent: Mark::root(),
                kind: MarkKind::Builtin,
                expn_info: None,
            }],
            syntax_contexts: vec![SyntaxContextData {
                outer_mark: Mark::root(),
                prev_ctxt: SyntaxContext(0),
                modern: SyntaxContext(0),
            }],
            markings: HashMap::new(),
            gensym_to_ctxt: HashMap::new(),
            default_edition: Edition::Edition2015,
        }
    }

    fn with<T, F: FnOnce(&mut HygieneData) -> T>(f: F) -> T {
        GLOBALS.with(|globals| f(&mut *globals.hygiene_data.borrow_mut()))
    }
}

pub fn default_edition() -> Edition {
    HygieneData::with(|data| data.default_edition)
}

pub fn set_default_edition(edition: Edition) {
    HygieneData::with(|data| data.default_edition = edition);
}

pub fn clear_markings() {
    HygieneData::with(|data| data.markings = HashMap::new());
}

impl SyntaxContext {
    pub const fn empty() -> Self {
        SyntaxContext(0)
    }

    // Allocate a new SyntaxContext with the given ExpnInfo. This is used when
    // deserializing Spans from the incr. comp. cache.
    // FIXME(mw): This method does not restore MarkData::parent or
    // SyntaxContextData::prev_ctxt or SyntaxContextData::modern. These things
    // don't seem to be used after HIR lowering, so everything should be fine
    // as long as incremental compilation does not kick in before that.
    pub fn allocate_directly(expansion_info: ExpnInfo) -> Self {
        HygieneData::with(|data| {
            data.marks.push(MarkData {
                parent: Mark::root(),
                kind: MarkKind::Legacy,
                expn_info: Some(expansion_info)
            });

            let mark = Mark(data.marks.len() as u32 - 1);

            data.syntax_contexts.push(SyntaxContextData {
                outer_mark: mark,
                prev_ctxt: SyntaxContext::empty(),
                modern: SyntaxContext::empty(),
            });
            SyntaxContext(data.syntax_contexts.len() as u32 - 1)
        })
    }

    /// Extend a syntax context with a given mark
    pub fn apply_mark(self, mark: Mark) -> SyntaxContext {
        if mark.kind() == MarkKind::Modern {
            return self.apply_mark_internal(mark);
        }

        let call_site_ctxt =
            mark.expn_info().map_or(SyntaxContext::empty(), |info| info.call_site.ctxt()).modern();
        if call_site_ctxt == SyntaxContext::empty() {
            return self.apply_mark_internal(mark);
        }

        // Otherwise, `mark` is a macros 1.0 definition and the call site is in a
        // macros 2.0 expansion, i.e. a macros 1.0 invocation is in a macros 2.0 definition.
        //
        // In this case, the tokens from the macros 1.0 definition inherit the hygiene
        // at their invocation. That is, we pretend that the macros 1.0 definition
        // was defined at its invocation (i.e. inside the macros 2.0 definition)
        // so that the macros 2.0 definition remains hygienic.
        //
        // See the example at `test/run-pass/hygiene/legacy_interaction.rs`.
        let mut ctxt = call_site_ctxt;
        for mark in self.marks() {
            ctxt = ctxt.apply_mark_internal(mark);
        }
        ctxt.apply_mark_internal(mark)
    }

    fn apply_mark_internal(self, mark: Mark) -> SyntaxContext {
        HygieneData::with(|data| {
            let syntax_contexts = &mut data.syntax_contexts;
            let mut modern = syntax_contexts[self.0 as usize].modern;
            if data.marks[mark.0 as usize].kind == MarkKind::Modern {
                modern = *data.markings.entry((modern, mark)).or_insert_with(|| {
                    let len = syntax_contexts.len() as u32;
                    syntax_contexts.push(SyntaxContextData {
                        outer_mark: mark,
                        prev_ctxt: modern,
                        modern: SyntaxContext(len),
                    });
                    SyntaxContext(len)
                });
            }

            *data.markings.entry((self, mark)).or_insert_with(|| {
                syntax_contexts.push(SyntaxContextData {
                    outer_mark: mark,
                    prev_ctxt: self,
                    modern,
                });
                SyntaxContext(syntax_contexts.len() as u32 - 1)
            })
        })
    }

    /// Pulls a single mark off of the syntax context. This effectively moves the
    /// context up one macro definition level. That is, if we have a nested macro
    /// definition as follows:
    ///
    /// ```rust
    /// macro_rules! f {
    ///    macro_rules! g {
    ///        ...
    ///    }
    /// }
    /// ```
    ///
    /// and we have a SyntaxContext that is referring to something declared by an invocation
    /// of g (call it g1), calling remove_mark will result in the SyntaxContext for the
    /// invocation of f that created g1.
    /// Returns the mark that was removed.
    pub fn remove_mark(&mut self) -> Mark {
        HygieneData::with(|data| {
            let outer_mark = data.syntax_contexts[self.0 as usize].outer_mark;
            *self = data.syntax_contexts[self.0 as usize].prev_ctxt;
            outer_mark
        })
    }

    pub fn marks(mut self) -> Vec<Mark> {
        HygieneData::with(|data| {
            let mut marks = Vec::new();
            while self != SyntaxContext::empty() {
                marks.push(data.syntax_contexts[self.0 as usize].outer_mark);
                self = data.syntax_contexts[self.0 as usize].prev_ctxt;
            }
            marks.reverse();
            marks
        })
    }

    /// Adjust this context for resolution in a scope created by the given expansion.
    /// For example, consider the following three resolutions of `f`:
    ///
    /// ```rust
    /// mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty.
    /// m!(f);
    /// macro m($f:ident) {
    ///     mod bar {
    ///         pub fn f() {} // `f`'s `SyntaxContext` has a single `Mark` from `m`.
    ///         pub fn $f() {} // `$f`'s `SyntaxContext` is empty.
    ///     }
    ///     foo::f(); // `f`'s `SyntaxContext` has a single `Mark` from `m`
    ///     //^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`,
    ///     //| and it resolves to `::foo::f`.
    ///     bar::f(); // `f`'s `SyntaxContext` has a single `Mark` from `m`
    ///     //^ Since `mod bar` not outside this expansion, `adjust` does not change `f`,
    ///     //| and it resolves to `::bar::f`.
    ///     bar::$f(); // `f`'s `SyntaxContext` is empty.
    ///     //^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`,
    ///     //| and it resolves to `::bar::$f`.
    /// }
    /// ```
    /// This returns the expansion whose definition scope we use to privacy check the resolution,
    /// or `None` if we privacy check as usual (i.e. not w.r.t. a macro definition scope).
    pub fn adjust(&mut self, expansion: Mark) -> Option<Mark> {
        let mut scope = None;
        while !expansion.is_descendant_of(self.outer()) {
            scope = Some(self.remove_mark());
        }
        scope
    }

    /// Adjust this context for resolution in a scope created by the given expansion
    /// via a glob import with the given `SyntaxContext`.
    /// For example:
    ///
    /// ```rust
    /// m!(f);
    /// macro m($i:ident) {
    ///     mod foo {
    ///         pub fn f() {} // `f`'s `SyntaxContext` has a single `Mark` from `m`.
    ///         pub fn $i() {} // `$i`'s `SyntaxContext` is empty.
    ///     }
    ///     n(f);
    ///     macro n($j:ident) {
    ///         use foo::*;
    ///         f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n`
    ///         //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`.
    ///         $i(); // `$i`'s `SyntaxContext` has a mark from `n`
    ///         //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`.
    ///         $j(); // `$j`'s `SyntaxContext` has a mark from `m`
    ///         //^ This cannot be glob-adjusted, so this is a resolution error.
    ///     }
    /// }
    /// ```
    /// This returns `None` if the context cannot be glob-adjusted.
    /// Otherwise, it returns the scope to use when privacy checking (see `adjust` for details).
    pub fn glob_adjust(&mut self, expansion: Mark, mut glob_ctxt: SyntaxContext)
                       -> Option<Option<Mark>> {
        let mut scope = None;
        while !expansion.is_descendant_of(glob_ctxt.outer()) {
            scope = Some(glob_ctxt.remove_mark());
            if self.remove_mark() != scope.unwrap() {
                return None;
            }
        }
        if self.adjust(expansion).is_some() {
            return None;
        }
        Some(scope)
    }

    /// Undo `glob_adjust` if possible:
    ///
    /// ```rust
    /// if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) {
    ///     assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope));
    /// }
    /// ```
    pub fn reverse_glob_adjust(&mut self, expansion: Mark, mut glob_ctxt: SyntaxContext)
                               -> Option<Option<Mark>> {
        if self.adjust(expansion).is_some() {
            return None;
        }

        let mut marks = Vec::new();
        while !expansion.is_descendant_of(glob_ctxt.outer()) {
            marks.push(glob_ctxt.remove_mark());
        }

        let scope = marks.last().cloned();
        while let Some(mark) = marks.pop() {
            *self = self.apply_mark(mark);
        }
        Some(scope)
    }

    #[inline]
    pub fn modern(self) -> SyntaxContext {
        HygieneData::with(|data| data.syntax_contexts[self.0 as usize].modern)
    }

    #[inline]
    pub fn outer(self) -> Mark {
        HygieneData::with(|data| data.syntax_contexts[self.0 as usize].outer_mark)
    }
}

impl fmt::Debug for SyntaxContext {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "#{}", self.0)
    }
}

/// Extra information for tracking spans of macro and syntax sugar expansion
#[derive(Clone, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct ExpnInfo {
    /// The location of the actual macro invocation or syntax sugar , e.g.
    /// `let x = foo!();` or `if let Some(y) = x {}`
    ///
    /// This may recursively refer to other macro invocations, e.g. if
    /// `foo!()` invoked `bar!()` internally, and there was an
    /// expression inside `bar!`; the call_site of the expression in
    /// the expansion would point to the `bar!` invocation; that
    /// call_site span would have its own ExpnInfo, with the call_site
    /// pointing to the `foo!` invocation.
    pub call_site: Span,
    /// Information about the expansion.
    pub callee: NameAndSpan
}

#[derive(Clone, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct NameAndSpan {
    /// The format with which the macro was invoked.
    pub format: ExpnFormat,
    /// Whether the macro is allowed to use #[unstable]/feature-gated
    /// features internally without forcing the whole crate to opt-in
    /// to them.
    pub allow_internal_unstable: bool,
    /// Whether the macro is allowed to use `unsafe` internally
    /// even if the user crate has `#![forbid(unsafe_code)]`.
    pub allow_internal_unsafe: bool,
    /// Edition of the crate in which the macro is defined.
    pub edition: Edition,
    /// The span of the macro definition itself. The macro may not
    /// have a sensible definition span (e.g. something defined
    /// completely inside libsyntax) in which case this is None.
    pub span: Option<Span>
}

impl NameAndSpan {
    pub fn name(&self) -> Symbol {
        match self.format {
            ExpnFormat::MacroAttribute(s) |
            ExpnFormat::MacroBang(s) => s,
            ExpnFormat::CompilerDesugaring(ref kind) => kind.as_symbol(),
        }
    }
}

/// The source of expansion.
#[derive(Clone, Hash, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum ExpnFormat {
    /// e.g. #[derive(...)] <item>
    MacroAttribute(Symbol),
    /// e.g. `format!()`
    MacroBang(Symbol),
    /// Desugaring done by the compiler during HIR lowering.
    CompilerDesugaring(CompilerDesugaringKind)
}

/// The kind of compiler desugaring.
#[derive(Clone, Hash, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum CompilerDesugaringKind {
    DotFill,
    QuestionMark,
    Catch,
}

impl CompilerDesugaringKind {
    pub fn as_symbol(&self) -> Symbol {
        use CompilerDesugaringKind::*;
        let s = match *self {
            DotFill => "...",
            QuestionMark => "?",
            Catch => "do catch",
        };
        Symbol::intern(s)
    }
}

impl Encodable for SyntaxContext {
    fn encode<E: Encoder>(&self, _: &mut E) -> Result<(), E::Error> {
        Ok(()) // FIXME(jseyfried) intercrate hygiene
    }
}

impl Decodable for SyntaxContext {
    fn decode<D: Decoder>(_: &mut D) -> Result<SyntaxContext, D::Error> {
        Ok(SyntaxContext::empty()) // FIXME(jseyfried) intercrate hygiene
    }
}

impl Symbol {
    pub fn from_ident(ident: Ident) -> Symbol {
        HygieneData::with(|data| {
            let gensym = ident.name.gensymed();
            data.gensym_to_ctxt.insert(gensym, ident.span);
            gensym
        })
    }

    pub fn to_ident(self) -> Ident {
        HygieneData::with(|data| {
            match data.gensym_to_ctxt.get(&self) {
                Some(&span) => Ident::new(self.interned(), span),
                None => Ident::with_empty_ctxt(self),
            }
        })
    }
}