1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
use crate::Error;
use alloc::{string::String, vec::Vec};
use arrayvec::{ArrayString, ArrayVec};
use core::{
    cmp::{Ordering::Equal, *},
    fmt,
    hash::{Hash, Hasher},
    iter::Sum,
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
    str::FromStr,
};
#[cfg(feature = "diesel")]
use diesel::sql_types::Numeric;
#[allow(unused_imports)] // It's not actually dead code below, but the compiler thinks it is.
#[cfg(not(feature = "std"))]
use num_traits::float::FloatCore;
use num_traits::{FromPrimitive, Num, One, Signed, ToPrimitive, Zero};

// Sign mask for the flags field. A value of zero in this bit indicates a
// positive Decimal value, and a value of one in this bit indicates a
// negative Decimal value.
const SIGN_MASK: u32 = 0x8000_0000;
const UNSIGN_MASK: u32 = 0x4FFF_FFFF;

// Scale mask for the flags field. This byte in the flags field contains
// the power of 10 to divide the Decimal value by. The scale byte must
// contain a value between 0 and 28 inclusive.
const SCALE_MASK: u32 = 0x00FF_0000;
const U8_MASK: u32 = 0x0000_00FF;
const U32_MASK: u64 = 0xFFFF_FFFF;

// Number of bits scale is shifted by.
const SCALE_SHIFT: u32 = 16;
// Number of bits sign is shifted by.
const SIGN_SHIFT: u32 = 31;

// The maximum supported precision
pub(crate) const MAX_PRECISION: u32 = 28;
#[cfg(not(feature = "legacy-ops"))]
const MAX_PRECISION_I32: i32 = 28;
// 79,228,162,514,264,337,593,543,950,335
const MAX_I128_REPR: i128 = 0x0000_0000_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF;

const MIN: Decimal = Decimal {
    flags: 2_147_483_648,
    lo: 4_294_967_295,
    mid: 4_294_967_295,
    hi: 4_294_967_295,
};

const MAX: Decimal = Decimal {
    flags: 0,
    lo: 4_294_967_295,
    mid: 4_294_967_295,
    hi: 4_294_967_295,
};

// Fast access for 10^n where n is 0-9
const POWERS_10: [u32; 10] = [
    1,
    10,
    100,
    1_000,
    10_000,
    100_000,
    1_000_000,
    10_000_000,
    100_000_000,
    1_000_000_000,
];
// Fast access for 10^n where n is 10-19
#[allow(dead_code)]
const BIG_POWERS_10: [u64; 10] = [
    10_000_000_000,
    100_000_000_000,
    1_000_000_000_000,
    10_000_000_000_000,
    100_000_000_000_000,
    1_000_000_000_000_000,
    10_000_000_000_000_000,
    100_000_000_000_000_000,
    1_000_000_000_000_000_000,
    10_000_000_000_000_000_000,
];

pub const TWO: Decimal = Decimal {
    flags: 0,
    hi: 0,
    lo: 2,
    mid: 0,
};

pub const PI: Decimal = Decimal {
    flags: 1835008,
    hi: 1703060790,
    mid: 185874565,
    lo: 1102470953,
};

pub const LN2: Decimal = Decimal {
    flags: 1900544,
    hi: 3757558395,
    mid: 328455696,
    lo: 2831677809,
};

/// `UnpackedDecimal` contains unpacked representation of `Decimal` where each component
/// of decimal-format stored in it's own field
#[derive(Clone, Copy, Debug)]
pub struct UnpackedDecimal {
    pub is_negative: bool,
    pub scale: u32,
    pub hi: u32,
    pub mid: u32,
    pub lo: u32,
}

/// `Decimal` represents a 128 bit representation of a fixed-precision decimal number.
/// The finite set of values of type `Decimal` are of the form m / 10<sup>e</sup>,
/// where m is an integer such that -2<sup>96</sup> < m < 2<sup>96</sup>, and e is an integer
/// between 0 and 28 inclusive.
#[derive(Clone, Copy)]
#[cfg_attr(feature = "diesel", derive(FromSqlRow, AsExpression), sql_type = "Numeric")]
pub struct Decimal {
    // Bits 0-15: unused
    // Bits 16-23: Contains "e", a value between 0-28 that indicates the scale
    // Bits 24-30: unused
    // Bit 31: the sign of the Decimal value, 0 meaning positive and 1 meaning negative.
    flags: u32,
    // The lo, mid, hi, and flags fields contain the representation of the
    // Decimal value as a 96-bit integer.
    hi: u32,
    lo: u32,
    mid: u32,
}

/// `RoundingStrategy` represents the different strategies that can be used by
/// `round_dp_with_strategy`.
///
/// `RoundingStrategy::BankersRounding` - Rounds toward the nearest even number, e.g. 6.5 -> 6, 7.5 -> 8
/// `RoundingStrategy::RoundHalfUp` - Rounds up if the value >= 5, otherwise rounds down, e.g. 6.5 -> 7,
/// `RoundingStrategy::RoundHalfDown` - Rounds down if the value =< 5, otherwise rounds up, e.g.
/// 6.5 -> 6, 6.51 -> 7
/// 1.4999999 -> 1
/// `RoundingStrategy::RoundDown` - Always round down.
/// `RoundingStrategy::RoundUp` - Always round up.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum RoundingStrategy {
    BankersRounding,
    RoundHalfUp,
    RoundHalfDown,
    RoundDown,
    RoundUp,
}

#[allow(dead_code)]
impl Decimal {
    /// Returns a `Decimal` with a 64 bit `m` representation and corresponding `e` scale.
    ///
    /// # Arguments
    ///
    /// * `num` - An i64 that represents the `m` portion of the decimal number
    /// * `scale` - A u32 representing the `e` portion of the decimal number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::new(3141, 3);
    /// assert_eq!(pi.to_string(), "3.141");
    /// ```
    pub fn new(num: i64, scale: u32) -> Decimal {
        if scale > MAX_PRECISION {
            panic!(
                "Scale exceeds the maximum precision allowed: {} > {}",
                scale, MAX_PRECISION
            );
        }
        let flags: u32 = scale << SCALE_SHIFT;
        if num < 0 {
            let pos_num = num.wrapping_neg() as u64;
            return Decimal {
                flags: flags | SIGN_MASK,
                hi: 0,
                lo: (pos_num & U32_MASK) as u32,
                mid: ((pos_num >> 32) & U32_MASK) as u32,
            };
        }
        Decimal {
            flags,
            hi: 0,
            lo: (num as u64 & U32_MASK) as u32,
            mid: ((num as u64 >> 32) & U32_MASK) as u32,
        }
    }

    /// Creates a `Decimal` using a 128 bit signed `m` representation and corresponding `e` scale.
    ///
    /// # Arguments
    ///
    /// * `num` - An i128 that represents the `m` portion of the decimal number
    /// * `scale` - A u32 representing the `e` portion of the decimal number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::from_i128_with_scale(3141i128, 3);
    /// assert_eq!(pi.to_string(), "3.141");
    /// ```
    pub fn from_i128_with_scale(num: i128, scale: u32) -> Decimal {
        if scale > MAX_PRECISION {
            panic!(
                "Scale exceeds the maximum precision allowed: {} > {}",
                scale, MAX_PRECISION
            );
        }
        let mut neg = false;
        let mut wrapped = num;
        if num > MAX_I128_REPR {
            panic!("Number exceeds maximum value that can be represented");
        } else if num < -MAX_I128_REPR {
            panic!("Number less than minimum value that can be represented");
        } else if num < 0 {
            neg = true;
            wrapped = -num;
        }
        let flags: u32 = flags(neg, scale);
        Decimal {
            flags,
            lo: (wrapped as u64 & U32_MASK) as u32,
            mid: ((wrapped as u64 >> 32) & U32_MASK) as u32,
            hi: ((wrapped as u128 >> 64) as u64 & U32_MASK) as u32,
        }
    }

    /// Returns a `Decimal` using the instances constituent parts.
    ///
    /// # Arguments
    ///
    /// * `lo` - The low 32 bits of a 96-bit integer.
    /// * `mid` - The middle 32 bits of a 96-bit integer.
    /// * `hi` - The high 32 bits of a 96-bit integer.
    /// * `negative` - `true` to indicate a negative number.
    /// * `scale` - A power of 10 ranging from 0 to 28.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::from_parts(1102470952, 185874565, 1703060790, false, 28);
    /// assert_eq!(pi.to_string(), "3.1415926535897932384626433832");
    /// ```
    pub const fn from_parts(lo: u32, mid: u32, hi: u32, negative: bool, scale: u32) -> Decimal {
        Decimal {
            lo,
            mid,
            hi,
            flags: flags(negative, scale),
        }
    }

    /// Returns a `Result` which if successful contains the `Decimal` constitution of
    /// the scientific notation provided by `value`.
    ///
    /// # Arguments
    ///
    /// * `value` - The scientific notation of the `Decimal`.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let value = Decimal::from_scientific("9.7e-7").unwrap();
    /// assert_eq!(value.to_string(), "0.00000097");
    /// ```
    pub fn from_scientific(value: &str) -> Result<Decimal, Error> {
        let err = Error::new("Failed to parse");
        let mut split = value.splitn(2, |c| c == 'e' || c == 'E');

        let base = split.next().ok_or_else(|| err.clone())?;
        let exp = split.next().ok_or_else(|| err.clone())?;

        let mut ret = Decimal::from_str(base)?;
        let current_scale = ret.scale();

        if exp.starts_with('-') {
            let exp: u32 = exp[1..].parse().map_err(move |_| err)?;
            ret.set_scale(current_scale + exp)?;
        } else {
            let exp: u32 = exp.parse().map_err(move |_| err)?;
            if exp <= current_scale {
                ret.set_scale(current_scale - exp)?;
            } else {
                ret *= Decimal::from_i64(10_i64.pow(exp)).unwrap();
                ret = ret.normalize();
            }
        }
        Ok(ret)
    }

    /// Returns the scale of the decimal number, otherwise known as `e`.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(1234, 3);
    /// assert_eq!(num.scale(), 3u32);
    /// ```
    #[inline]
    pub const fn scale(&self) -> u32 {
        ((self.flags & SCALE_MASK) >> SCALE_SHIFT) as u32
    }

    /// An optimized method for changing the sign of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `positive`: true if the resulting decimal should be positive.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_sign(false);
    /// assert_eq!(one.to_string(), "-1");
    /// ```
    #[deprecated(since = "1.4.0", note = "please use `set_sign_positive` instead")]
    pub fn set_sign(&mut self, positive: bool) {
        self.set_sign_positive(positive);
    }

    /// An optimized method for changing the sign of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `positive`: true if the resulting decimal should be positive.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_sign_positive(false);
    /// assert_eq!(one.to_string(), "-1");
    /// ```
    #[inline(always)]
    pub fn set_sign_positive(&mut self, positive: bool) {
        if positive {
            self.flags &= UNSIGN_MASK;
        } else {
            self.flags |= SIGN_MASK;
        }
    }

    /// An optimized method for changing the sign of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `negative`: true if the resulting decimal should be negative.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_sign_negative(true);
    /// assert_eq!(one.to_string(), "-1");
    /// ```
    #[inline(always)]
    pub fn set_sign_negative(&mut self, negative: bool) {
        self.set_sign_positive(!negative);
    }

    /// An optimized method for changing the scale of a decimal number.
    ///
    /// # Arguments
    ///
    /// * `scale`: the new scale of the number
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut one = Decimal::new(1, 0);
    /// one.set_scale(5);
    /// assert_eq!(one.to_string(), "0.00001");
    /// ```
    pub fn set_scale(&mut self, scale: u32) -> Result<(), Error> {
        if scale > MAX_PRECISION {
            return Err(Error::new("Scale exceeds maximum precision"));
        }
        self.flags = (scale << SCALE_SHIFT) | (self.flags & SIGN_MASK);
        Ok(())
    }

    /// Modifies the `Decimal` to the given scale, attempting to do so without changing the
    /// underlying number itself.
    ///
    /// Note that setting the scale to something less then the current `Decimal`s scale will
    /// cause the newly created `Decimal` to have some rounding.
    /// Scales greater than the maximum precision supported by `Decimal` will be automatically
    /// rounded to `Decimal::MAX_PRECISION`.
    /// Rounding leverages the half up strategy.
    ///
    /// # Arguments
    /// * `scale`: The scale to use for the new `Decimal` number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let mut number = Decimal::new(1_123, 3);
    /// number.rescale(6);
    /// assert_eq!(number, Decimal::new(1_123_000, 6));
    /// let mut round = Decimal::new(145, 2);
    /// round.rescale(1);
    /// assert_eq!(round, Decimal::new(15, 1));
    /// ```
    pub fn rescale(&mut self, scale: u32) {
        let mut array = [self.lo, self.mid, self.hi];
        let mut value_scale = self.scale();
        rescale_internal(&mut array, &mut value_scale, scale);
        self.lo = array[0];
        self.mid = array[1];
        self.hi = array[2];
        self.flags = flags(self.is_sign_negative(), value_scale);
    }

    /// Returns a serialized version of the decimal number.
    /// The resulting byte array will have the following representation:
    ///
    /// * Bytes 1-4: flags
    /// * Bytes 5-8: lo portion of `m`
    /// * Bytes 9-12: mid portion of `m`
    /// * Bytes 13-16: high portion of `m`
    pub const fn serialize(&self) -> [u8; 16] {
        [
            (self.flags & U8_MASK) as u8,
            ((self.flags >> 8) & U8_MASK) as u8,
            ((self.flags >> 16) & U8_MASK) as u8,
            ((self.flags >> 24) & U8_MASK) as u8,
            (self.lo & U8_MASK) as u8,
            ((self.lo >> 8) & U8_MASK) as u8,
            ((self.lo >> 16) & U8_MASK) as u8,
            ((self.lo >> 24) & U8_MASK) as u8,
            (self.mid & U8_MASK) as u8,
            ((self.mid >> 8) & U8_MASK) as u8,
            ((self.mid >> 16) & U8_MASK) as u8,
            ((self.mid >> 24) & U8_MASK) as u8,
            (self.hi & U8_MASK) as u8,
            ((self.hi >> 8) & U8_MASK) as u8,
            ((self.hi >> 16) & U8_MASK) as u8,
            ((self.hi >> 24) & U8_MASK) as u8,
        ]
    }

    /// Deserializes the given bytes into a decimal number.
    /// The deserialized byte representation must be 16 bytes and adhere to the followign convention:
    ///
    /// * Bytes 1-4: flags
    /// * Bytes 5-8: lo portion of `m`
    /// * Bytes 9-12: mid portion of `m`
    /// * Bytes 13-16: high portion of `m`
    pub const fn deserialize(bytes: [u8; 16]) -> Decimal {
        Decimal {
            flags: (bytes[0] as u32) | (bytes[1] as u32) << 8 | (bytes[2] as u32) << 16 | (bytes[3] as u32) << 24,
            lo: (bytes[4] as u32) | (bytes[5] as u32) << 8 | (bytes[6] as u32) << 16 | (bytes[7] as u32) << 24,
            mid: (bytes[8] as u32) | (bytes[9] as u32) << 8 | (bytes[10] as u32) << 16 | (bytes[11] as u32) << 24,
            hi: (bytes[12] as u32) | (bytes[13] as u32) << 8 | (bytes[14] as u32) << 16 | (bytes[15] as u32) << 24,
        }
    }

    /// Returns `true` if the decimal is negative.
    #[deprecated(since = "0.6.3", note = "please use `is_sign_negative` instead")]
    pub fn is_negative(&self) -> bool {
        self.is_sign_negative()
    }

    /// Returns `true` if the decimal is positive.
    #[deprecated(since = "0.6.3", note = "please use `is_sign_positive` instead")]
    pub fn is_positive(&self) -> bool {
        self.is_sign_positive()
    }

    /// Returns `true` if the sign bit of the decimal is negative.
    #[inline(always)]
    pub const fn is_sign_negative(&self) -> bool {
        self.flags & SIGN_MASK > 0
    }

    /// Returns `true` if the sign bit of the decimal is positive.
    #[inline(always)]
    pub const fn is_sign_positive(&self) -> bool {
        self.flags & SIGN_MASK == 0
    }

    /// Returns the minimum possible number that `Decimal` can represent.
    pub const fn min_value() -> Decimal {
        MIN
    }

    /// Returns the maximum possible number that `Decimal` can represent.
    pub const fn max_value() -> Decimal {
        MAX
    }

    /// Returns a new `Decimal` integral with no fractional portion.
    /// This is a true truncation whereby no rounding is performed.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::new(3141, 3);
    /// let trunc = Decimal::new(3, 0);
    /// // note that it returns a decimal
    /// assert_eq!(pi.trunc(), trunc);
    /// ```
    pub fn trunc(&self) -> Decimal {
        let mut scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }
        let mut working = [self.lo, self.mid, self.hi];
        while scale > 0 {
            // We're removing precision, so we don't care about overflow
            if scale < 10 {
                div_by_u32(&mut working, POWERS_10[scale as usize]);
                break;
            } else {
                div_by_u32(&mut working, POWERS_10[9]);
                // Only 9 as this array starts with 1
                scale -= 9;
            }
        }
        Decimal {
            lo: working[0],
            mid: working[1],
            hi: working[2],
            flags: flags(self.is_sign_negative(), 0),
        }
    }

    /// Returns a new `Decimal` representing the fractional portion of the number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let pi = Decimal::new(3141, 3);
    /// let fract = Decimal::new(141, 3);
    /// // note that it returns a decimal
    /// assert_eq!(pi.fract(), fract);
    /// ```
    pub fn fract(&self) -> Decimal {
        // This is essentially the original number minus the integral.
        // Could possibly be optimized in the future
        *self - self.trunc()
    }

    /// Computes the absolute value of `self`.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(-3141, 3);
    /// assert_eq!(num.abs().to_string(), "3.141");
    /// ```
    pub fn abs(&self) -> Decimal {
        let mut me = *self;
        me.set_sign_positive(true);
        me
    }

    /// Returns the largest integer less than or equal to a number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(3641, 3);
    /// assert_eq!(num.floor().to_string(), "3");
    /// ```
    pub fn floor(&self) -> Decimal {
        let scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }

        // Opportunity for optimization here
        let floored = self.trunc();
        if self.is_sign_negative() && !self.fract().is_zero() {
            floored - Decimal::one()
        } else {
            floored
        }
    }

    /// Returns the smallest integer greater than or equal to a number.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let num = Decimal::new(3141, 3);
    /// assert_eq!(num.ceil().to_string(), "4");
    /// let num = Decimal::new(3, 0);
    /// assert_eq!(num.ceil().to_string(), "3");
    /// ```
    pub fn ceil(&self) -> Decimal {
        let scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }

        // Opportunity for optimization here
        if self.is_sign_positive() && !self.fract().is_zero() {
            self.trunc() + Decimal::one()
        } else {
            self.trunc()
        }
    }

    /// Returns the maximum of the two numbers.
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let x = Decimal::new(1, 0);
    /// let y = Decimal::new(2, 0);
    /// assert_eq!(y, x.max(y));
    /// ```
    pub fn max(self, other: Decimal) -> Decimal {
        if self < other {
            other
        } else {
            self
        }
    }

    /// Returns the minimum of the two numbers.
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let x = Decimal::new(1, 0);
    /// let y = Decimal::new(2, 0);
    /// assert_eq!(x, x.min(y));
    /// ```
    pub fn min(self, other: Decimal) -> Decimal {
        if self > other {
            other
        } else {
            self
        }
    }

    /// Strips any trailing zero's from a `Decimal` and converts -0 to 0.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// let number = Decimal::new(3100, 3);
    /// // note that it returns a decimal, without the extra scale
    /// assert_eq!(number.normalize().to_string(), "3.1");
    /// ```
    pub fn normalize(&self) -> Decimal {
        if self.is_zero() {
            // Convert -0, -0.0*, or 0.0* to 0.
            return Decimal::zero();
        }

        let mut scale = self.scale();
        if scale == 0 {
            // Nothing to do
            return *self;
        }

        let mut result = [self.lo, self.mid, self.hi];
        let mut working = [self.lo, self.mid, self.hi];
        while scale > 0 {
            if div_by_u32(&mut working, 10) > 0 {
                break;
            }
            scale -= 1;
            result.copy_from_slice(&working);
        }
        Decimal {
            lo: result[0],
            mid: result[1],
            hi: result[2],
            flags: flags(self.is_sign_negative(), scale),
        }
    }

    /// Returns a new `Decimal` number with no fractional portion (i.e. an integer).
    /// Rounding currently follows "Bankers Rounding" rules. e.g. 6.5 -> 6, 7.5 -> 8
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    ///
    /// // Demonstrating bankers rounding...
    /// let number_down = Decimal::new(65, 1);
    /// let number_up   = Decimal::new(75, 1);
    /// assert_eq!(number_down.round().to_string(), "6");
    /// assert_eq!(number_up.round().to_string(), "8");
    /// ```
    pub fn round(&self) -> Decimal {
        self.round_dp(0)
    }

    /// Returns a new `Decimal` number with the specified number of decimal points for fractional
    /// portion.
    /// Rounding is performed using the provided [`RoundingStrategy`]
    ///
    /// # Arguments
    /// * `dp`: the number of decimal points to round to.
    /// * `strategy`: the [`RoundingStrategy`] to use.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::{Decimal, RoundingStrategy};
    /// use core::str::FromStr;
    ///
    /// let tax = Decimal::from_str("3.4395").unwrap();
    /// assert_eq!(tax.round_dp_with_strategy(2, RoundingStrategy::RoundHalfUp).to_string(), "3.44");
    /// ```
    pub fn round_dp_with_strategy(&self, dp: u32, strategy: RoundingStrategy) -> Decimal {
        // Short circuit for zero
        if self.is_zero() {
            return Decimal {
                lo: 0,
                mid: 0,
                hi: 0,
                flags: flags(self.is_sign_negative(), dp),
            };
        }

        let old_scale = self.scale();

        // return early if decimal has a smaller number of fractional places than dp
        // e.g. 2.51 rounded to 3 decimal places is 2.51
        if old_scale <= dp {
            return *self;
        }

        let mut value = [self.lo, self.mid, self.hi];
        let mut value_scale = self.scale();
        let negative = self.is_sign_negative();

        value_scale -= dp;

        // Rescale to zero so it's easier to work with
        while value_scale > 0 {
            if value_scale < 10 {
                div_by_u32(&mut value, POWERS_10[value_scale as usize]);
                value_scale = 0;
            } else {
                div_by_u32(&mut value, POWERS_10[9]);
                value_scale -= 9;
            }
        }

        // Do some midpoint rounding checks
        // We're actually doing two things here.
        //  1. Figuring out midpoint rounding when we're right on the boundary. e.g. 2.50000
        //  2. Figuring out whether to add one or not e.g. 2.51
        // For this, we need to figure out the fractional portion that is additional to
        // the rounded number. e.g. for 0.12345 rounding to 2dp we'd want 345.
        // We're doing the equivalent of losing precision (e.g. to get 0.12)
        // then increasing the precision back up to 0.12000
        let mut offset = [self.lo, self.mid, self.hi];
        let mut diff = old_scale - dp;

        while diff > 0 {
            if diff < 10 {
                div_by_u32(&mut offset, POWERS_10[diff as usize]);
                break;
            } else {
                div_by_u32(&mut offset, POWERS_10[9]);
                // Only 9 as this array starts with 1
                diff -= 9;
            }
        }

        let mut diff = old_scale - dp;

        while diff > 0 {
            if diff < 10 {
                mul_by_u32(&mut offset, POWERS_10[diff as usize]);
                break;
            } else {
                mul_by_u32(&mut offset, POWERS_10[9]);
                // Only 9 as this array starts with 1
                diff -= 9;
            }
        }

        let mut decimal_portion = [self.lo, self.mid, self.hi];
        sub_by_internal(&mut decimal_portion, &offset);

        // If the decimal_portion is zero then we round based on the other data
        let mut cap = [5, 0, 0];
        for _ in 0..(old_scale - dp - 1) {
            mul_by_u32(&mut cap, 10);
        }
        let order = cmp_internal(&decimal_portion, &cap);

        match strategy {
            RoundingStrategy::BankersRounding => {
                match order {
                    Ordering::Equal => {
                        if (value[0] & 1) == 1 {
                            add_one_internal(&mut value);
                        }
                    }
                    Ordering::Greater => {
                        // Doesn't matter about the decimal portion
                        add_one_internal(&mut value);
                    }
                    _ => {}
                }
            }
            RoundingStrategy::RoundHalfDown => {
                if let Ordering::Greater = order {
                    add_one_internal(&mut value);
                }
            }
            RoundingStrategy::RoundHalfUp => {
                // when Ordering::Equal, decimal_portion is 0.5 exactly
                // when Ordering::Greater, decimal_portion is > 0.5
                match order {
                    Ordering::Equal => {
                        add_one_internal(&mut value);
                    }
                    Ordering::Greater => {
                        // Doesn't matter about the decimal portion
                        add_one_internal(&mut value);
                    }
                    _ => {}
                }
            }
            RoundingStrategy::RoundUp => {
                if !is_all_zero(&decimal_portion) {
                    add_one_internal(&mut value);
                }
            }
            RoundingStrategy::RoundDown => (),
        }

        Decimal {
            lo: value[0],
            mid: value[1],
            hi: value[2],
            flags: flags(negative, dp),
        }
    }

    /// Returns a new `Decimal` number with the specified number of decimal points for fractional portion.
    /// Rounding currently follows "Bankers Rounding" rules. e.g. 6.5 -> 6, 7.5 -> 8
    ///
    /// # Arguments
    /// * `dp`: the number of decimal points to round to.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    /// use core::str::FromStr;
    ///
    /// let pi = Decimal::from_str("3.1415926535897932384626433832").unwrap();
    /// assert_eq!(pi.round_dp(2).to_string(), "3.14");
    /// ```
    pub fn round_dp(&self, dp: u32) -> Decimal {
        self.round_dp_with_strategy(dp, RoundingStrategy::BankersRounding)
    }

    /// Convert `Decimal` to an internal representation of the underlying struct. This is useful
    /// for debugging the internal state of the object.
    ///
    /// # Important Disclaimer
    /// This is primarily intended for library maintainers. The internal representation of a
    /// `Decimal` is considered "unstable" for public use.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    /// use core::str::FromStr;
    ///
    /// let pi = Decimal::from_str("3.1415926535897932384626433832").unwrap();
    /// assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
    /// assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
    ///     is_negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
    /// }");
    /// ```
    pub const fn unpack(&self) -> UnpackedDecimal {
        UnpackedDecimal {
            is_negative: self.is_sign_negative(),
            scale: self.scale(),
            hi: self.hi,
            lo: self.lo,
            mid: self.mid,
        }
    }

    /// Convert `Decimal` to an internal representation of the underlying struct. This is useful
    /// for debugging the internal state of the object.
    ///
    /// # Important Disclaimer
    /// This is primarily intended for library maintainers. The internal representation of a
    /// `Decimal` is considered "unstable" for public use.
    ///
    /// # Example
    ///
    /// ```
    /// use rust_decimal::Decimal;
    /// use core::str::FromStr;
    ///
    /// let pi = Decimal::from_str("3.1415926535897932384626433832").unwrap();
    /// assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
    /// assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
    ///     is_negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
    /// }");
    /// ```

    #[inline(always)]
    pub(crate) const fn mantissa_array3(&self) -> [u32; 3] {
        [self.lo, self.mid, self.hi]
    }

    #[inline(always)]
    pub(crate) const fn mantissa_array4(&self) -> [u32; 4] {
        [self.lo, self.mid, self.hi, 0]
    }

    fn base2_to_decimal(bits: &mut [u32; 3], exponent2: i32, positive: bool, is64: bool) -> Option<Self> {
        // 2^exponent2 = (10^exponent2)/(5^exponent2)
        //             = (5^-exponent2)*(10^exponent2)
        let mut exponent5 = -exponent2;
        let mut exponent10 = exponent2; // Ultimately, we want this for the scale

        while exponent5 > 0 {
            // Check to see if the mantissa is divisible by 2
            if bits[0] & 0x1 == 0 {
                exponent10 += 1;
                exponent5 -= 1;

                // We can divide by 2 without losing precision
                let hi_carry = bits[2] & 0x1 == 1;
                bits[2] >>= 1;
                let mid_carry = bits[1] & 0x1 == 1;
                bits[1] = (bits[1] >> 1) | if hi_carry { SIGN_MASK } else { 0 };
                bits[0] = (bits[0] >> 1) | if mid_carry { SIGN_MASK } else { 0 };
            } else {
                // The mantissa is NOT divisible by 2. Therefore the mantissa should
                // be multiplied by 5, unless the multiplication overflows.
                exponent5 -= 1;

                let mut temp = [bits[0], bits[1], bits[2]];
                if mul_by_u32(&mut temp, 5) == 0 {
                    // Multiplication succeeded without overflow, so copy result back
                    bits[0] = temp[0];
                    bits[1] = temp[1];
                    bits[2] = temp[2];
                } else {
                    // Multiplication by 5 overflows. The mantissa should be divided
                    // by 2, and therefore will lose significant digits.
                    exponent10 += 1;

                    // Shift right
                    let hi_carry = bits[2] & 0x1 == 1;
                    bits[2] >>= 1;
                    let mid_carry = bits[1] & 0x1 == 1;
                    bits[1] = (bits[1] >> 1) | if hi_carry { SIGN_MASK } else { 0 };
                    bits[0] = (bits[0] >> 1) | if mid_carry { SIGN_MASK } else { 0 };
                }
            }
        }

        // In order to divide the value by 5, it is best to multiply by 2/10.
        // Therefore, exponent10 is decremented, and the mantissa should be multiplied by 2
        while exponent5 < 0 {
            if bits[2] & SIGN_MASK == 0 {
                // No far left bit, the mantissa can withstand a shift-left without overflowing
                exponent10 -= 1;
                exponent5 += 1;
                shl1_internal(bits, 0);
            } else {
                // The mantissa would overflow if shifted. Therefore it should be
                // directly divided by 5. This will lose significant digits, unless
                // by chance the mantissa happens to be divisible by 5.
                exponent5 += 1;
                div_by_u32(bits, 5);
            }
        }

        // At this point, the mantissa has assimilated the exponent5, but
        // exponent10 might not be suitable for assignment. exponent10 must be
        // in the range [-MAX_PRECISION..0], so the mantissa must be scaled up or
        // down appropriately.
        while exponent10 > 0 {
            // In order to bring exponent10 down to 0, the mantissa should be
            // multiplied by 10 to compensate. If the exponent10 is too big, this
            // will cause the mantissa to overflow.
            if mul_by_u32(bits, 10) == 0 {
                exponent10 -= 1;
            } else {
                // Overflowed - return?
                return None;
            }
        }

        // In order to bring exponent up to -MAX_PRECISION, the mantissa should
        // be divided by 10 to compensate. If the exponent10 is too small, this
        // will cause the mantissa to underflow and become 0.
        while exponent10 < -(MAX_PRECISION as i32) {
            let rem10 = div_by_u32(bits, 10);
            exponent10 += 1;
            if is_all_zero(bits) {
                // Underflow, unable to keep dividing
                exponent10 = 0;
            } else if rem10 >= 5 {
                add_one_internal(bits);
            }
        }

        // This step is required in order to remove excess bits of precision from the
        // end of the bit representation, down to the precision guaranteed by the
        // floating point number
        if is64 {
            // Guaranteed to about 16 dp
            while exponent10 < 0 && (bits[2] != 0 || (bits[1] & 0xFFF0_0000) != 0) {
                let rem10 = div_by_u32(bits, 10);
                exponent10 += 1;
                if rem10 >= 5 {
                    add_one_internal(bits);
                }
            }
        } else {
            // Guaranteed to about 7 dp
            while exponent10 < 0
                && (bits[2] != 0 || bits[1] != 0 || (bits[2] == 0 && bits[1] == 0 && (bits[0] & 0xFF00_0000) != 0))
            {
                let rem10 = div_by_u32(bits, 10);
                exponent10 += 1;
                if rem10 >= 5 {
                    add_one_internal(bits);
                }
            }
        }

        // Remove multiples of 10 from the representation
        while exponent10 < 0 {
            let mut temp = [bits[0], bits[1], bits[2]];
            let remainder = div_by_u32(&mut temp, 10);
            if remainder == 0 {
                exponent10 += 1;
                bits[0] = temp[0];
                bits[1] = temp[1];
                bits[2] = temp[2];
            } else {
                break;
            }
        }

        Some(Decimal {
            lo: bits[0],
            mid: bits[1],
            hi: bits[2],
            flags: flags(!positive, -exponent10 as u32),
        })
    }

    /// Checked addition. Computes `self + other`, returning `None` if overflow occurred.
    #[inline(always)]
    pub fn checked_add(self, other: Decimal) -> Option<Decimal> {
        // Convert to the same scale
        let mut my = [self.lo, self.mid, self.hi];
        let mut my_scale = self.scale();
        let mut ot = [other.lo, other.mid, other.hi];
        let mut other_scale = other.scale();
        rescale_to_maximum_scale(&mut my, &mut my_scale, &mut ot, &mut other_scale);
        let mut final_scale = my_scale.max(other_scale);

        // Add the items together
        let my_negative = self.is_sign_negative();
        let other_negative = other.is_sign_negative();
        let mut negative = false;
        let carry;
        if !(my_negative ^ other_negative) {
            negative = my_negative;
            carry = add_by_internal3(&mut my, &ot);
        } else {
            let cmp = cmp_internal(&my, &ot);
            // -x + y
            // if x > y then it's negative (i.e. -2 + 1)
            match cmp {
                Ordering::Less => {
                    negative = other_negative;
                    sub_by_internal3(&mut ot, &my);
                    my[0] = ot[0];
                    my[1] = ot[1];
                    my[2] = ot[2];
                }
                Ordering::Greater => {
                    negative = my_negative;
                    sub_by_internal3(&mut my, &ot);
                }
                Ordering::Equal => {
                    // -2 + 2
                    my[0] = 0;
                    my[1] = 0;
                    my[2] = 0;
                }
            }
            carry = 0;
        }

        // If we have a carry we underflowed.
        // We need to lose some significant digits (if possible)
        if carry > 0 {
            if final_scale == 0 {
                return None;
            }

            // Copy it over to a temp array for modification
            let mut temp = [my[0], my[1], my[2], carry];
            while final_scale > 0 && temp[3] != 0 {
                div_by_u32(&mut temp, 10);
                final_scale -= 1;
            }

            // If we still have a carry bit then we overflowed
            if temp[3] > 0 {
                return None;
            }

            // Copy it back - we're done
            my[0] = temp[0];
            my[1] = temp[1];
            my[2] = temp[2];
        }
        Some(Decimal {
            lo: my[0],
            mid: my[1],
            hi: my[2],
            flags: flags(negative, final_scale),
        })
    }

    /// Checked subtraction. Computes `self - other`, returning `None` if overflow occurred.
    #[inline(always)]
    pub fn checked_sub(self, other: Decimal) -> Option<Decimal> {
        let negated_other = Decimal {
            lo: other.lo,
            mid: other.mid,
            hi: other.hi,
            flags: other.flags ^ SIGN_MASK,
        };
        self.checked_add(negated_other)
    }

    /// Checked multiplication. Computes `self * other`, returning `None` if overflow occurred.
    #[inline]
    pub fn checked_mul(self, other: Decimal) -> Option<Decimal> {
        // Early exit if either is zero
        if self.is_zero() || other.is_zero() {
            return Some(Decimal::zero());
        }

        // We are only resulting in a negative if we have mismatched signs
        let negative = self.is_sign_negative() ^ other.is_sign_negative();

        // We get the scale of the result by adding the operands. This may be too big, however
        //  we'll correct later
        let mut final_scale = self.scale() + other.scale();

        // First of all, if ONLY the lo parts of both numbers is filled
        // then we can simply do a standard 64 bit calculation. It's a minor
        // optimization however prevents the need for long form multiplication
        if self.mid == 0 && self.hi == 0 && other.mid == 0 && other.hi == 0 {
            // Simply multiplication
            let mut u64_result = u64_to_array(u64::from(self.lo) * u64::from(other.lo));

            // If we're above max precision then this is a very small number
            if final_scale > MAX_PRECISION {
                final_scale -= MAX_PRECISION;

                // If the number is above 19 then this will equate to zero.
                // This is because the max value in 64 bits is 1.84E19
                if final_scale > 19 {
                    return Some(Decimal::zero());
                }

                let mut rem_lo = 0;
                let mut power;
                if final_scale > 9 {
                    // Since 10^10 doesn't fit into u32, we divide by 10^10/4
                    // and multiply the next divisor by 4.
                    rem_lo = div_by_u32(&mut u64_result, 2_500_000_000);
                    power = POWERS_10[final_scale as usize - 10] << 2;
                } else {
                    power = POWERS_10[final_scale as usize];
                }

                // Divide fits in 32 bits
                let rem_hi = div_by_u32(&mut u64_result, power);

                // Round the result. Since the divisor is a power of 10
                // we check to see if the remainder is >= 1/2 divisor
                power >>= 1;
                if rem_hi >= power && (rem_hi > power || (rem_lo | (u64_result[0] & 0x1)) != 0) {
                    u64_result[0] += 1;
                }

                final_scale = MAX_PRECISION;
            }
            return Some(Decimal {
                lo: u64_result[0],
                mid: u64_result[1],
                hi: 0,
                flags: flags(negative, final_scale),
            });
        }

        // We're using some of the high bits, so we essentially perform
        // long form multiplication. We compute the 9 partial products
        // into a 192 bit result array.
        //
        //                     [my-h][my-m][my-l]
        //                  x  [ot-h][ot-m][ot-l]
        // --------------------------------------
        // 1.                        [r-hi][r-lo] my-l * ot-l [0, 0]
        // 2.                  [r-hi][r-lo]       my-l * ot-m [0, 1]
        // 3.                  [r-hi][r-lo]       my-m * ot-l [1, 0]
        // 4.            [r-hi][r-lo]             my-m * ot-m [1, 1]
        // 5.            [r-hi][r-lo]             my-l * ot-h [0, 2]
        // 6.            [r-hi][r-lo]             my-h * ot-l [2, 0]
        // 7.      [r-hi][r-lo]                   my-m * ot-h [1, 2]
        // 8.      [r-hi][r-lo]                   my-h * ot-m [2, 1]
        // 9.[r-hi][r-lo]                         my-h * ot-h [2, 2]
        let my = [self.lo, self.mid, self.hi];
        let ot = [other.lo, other.mid, other.hi];
        let mut product = [0u32, 0u32, 0u32, 0u32, 0u32, 0u32];

        // We can perform a minor short circuit here. If the
        // high portions are both 0 then we can skip portions 5-9
        let to = if my[2] == 0 && ot[2] == 0 { 2 } else { 3 };

        for my_index in 0..to {
            for ot_index in 0..to {
                let (mut rlo, mut rhi) = mul_part(my[my_index], ot[ot_index], 0);

                // Get the index for the lo portion of the product
                for prod in product.iter_mut().skip(my_index + ot_index) {
                    let (res, overflow) = add_part(rlo, *prod);
                    *prod = res;

                    // If we have something in rhi from before then promote that
                    if rhi > 0 {
                        // If we overflowed in the last add, add that with rhi
                        if overflow > 0 {
                            let (nlo, nhi) = add_part(rhi, overflow);
                            rlo = nlo;
                            rhi = nhi;
                        } else {
                            rlo = rhi;
                            rhi = 0;
                        }
                    } else if overflow > 0 {
                        rlo = overflow;
                        rhi = 0;
                    } else {
                        break;
                    }

                    // If nothing to do next round then break out
                    if rlo == 0 {
                        break;
                    }
                }
            }
        }

        // If our result has used up the high portion of the product
        // then we either have an overflow or an underflow situation
        // Overflow will occur if we can't scale it back, whereas underflow
        // with kick in rounding
        let mut remainder = 0;
        while final_scale > 0 && (product[3] != 0 || product[4] != 0 || product[5] != 0) {
            remainder = div_by_u32(&mut product, 10u32);
            final_scale -= 1;
        }

        // Round up the carry if we need to
        if remainder >= 5 {
            for part in product.iter_mut() {
                if remainder == 0 {
                    break;
                }
                let digit: u64 = u64::from(*part) + 1;
                remainder = if digit > 0xFFFF_FFFF { 1 } else { 0 };
                *part = (digit & 0xFFFF_FFFF) as u32;
            }
        }

        // If we're still above max precision then we'll try again to
        // reduce precision - we may be dealing with a limit of "0"
        if final_scale > MAX_PRECISION {
            // We're in an underflow situation
            // The easiest way to remove precision is to divide off the result
            while final_scale > MAX_PRECISION && !is_all_zero(&product) {
                div_by_u32(&mut product, 10);
                final_scale -= 1;
            }
            // If we're still at limit then we can't represent any
            // siginificant decimal digits and will return an integer only
            // Can also be invoked while representing 0.
            if final_scale > MAX_PRECISION {
                final_scale = 0;
            }
        } else if !(product[3] == 0 && product[4] == 0 && product[5] == 0) {
            // We're in an overflow situation - we're within our precision bounds
            // but still have bits in overflow
            return None;
        }

        Some(Decimal {
            lo: product[0],
            mid: product[1],
            hi: product[2],
            flags: flags(negative, final_scale),
        })
    }

    /// Checked division. Computes `self / other`, returning `None` if `other == 0.0` or the
    /// division results in overflow.
    pub fn checked_div(self, other: Decimal) -> Option<Decimal> {
        match ops::div_impl(&self, &other) {
            DivResult::Ok(quot) => Some(quot),
            DivResult::Overflow => None,
            DivResult::DivByZero => None,
        }
    }

    /// Checked remainder. Computes `self % other`, returning `None` if `other == 0.0`.
    pub fn checked_rem(self, other: Decimal) -> Option<Decimal> {
        if other.is_zero() {
            return None;
        }
        if self.is_zero() {
            return Some(Decimal::zero());
        }

        // Rescale so comparable
        let initial_scale = self.scale();
        let mut quotient = [self.lo, self.mid, self.hi];
        let mut quotient_scale = initial_scale;
        let mut divisor = [other.lo, other.mid, other.hi];
        let mut divisor_scale = other.scale();
        rescale_to_maximum_scale(&mut quotient, &mut quotient_scale, &mut divisor, &mut divisor_scale);

        // Working is the remainder + the quotient
        // We use an aligned array since we'll be using it a lot.
        let mut working_quotient = [quotient[0], quotient[1], quotient[2], 0u32];
        let mut working_remainder = [0u32, 0u32, 0u32, 0u32];
        div_internal(&mut working_quotient, &mut working_remainder, &divisor);

        // Round if necessary. This is for semantic correctness, but could feasibly be removed for
        // performance improvements.
        if quotient_scale > initial_scale {
            let mut working = [
                working_remainder[0],
                working_remainder[1],
                working_remainder[2],
                working_remainder[3],
            ];
            while quotient_scale > initial_scale {
                if div_by_u32(&mut working, 10) > 0 {
                    break;
                }
                quotient_scale -= 1;
                working_remainder.copy_from_slice(&working);
            }
        }

        Some(Decimal {
            lo: working_remainder[0],
            mid: working_remainder[1],
            hi: working_remainder[2],
            flags: flags(self.is_sign_negative(), quotient_scale),
        })
    }

    /// The estimated exponential function, e<sup>x</sup>, rounded to 8 decimal places. Stops
    /// calculating when it is within tolerance is roughly 0.000002 in order to prevent
    /// multiplication overflow.
    pub fn exp(&self) -> Decimal {
        let tolerance = Decimal::new(2, 7);
        self.exp_with_tolerance(tolerance)
    }

    /// The estimated exponential function, e<sup>x</sup>, rounded to 8 decimal places. Stops
    /// calculating when it is within `tolerance`.
    /// Multiplication overflows are likely if you are not careful with the size of `tolerance`.
    /// It is recommended to set the `tolerance` larger for larger numbers and smaller for smaller
    /// numbers to avoid multiplication overflow.
    #[inline]
    pub fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal {
        if self == &Decimal::zero() {
            return Decimal::one();
        }

        let mut term = *self;
        let mut result = self + Decimal::one();
        let mut prev_result = Decimal::zero();
        let mut factorial = Decimal::one();
        let mut n = TWO;
        let twenty_four = Decimal::new(24, 0);

        // Needs rounding because multiplication overflows otherwise.
        while (result - prev_result).abs() > tolerance && n < twenty_four {
            prev_result = result;
            term = self * term.round_dp(8);
            factorial *= n;
            result += (term / factorial).round_dp(8);
            n += Decimal::one();
        }

        result
    }

    /// Raise self to the given unsigned integer exponent: x<sup>y</sup>
    pub fn powi(&self, exp: u64) -> Decimal {
        match exp {
            0 => Decimal::one(),
            1 => *self,
            2 => self * self,
            _ => {
                // Square self once and make an infinite sized iterator of the square.
                let i = core::iter::repeat(self * self);

                // We then take half of the exponent to create a finite iterator and then multiply those together.
                let product = i
                    .take((exp / 2) as usize)
                    .fold(Decimal::one(), |accumulator, x| accumulator * x);

                // If the exponent is odd we still need to multiply once more
                if exp % 2 > 0 {
                    product * self
                } else {
                    product
                }
            }
        }
    }

    /// The square root of a Decimal. Uses a standard Babylonian method.
    pub fn sqrt(&self) -> Option<Decimal> {
        if self.is_sign_negative() {
            return None;
        }

        if self.is_zero() {
            return Some(Decimal::zero());
        }

        // Start with an arbitrary number as the first guess
        let mut result = self / TWO;
        let mut last = result + Decimal::one();

        // Keep going while the difference is larger than the tolerance
        let mut circuit_breaker = 0;
        while last != result {
            circuit_breaker += 1;
            assert!(circuit_breaker < 1000, "geo mean circuit breaker");

            last = result;
            result = (result + self / result) / TWO;
        }

        Some(result)
    }

    /// The natural logarithm for a Decimal. Uses a [fast estimation algorithm](https://en.wikipedia.org/wiki/Natural_logarithm#High_precision)
    /// This is more accurate on larger numbers and less on numbers less than 1.
    pub fn ln(&self) -> Decimal {
        if self.is_sign_positive() {
            if self == &Decimal::one() {
                Decimal::zero()
            } else {
                let s = self * Decimal::new(256, 0);
                let arith_geo_mean = arithmetic_geo_mean_of_2(&Decimal::one(), &(Decimal::new(4, 0) / s));

                PI / (arith_geo_mean * TWO) - (Decimal::new(8, 0) * LN2)
            }
        } else {
            Decimal::zero()
        }
    }

    /// Abramowitz Approximation of Error Function from [wikipedia](https://en.wikipedia.org/wiki/Error_function#Numerical_approximations)
    pub fn erf(&self) -> Decimal {
        if self.is_sign_positive() {
            let one = &Decimal::one();

            let xa1 = self * Decimal::from_str("0.0705230784").unwrap();
            let xa2 = self.powi(2) * Decimal::from_str("0.0422820123").unwrap();
            let xa3 = self.powi(3) * Decimal::from_str("0.0092705272").unwrap();
            let xa4 = self.powi(4) * Decimal::from_str("0.0001520143").unwrap();
            let xa5 = self.powi(5) * Decimal::from_str("0.0002765672").unwrap();
            let xa6 = self.powi(6) * Decimal::from_str("0.0000430638").unwrap();

            let sum = one + xa1 + xa2 + xa3 + xa4 + xa5 + xa6;
            one - (one / sum.powi(16))
        } else {
            -self.abs().erf()
        }
    }

    /// The Cumulative distribution function for a Normal distribution
    pub fn norm_cdf(&self) -> Decimal {
        (Decimal::one() + (self / Decimal::from_str("1.4142135623730951").unwrap()).erf()) / TWO
    }

    /// The Probability density function for a Normal distribution
    pub fn norm_pdf(&self) -> Decimal {
        let sqrt2pi = Decimal {
            flags: 1835008,
            hi: 1358845910,
            mid: 2079885984,
            lo: 2133383024,
        };
        (-self.powi(2) / TWO).exp() / sqrt2pi
    }

    pub fn from_str_radix(str: &str, radix: u32) -> Result<Self, crate::Error> {
        if radix == 10 {
            parse_str_radix_10(str)
        } else {
            parse_str_radix_n(str, radix)
        }
    }
}

impl Default for Decimal {
    fn default() -> Self {
        Self::zero()
    }
}

pub(crate) enum DivResult {
    Ok(Decimal),
    Overflow,
    DivByZero,
}

#[inline]
const fn flags(neg: bool, scale: u32) -> u32 {
    (scale << SCALE_SHIFT) | ((neg as u32) << SIGN_SHIFT)
}

/// Rescales the given decimals to equivalent scales.
/// It will firstly try to scale both the left and the right side to
/// the maximum scale of left/right. If it is unable to do that it
/// will try to reduce the accuracy of the other argument.
/// e.g. with 1.23 and 2.345 it'll rescale the first arg to 1.230
#[inline(always)]
fn rescale_to_maximum_scale(left: &mut [u32; 3], left_scale: &mut u32, right: &mut [u32; 3], right_scale: &mut u32) {
    if left_scale == right_scale {
        // Nothing to do
        return;
    }

    if is_all_zero(left) {
        *left_scale = *right_scale;
        return;
    } else if is_all_zero(right) {
        *right_scale = *left_scale;
        return;
    }

    if left_scale > right_scale {
        rescale_internal(right, right_scale, *left_scale);
        if right_scale != left_scale {
            rescale_internal(left, left_scale, *right_scale);
        }
    } else {
        rescale_internal(left, left_scale, *right_scale);
        if right_scale != left_scale {
            rescale_internal(right, right_scale, *left_scale);
        }
    }
}

/// Rescales the given decimal to new scale.
/// e.g. with 1.23 and new scale 3 rescale the value to 1.230
#[inline(always)]
fn rescale_internal(value: &mut [u32; 3], value_scale: &mut u32, new_scale: u32) {
    if *value_scale == new_scale {
        // Nothing to do
        return;
    }

    if is_all_zero(value) {
        *value_scale = new_scale;
        return;
    }

    if *value_scale > new_scale {
        let mut diff = *value_scale - new_scale;
        // Scaling further isn't possible since we got an overflow
        // In this case we need to reduce the accuracy of the "side to keep"

        // Now do the necessary rounding
        let mut remainder = 0;
        while diff > 0 {
            if is_all_zero(value) {
                *value_scale = new_scale;
                return;
            }

            diff -= 1;

            // Any remainder is discarded if diff > 0 still (i.e. lost precision)
            remainder = div_by_10(value);
        }
        if remainder >= 5 {
            for part in value.iter_mut() {
                let digit = u64::from(*part) + 1u64;
                remainder = if digit > 0xFFFF_FFFF { 1 } else { 0 };
                *part = (digit & 0xFFFF_FFFF) as u32;
                if remainder == 0 {
                    break;
                }
            }
        }
        *value_scale = new_scale;
    } else {
        let mut diff = new_scale - *value_scale;
        let mut working = [value[0], value[1], value[2]];
        while diff > 0 && mul_by_10(&mut working) == 0 {
            value.copy_from_slice(&working);
            diff -= 1;
        }
        *value_scale = new_scale - diff;
    }
}

#[inline]
const fn u64_to_array(value: u64) -> [u32; 2] {
    [(value & U32_MASK) as u32, (value >> 32 & U32_MASK) as u32]
}

fn add_by_internal(value: &mut [u32], by: &[u32]) -> u32 {
    let mut carry: u64 = 0;
    let vl = value.len();
    let bl = by.len();
    if vl >= bl {
        let mut sum: u64;
        for i in 0..bl {
            sum = u64::from(value[i]) + u64::from(by[i]) + carry;
            value[i] = (sum & U32_MASK) as u32;
            carry = sum >> 32;
        }
        if vl > bl && carry > 0 {
            for i in value.iter_mut().skip(bl) {
                sum = u64::from(*i) + carry;
                *i = (sum & U32_MASK) as u32;
                carry = sum >> 32;
                if carry == 0 {
                    break;
                }
            }
        }
    } else if vl + 1 == bl {
        // Overflow, by default, is anything in the high portion of by
        let mut sum: u64;
        for i in 0..vl {
            sum = u64::from(value[i]) + u64::from(by[i]) + carry;
            value[i] = (sum & U32_MASK) as u32;
            carry = sum >> 32;
        }
        if by[vl] > 0 {
            carry += u64::from(by[vl]);
        }
    } else {
        panic!("Internal error: add using incompatible length arrays. {} <- {}", vl, bl);
    }
    carry as u32
}

#[inline]
fn add_one_internal(value: &mut [u32]) -> u32 {
    let mut carry: u64 = 1; // Start with one, since adding one
    let mut sum: u64;
    for i in value.iter_mut() {
        sum = (*i as u64) + carry;
        *i = (sum & U32_MASK) as u32;
        carry = sum >> 32;
    }

    carry as u32
}

#[inline]
fn add_one_internal4(value: &mut [u32; 4]) -> u32 {
    let mut carry: u64 = 1; // Start with one, since adding one
    let mut sum: u64;
    for i in value.iter_mut() {
        sum = (*i as u64) + carry;
        *i = (sum & U32_MASK) as u32;
        carry = sum >> 32;
    }

    carry as u32
}

#[inline]
fn add_by_internal3(value: &mut [u32; 3], by: &[u32; 3]) -> u32 {
    let mut carry: u32 = 0;
    let bl = by.len();
    for i in 0..bl {
        let res1 = value[i].overflowing_add(by[i]);
        let res2 = res1.0.overflowing_add(carry);
        value[i] = res2.0;
        carry = (res1.1 | res2.1) as u32;
    }
    carry
}

#[inline]
fn add_part(left: u32, right: u32) -> (u32, u32) {
    let added = u64::from(left) + u64::from(right);
    ((added & U32_MASK) as u32, (added >> 32 & U32_MASK) as u32)
}

#[inline(always)]
fn sub_by_internal3(value: &mut [u32; 3], by: &[u32; 3]) {
    let mut overflow = 0;
    let vl = value.len();
    for i in 0..vl {
        let part = (0x1_0000_0000u64 + u64::from(value[i])) - (u64::from(by[i]) + overflow);
        value[i] = part as u32;
        overflow = 1 - (part >> 32);
    }
}

fn sub_by_internal(value: &mut [u32], by: &[u32]) -> u32 {
    // The way this works is similar to long subtraction
    // Let's assume we're working with bytes for simpliciy in an example:
    //   257 - 8 = 249
    //   0000_0001 0000_0001 - 0000_0000 0000_1000 = 0000_0000 1111_1001
    // We start by doing the first byte...
    //   Overflow = 0
    //   Left = 0000_0001 (1)
    //   Right = 0000_1000 (8)
    // Firstly, we make sure the left and right are scaled up to twice the size
    //   Left = 0000_0000 0000_0001
    //   Right = 0000_0000 0000_1000
    // We then subtract right from left
    //   Result = Left - Right = 1111_1111 1111_1001
    // We subtract the overflow, which in this case is 0.
    // Because left < right (1 < 8) we invert the high part.
    //   Lo = 1111_1001
    //   Hi = 1111_1111 -> 0000_0001
    // Lo is the field, hi is the overflow.
    // We do the same for the second byte...
    //   Overflow = 1
    //   Left = 0000_0001
    //   Right = 0000_0000
    //   Result = Left - Right = 0000_0000 0000_0001
    // We subtract the overflow...
    //   Result = 0000_0000 0000_0001 - 1 = 0
    // And we invert the high, just because (invert 0 = 0).
    // So our result is:
    //   0000_0000 1111_1001
    let mut overflow = 0;
    let vl = value.len();
    let bl = by.len();
    for i in 0..vl {
        if i >= bl {
            break;
        }
        let (lo, hi) = sub_part(value[i], by[i], overflow);
        value[i] = lo;
        overflow = hi;
    }
    overflow
}

fn sub_part(left: u32, right: u32, overflow: u32) -> (u32, u32) {
    let part = 0x1_0000_0000u64 + u64::from(left) - (u64::from(right) + u64::from(overflow));
    let lo = part as u32;
    let hi = 1 - ((part >> 32) as u32);
    (lo, hi)
}

// Returns overflow
#[inline]
fn mul_by_10(bits: &mut [u32; 3]) -> u32 {
    let mut overflow = 0u64;
    for b in bits.iter_mut() {
        let result = u64::from(*b) * 10u64 + overflow;
        let hi = (result >> 32) & U32_MASK;
        let lo = (result & U32_MASK) as u32;
        *b = lo;
        overflow = hi;
    }

    overflow as u32
}

// Returns overflow
pub(crate) fn mul_by_u32(bits: &mut [u32], m: u32) -> u32 {
    let mut overflow = 0;
    for b in bits.iter_mut() {
        let (lo, hi) = mul_part(*b, m, overflow);
        *b = lo;
        overflow = hi;
    }
    overflow
}

fn mul_part(left: u32, right: u32, high: u32) -> (u32, u32) {
    let result = u64::from(left) * u64::from(right) + u64::from(high);
    let hi = ((result >> 32) & U32_MASK) as u32;
    let lo = (result & U32_MASK) as u32;
    (lo, hi)
}

fn div_internal(quotient: &mut [u32; 4], remainder: &mut [u32; 4], divisor: &[u32; 3]) {
    // There are a couple of ways to do division on binary numbers:
    //   1. Using long division
    //   2. Using the complement method
    // ref: http://paulmason.me/dividing-binary-numbers-part-2/
    // The complement method basically keeps trying to subtract the
    // divisor until it can't anymore and placing the rest in remainder.
    let mut complement = [
        divisor[0] ^ 0xFFFF_FFFF,
        divisor[1] ^ 0xFFFF_FFFF,
        divisor[2] ^ 0xFFFF_FFFF,
        0xFFFF_FFFF,
    ];

    // Add one onto the complement
    add_one_internal4(&mut complement);

    // Make sure the remainder is 0
    remainder.iter_mut().for_each(|x| *x = 0);

    // If we have nothing in our hi+ block then shift over till we do
    let mut blocks_to_process = 0;
    while blocks_to_process < 4 && quotient[3] == 0 {
        // memcpy would be useful here
        quotient[3] = quotient[2];
        quotient[2] = quotient[1];
        quotient[1] = quotient[0];
        quotient[0] = 0;

        // Incremember the counter
        blocks_to_process += 1;
    }

    // Let's try and do the addition...
    let mut block = blocks_to_process << 5;
    let mut working = [0u32, 0u32, 0u32, 0u32];
    while block < 128 {
        // << 1 for quotient AND remainder. Moving the carry from the quotient to the bottom of the
        // remainder.
        let carry = shl1_internal(quotient, 0);
        shl1_internal(remainder, carry);

        // Copy the remainder of working into sub
        working.copy_from_slice(remainder);

        // Add the remainder with the complement
        add_by_internal(&mut working, &complement);

        // Check for the significant bit - move over to the quotient
        // as necessary
        if (working[3] & 0x8000_0000) == 0 {
            remainder.copy_from_slice(&working);
            quotient[0] |= 1;
        }

        // Increment our pointer
        block += 1;
    }
}

#[cfg(feature = "legacy-ops")]
mod ops {
    use super::*;

    pub(crate) fn div_impl(d1: &Decimal, d2: &Decimal) -> DivResult {
        if d2.is_zero() {
            return DivResult::DivByZero;
        }
        if d1.is_zero() {
            return DivResult::Ok(Decimal::zero());
        }

        let dividend = [d1.lo, d1.mid, d1.hi];
        let divisor = [d2.lo, d2.mid, d2.hi];
        let mut quotient = [0u32, 0u32, 0u32];
        let mut quotient_scale: i32 = d1.scale() as i32 - d2.scale() as i32;

        // We supply an extra overflow word for each of the dividend and the remainder
        let mut working_quotient = [dividend[0], dividend[1], dividend[2], 0u32];
        let mut working_remainder = [0u32, 0u32, 0u32, 0u32];
        let mut working_scale = quotient_scale;
        let mut remainder_scale = quotient_scale;
        let mut underflow;

        loop {
            div_internal(&mut working_quotient, &mut working_remainder, &divisor);
            underflow = add_with_scale_internal(
                &mut quotient,
                &mut quotient_scale,
                &mut working_quotient,
                &mut working_scale,
            );

            // Multiply the remainder by 10
            let mut overflow = 0;
            for part in working_remainder.iter_mut() {
                let (lo, hi) = mul_part(*part, 10, overflow);
                *part = lo;
                overflow = hi;
            }
            // Copy temp remainder into the temp quotient section
            working_quotient.copy_from_slice(&working_remainder);

            remainder_scale += 1;
            working_scale = remainder_scale;

            if underflow || is_all_zero(&working_remainder) {
                break;
            }
        }

        // If we have a really big number try to adjust the scale to 0
        while quotient_scale < 0 {
            copy_array_diff_lengths(&mut working_quotient, &quotient);
            working_quotient[3] = 0;
            working_remainder.iter_mut().for_each(|x| *x = 0);

            // Mul 10
            let mut overflow = 0;
            for part in &mut working_quotient {
                let (lo, hi) = mul_part(*part, 10, overflow);
                *part = lo;
                overflow = hi;
            }
            for part in &mut working_remainder {
                let (lo, hi) = mul_part(*part, 10, overflow);
                *part = lo;
                overflow = hi;
            }
            if working_quotient[3] == 0 && is_all_zero(&working_remainder) {
                quotient_scale += 1;
                quotient[0] = working_quotient[0];
                quotient[1] = working_quotient[1];
                quotient[2] = working_quotient[2];
            } else {
                // Overflow
                return DivResult::Overflow;
            }
        }

        if quotient_scale > 255 {
            quotient[0] = 0;
            quotient[1] = 0;
            quotient[2] = 0;
            quotient_scale = 0;
        }

        let mut quotient_negative = d1.is_sign_negative() ^ d2.is_sign_negative();

        // Check for underflow
        let mut final_scale: u32 = quotient_scale as u32;
        if final_scale > MAX_PRECISION {
            let mut remainder = 0;

            // Division underflowed. We must remove some significant digits over using
            //  an invalid scale.
            while final_scale > MAX_PRECISION && !is_all_zero(&quotient) {
                remainder = div_by_u32(&mut quotient, 10);
                final_scale -= 1;
            }
            if final_scale > MAX_PRECISION {
                // Result underflowed so set to zero
                final_scale = 0;
                quotient_negative = false;
            } else if remainder >= 5 {
                for part in &mut quotient {
                    if remainder == 0 {
                        break;
                    }
                    let digit: u64 = u64::from(*part) + 1;
                    remainder = if digit > 0xFFFF_FFFF { 1 } else { 0 };
                    *part = (digit & 0xFFFF_FFFF) as u32;
                }
            }
        }

        DivResult::Ok(Decimal {
            lo: quotient[0],
            mid: quotient[1],
            hi: quotient[2],
            flags: flags(quotient_negative, final_scale),
        })
    }

    #[inline]
    fn copy_array_diff_lengths(into: &mut [u32], from: &[u32]) {
        for i in 0..into.len() {
            if i >= from.len() {
                break;
            }
            into[i] = from[i];
        }
    }

    fn add_with_scale_internal(
        quotient: &mut [u32; 3],
        quotient_scale: &mut i32,
        working_quotient: &mut [u32; 4],
        working_scale: &mut i32,
    ) -> bool {
        // Add quotient and the working (i.e. quotient = quotient + working)
        if is_all_zero(quotient) {
            // Quotient is zero so we can just copy the working quotient in directly
            // First, make sure they are both 96 bit.
            while working_quotient[3] != 0 {
                div_by_u32(working_quotient, 10);
                *working_scale -= 1;
            }
            copy_array_diff_lengths(quotient, working_quotient);
            *quotient_scale = *working_scale;
            return false;
        }

        if is_all_zero(working_quotient) {
            return false;
        }

        // We have ensured that our working is not zero so we should do the addition

        // If our two quotients are different then
        // try to scale down the one with the bigger scale
        let mut temp3 = [0u32, 0u32, 0u32];
        let mut temp4 = [0u32, 0u32, 0u32, 0u32];
        if *quotient_scale != *working_scale {
            // TODO: Remove necessity for temp (without performance impact)
            fn div_by_10(target: &mut [u32], temp: &mut [u32], scale: &mut i32, target_scale: i32) {
                // Copy to the temp array
                temp.copy_from_slice(target);
                // divide by 10 until target scale is reached
                while *scale > target_scale {
                    let remainder = div_by_u32(temp, 10);
                    if remainder == 0 {
                        *scale -= 1;
                        target.copy_from_slice(&temp);
                    } else {
                        break;
                    }
                }
            }

            if *quotient_scale < *working_scale {
                div_by_10(working_quotient, &mut temp4, working_scale, *quotient_scale);
            } else {
                div_by_10(quotient, &mut temp3, quotient_scale, *working_scale);
            }
        }

        // If our two quotients are still different then
        // try to scale up the smaller scale
        if *quotient_scale != *working_scale {
            // TODO: Remove necessity for temp (without performance impact)
            fn mul_by_10(target: &mut [u32], temp: &mut [u32], scale: &mut i32, target_scale: i32) {
                temp.copy_from_slice(target);
                let mut overflow = 0;
                // Multiply by 10 until target scale reached or overflow
                while *scale < target_scale && overflow == 0 {
                    overflow = mul_by_u32(temp, 10);
                    if overflow == 0 {
                        // Still no overflow
                        *scale += 1;
                        target.copy_from_slice(&temp);
                    }
                }
            }

            if *quotient_scale > *working_scale {
                mul_by_10(working_quotient, &mut temp4, working_scale, *quotient_scale);
            } else {
                mul_by_10(quotient, &mut temp3, quotient_scale, *working_scale);
            }
        }

        // If our two quotients are still different then
        // try to scale down the one with the bigger scale
        // (ultimately losing significant digits)
        if *quotient_scale != *working_scale {
            // TODO: Remove necessity for temp (without performance impact)
            fn div_by_10_lossy(target: &mut [u32], temp: &mut [u32], scale: &mut i32, target_scale: i32) {
                temp.copy_from_slice(target);
                // divide by 10 until target scale is reached
                while *scale > target_scale {
                    div_by_u32(temp, 10);
                    *scale -= 1;
                    target.copy_from_slice(&temp);
                }
            }
            if *quotient_scale < *working_scale {
                div_by_10_lossy(working_quotient, &mut temp4, working_scale, *quotient_scale);
            } else {
                div_by_10_lossy(quotient, &mut temp3, quotient_scale, *working_scale);
            }
        }

        // If quotient or working are zero we have an underflow condition
        if is_all_zero(quotient) || is_all_zero(working_quotient) {
            // Underflow
            return true;
        } else {
            // Both numbers have the same scale and can be added.
            // We just need to know whether we can fit them in
            let mut underflow = false;
            let mut temp = [0u32, 0u32, 0u32];
            while !underflow {
                temp.copy_from_slice(quotient);

                // Add the working quotient
                let overflow = add_by_internal(&mut temp, working_quotient);
                if overflow == 0 {
                    // addition was successful
                    quotient.copy_from_slice(&temp);
                    break;
                } else {
                    // addition overflowed - remove significant digits and try again
                    div_by_u32(quotient, 10);
                    *quotient_scale -= 1;
                    div_by_u32(working_quotient, 10);
                    *working_scale -= 1;
                    // Check for underflow
                    underflow = is_all_zero(quotient) || is_all_zero(working_quotient);
                }
            }
            if underflow {
                return true;
            }
        }
        false
    }
}

// This code (in fact, this library) is heavily inspired by the dotnet Decimal number library
// implementation. Consequently, a huge thank you for to all the contributors to that project
// which has also found it's way into here.
#[cfg(not(feature = "legacy-ops"))]
mod ops {
    use super::*;
    use core::ops::BitXor;

    // This is a table of the largest values that will not overflow when multiplied
    // by a given power as represented by the index.
    static POWER_OVERFLOW_VALUES: [Dec12; 8] = [
        Dec12 {
            hi: 429496729,
            mid: 2576980377,
            lo: 2576980377,
        },
        Dec12 {
            hi: 42949672,
            mid: 4123168604,
            lo: 687194767,
        },
        Dec12 {
            hi: 4294967,
            mid: 1271310319,
            lo: 2645699854,
        },
        Dec12 {
            hi: 429496,
            mid: 3133608139,
            lo: 694066715,
        },
        Dec12 {
            hi: 42949,
            mid: 2890341191,
            lo: 2216890319,
        },
        Dec12 {
            hi: 4294,
            mid: 4154504685,
            lo: 2369172679,
        },
        Dec12 {
            hi: 429,
            mid: 2133437386,
            lo: 4102387834,
        },
        Dec12 {
            hi: 42,
            mid: 4078814305,
            lo: 410238783,
        },
    ];

    // A structure that is used for faking a union of the decimal type. This allows setting mid/hi
    // with a u64, for example
    struct Dec12 {
        lo: u32,
        mid: u32,
        hi: u32,
    }

    impl Dec12 {
        const fn new(value: &Decimal) -> Self {
            Dec12 {
                lo: value.lo,
                mid: value.mid,
                hi: value.hi,
            }
        }

        // lo + mid combined
        const fn low64(&self) -> u64 {
            ((self.mid as u64) << 32) | (self.lo as u64)
        }
        fn set_low64(&mut self, value: u64) {
            self.mid = (value >> 32) as u32;
            self.lo = value as u32;
        }

        // mid + hi combined
        const fn high64(&self) -> u64 {
            ((self.hi as u64) << 32) | (self.mid as u64)
        }
        fn set_high64(&mut self, value: u64) {
            self.hi = (value >> 32) as u32;
            self.mid = value as u32;
        }

        // Returns true if successful, else false for an overflow
        fn add32(&mut self, value: u32) -> Result<(), DivError> {
            let value = value as u64;
            let new = self.low64().wrapping_add(value);
            self.set_low64(new);
            if new < value {
                self.hi = self.hi.wrapping_add(1);
                if self.hi == 0 {
                    return Err(DivError::Overflow);
                }
            }
            Ok(())
        }

        // Divide a Decimal union by a 32 bit divisor.
        // Self is overwritten with the quotient.
        // Return value is a 32 bit remainder.
        fn div32(&mut self, divisor: u32) -> u32 {
            let divisor64 = divisor as u64;
            // See if we can get by using a simple u64 division
            if self.hi != 0 {
                let mut temp = self.high64();
                let q64 = temp / divisor64;
                self.set_high64(q64);

                // Calculate the "remainder"
                temp = ((temp - q64 * divisor64) << 32) | (self.lo as u64);
                if temp == 0 {
                    return 0;
                }
                let q32 = (temp / divisor64) as u32;
                self.lo = q32;
                ((temp as u32).wrapping_sub(q32.wrapping_mul(divisor))) as u32
            } else {
                // Super easy divisor
                let low64 = self.low64();
                if low64 == 0 {
                    // Nothing to do
                    return 0;
                }
                // Do the calc
                let quotient = low64 / divisor64;
                self.set_low64(quotient);
                // Remainder is the leftover that wasn't used
                (low64.wrapping_sub(quotient.wrapping_mul(divisor64))) as u32
            }
        }

        // Divide the number by a power constant
        // Returns true if division was successful
        fn div32_const(&mut self, pow: u32) -> bool {
            let pow64 = pow as u64;
            let high64 = self.high64();
            let lo = self.lo as u64;
            let div64: u64 = high64 / pow64;
            let div = ((((high64 - div64 * pow64) << 32) + lo) / pow64) as u32;
            if self.lo == div.wrapping_mul(pow) {
                self.set_high64(div64);
                self.lo = div;
                true
            } else {
                false
            }
        }
    }

    // A structure that is used for faking a union of the decimal type with an overflow word.
    struct Dec16 {
        lo: u32,
        mid: u32,
        hi: u32,
        overflow: u32,
    }

    impl Dec16 {
        const fn zero() -> Self {
            Dec16 {
                lo: 0,
                mid: 0,
                hi: 0,
                overflow: 0,
            }
        }

        // lo + mid combined
        const fn low64(&self) -> u64 {
            ((self.mid as u64) << 32) | (self.lo as u64)
        }
        fn set_low64(&mut self, value: u64) {
            self.mid = (value >> 32) as u32;
            self.lo = value as u32;
        }

        // Equivalent to Dec12 high64 (i.e. mid + hi)
        const fn mid64(&self) -> u64 {
            ((self.hi as u64) << 32) | (self.mid as u64)
        }
        fn set_mid64(&mut self, value: u64) {
            self.hi = (value >> 32) as u32;
            self.mid = value as u32;
        }

        // hi + overflow combined
        const fn high64(&self) -> u64 {
            ((self.overflow as u64) << 32) | (self.hi as u64)
        }
        fn set_high64(&mut self, value: u64) {
            self.overflow = (value >> 32) as u32;
            self.hi = value as u32;
        }

        // Does a partial divide with a 64 bit divisor. The divisor in this case must require 64 bits
        // otherwise various assumptions fail (e.g. 32 bit quotient).
        // To assist, the upper 64 bits must be greater than the divisor for this to succeed.
        // Consequently, it will return the quotient as a 32 bit number and overwrite self with the
        // 64 bit remainder.
        fn partial_divide_64(&mut self, divisor: u64) -> u32 {
            // We make this assertion here, however below we pivot based on the data
            debug_assert!(divisor > self.mid64());

            // If we have an empty high bit, then divisor must be greater than the dividend due to
            // the assumption that the divisor REQUIRES 64 bits.
            if self.hi == 0 {
                let low64 = self.low64();
                if low64 < divisor {
                    // We can't divide at at all so result is 0. The dividend remains untouched since
                    // the full amount is the remainder.
                    return 0;
                }

                let quotient = low64 / divisor;
                self.set_low64(low64 - (quotient * divisor));
                return quotient as u32;
            }

            // Do a simple check to see if the hi portion of the dividend is greater than the hi
            // portion of the divisor.
            let divisor_hi32 = (divisor >> 32) as u32;
            if self.hi >= divisor_hi32 {
                // We know that the divisor goes into this at MOST u32::max times.
                // So we kick things off, with that assumption
                let mut low64 = self.low64();
                low64 = low64 - (divisor << 32) + divisor;
                let mut quotient = u32::max_value();

                // If we went negative then keep adding it back in
                loop {
                    if low64 < divisor {
                        break;
                    }
                    quotient -= 1;
                    low64 += divisor;
                }
                self.set_low64(low64);
                return quotient;
            }

            let mid64 = self.mid64();
            let divisor_hi32_64 = divisor_hi32 as u64;
            if mid64 < divisor_hi32_64 as u64 {
                // similar situation as above where we've got nothing left to divide
                return 0;
            }

            let mut quotient = mid64 / divisor_hi32_64;
            let mut remainder = self.lo as u64 | ((mid64 - quotient * divisor_hi32_64) << 32);

            // Do quotient * lo divisor
            let product = quotient * (divisor & 0xFFFF_FFFF);
            remainder = remainder.wrapping_sub(product);

            // Check if we've gone negative. If so, add it back
            if remainder > product.bitxor(u64::max_value()) {
                loop {
                    quotient = quotient.wrapping_sub(1);
                    remainder = remainder.wrapping_add(divisor);
                    if remainder < divisor {
                        break;
                    }
                }
            }

            self.set_low64(remainder);
            quotient as u32
        }

        // Does a partial divide with a 96 bit divisor. The divisor in this case must require 96 bits
        // otherwise various assumptions fail (e.g. 32 bit quotient).
        fn partial_divide_96(&mut self, divisor: &Dec12) -> u32 {
            let dividend = self.high64();
            let divisor_hi = divisor.hi;
            if dividend < divisor_hi as u64 {
                // Dividend is too small - entire number is remainder
                return 0;
            }

            let mut quo = (dividend / divisor_hi as u64) as u32;
            let mut remainder = (dividend as u32).wrapping_sub(quo.wrapping_mul(divisor_hi));

            // Compute full remainder
            let mut prod1 = quo as u64 * divisor.lo as u64;
            let mut prod2 = quo as u64 * divisor.mid as u64;
            prod2 += prod1 >> 32;
            prod1 = (prod1 & 0xFFFF_FFFF) | (prod2 << 32);
            prod2 >>= 32;

            let mut num = self.low64();
            num = num.wrapping_sub(prod1);
            remainder = remainder.wrapping_sub(prod2 as u32);

            // If there are carries make sure they are propogated
            if num > prod1.bitxor(u64::max_value()) {
                remainder = remainder.wrapping_sub(1);
                if remainder < (prod2 as u32).bitxor(u32::max_value()) {
                    self.set_low64(num);
                    self.hi = remainder;
                    return quo;
                }
            } else if remainder <= (prod2 as u32).bitxor(u32::max_value()) {
                self.set_low64(num);
                self.hi = remainder;
                return quo;
            }

            // Remainder went negative, add divisor back until it's positive
            prod1 = divisor.low64();
            loop {
                quo = quo.wrapping_sub(1);
                num = num.wrapping_add(prod1);
                remainder = remainder.wrapping_add(divisor_hi);

                if num < prod1 {
                    // Detected carry.
                    let tmp = remainder;
                    remainder += 1;
                    if tmp < divisor_hi {
                        break;
                    }
                }
                if remainder < divisor_hi {
                    break; // detected carry
                }
            }

            self.set_low64(num);
            self.hi = remainder;
            quo
        }
    }

    enum DivError {
        Overflow,
    }

    pub(crate) fn div_impl(dividend: &Decimal, divisor: &Decimal) -> DivResult {
        if divisor.is_zero() {
            return DivResult::DivByZero;
        }
        if dividend.is_zero() {
            return DivResult::Ok(Decimal::zero());
        }

        // Pre calculate the scale and the sign
        let mut scale = (dividend.scale() as i32) - (divisor.scale() as i32);
        let sign_negative = dividend.is_sign_negative() ^ divisor.is_sign_negative();

        // Set up some variables for modification throughout
        let mut require_unscale = false;
        let mut quotient = Dec12::new(&dividend);
        let divisor = Dec12::new(&divisor);

        // Branch depending on the complexity of the divisor
        if divisor.hi | divisor.mid == 0 {
            // We have a simple(r) divisor (32 bit)
            let divisor32 = divisor.lo;

            // Remainder can only be 32 bits since the divisor is 32 bits.
            let mut remainder = quotient.div32(divisor32);
            let mut power_scale = 0;

            // Figure out how to apply the remainder (i.e. we may have performed something like 10/3 or 8/5)
            loop {
                // Remainder is 0 so we have a simple situation
                if remainder == 0 {
                    // If the scale is positive then we're actually done
                    if scale >= 0 {
                        break;
                    }
                    power_scale = 9usize.min((-scale) as usize);
                } else {
                    // We may need to normalize later, so set the flag appropriately
                    require_unscale = true;

                    // We have a remainder so we effectively want to try to adjust the quotient and add
                    // the remainder into the quotient. We do this below, however first of all we want
                    // to try to avoid overflowing so we do that check first.
                    let will_overflow = if scale == MAX_PRECISION_I32 {
                        true
                    } else {
                        // Figure out how much we can scale by
                        if let Ok(s) = find_scale(&quotient, scale) {
                            power_scale = s;
                        } else {
                            return DivResult::Overflow;
                        }
                        // If it comes back as 0 (i.e. 10^0 = 1) then we're going to overflow since
                        // we're doing nothing.
                        power_scale == 0
                    };
                    if will_overflow {
                        // No more scaling can be done, but remainder is non-zero so we round if necessary.
                        let tmp = remainder << 1;
                        let round = if tmp < remainder {
                            // We round if we wrapped around
                            true
                        } else {
                            if tmp >= divisor32 {
                                // If we're greater than the divisor (i.e. underflow)
                                // or if there is a lo bit set, we round
                                tmp > divisor32 || (quotient.lo & 0x1) > 0
                            } else {
                                false
                            }
                        };

                        // If we need to round, try to do so.
                        if round {
                            if let Ok(new_scale) = round_up(&mut quotient, scale) {
                                scale = new_scale;
                            } else {
                                // Overflowed
                                return DivResult::Overflow;
                            }
                        }
                        break;
                    }
                }

                // Do some scaling
                let power = POWERS_10[power_scale];
                scale += power_scale as i32;
                // Increase the quotient by the power that was looked up
                let overflow = increase_scale(&mut quotient, power as u64);
                if overflow > 0 {
                    return DivResult::Overflow;
                }

                let remainder_scaled = (remainder as u64) * (power as u64);
                let remainder_quotient = (remainder_scaled / (divisor32 as u64)) as u32;
                remainder = (remainder_scaled - remainder_quotient as u64 * divisor32 as u64) as u32;
                if let Err(DivError::Overflow) = quotient.add32(remainder_quotient) {
                    if let Ok(adj) = unscale_from_overflow(&mut quotient, scale, remainder != 0) {
                        scale = adj;
                    } else {
                        // Still overflowing
                        return DivResult::Overflow;
                    }
                    break;
                }
            }
        } else {
            // We have a divisor greater than 32 bits. Both of these share some quick calculation wins
            // so we'll do those before branching into separate logic.
            // The win we can do is shifting the bits to the left as much as possible. We do this to both
            // the dividend and the divisor to ensure the quotient is not changed.
            // As a simple contrived example: if we have 4 / 2 then we could bit shift all the way to the
            // left meaning that the lo portion would have nothing inside of it. Of course, shifting these
            // left one has the same result (8/4) etc.
            // The advantage is that we may be able to write off lower portions of the number making things
            // easier.
            let mut power_scale = if divisor.hi == 0 {
                divisor.mid.leading_zeros()
            } else {
                divisor.hi.leading_zeros()
            } as usize;
            let mut remainder = Dec16::zero();
            remainder.set_low64(quotient.low64() << power_scale);
            let tmp_high = ((quotient.mid as u64) + ((quotient.hi as u64) << 32)) >> (32 - power_scale);
            remainder.set_high64(tmp_high);

            // Work out the divisor after it's shifted
            let divisor64 = divisor.low64() << power_scale;
            // Check if the divisor is 64 bit or the full 96 bits
            if divisor.hi == 0 {
                // It's 64 bits
                quotient.hi = 0;

                // Calc mid/lo by shifting accordingly
                let rem_lo = remainder.lo;
                remainder.lo = remainder.mid;
                remainder.mid = remainder.hi;
                remainder.hi = 0;
                quotient.mid = remainder.partial_divide_64(divisor64);

                remainder.hi = remainder.mid;
                remainder.mid = remainder.lo;
                remainder.lo = rem_lo;
                quotient.lo = remainder.partial_divide_64(divisor64);

                loop {
                    let rem_low64 = remainder.low64();
                    if rem_low64 == 0 {
                        // If the scale is positive then we're actually done
                        if scale >= 0 {
                            break;
                        }
                        power_scale = 9usize.min((-scale) as usize);
                    } else {
                        // We may need to normalize later, so set the flag appropriately
                        require_unscale = true;

                        // We have a remainder so we effectively want to try to adjust the quotient and add
                        // the remainder into the quotient. We do this below, however first of all we want
                        // to try to avoid overflowing so we do that check first.
                        let will_overflow = if scale == MAX_PRECISION_I32 {
                            true
                        } else {
                            // Figure out how much we can scale by
                            if let Ok(s) = find_scale(&quotient, scale) {
                                power_scale = s;
                            } else {
                                return DivResult::Overflow;
                            }
                            // If it comes back as 0 (i.e. 10^0 = 1) then we're going to overflow since
                            // we're doing nothing.
                            power_scale == 0
                        };
                        if will_overflow {
                            // No more scaling can be done, but remainder is non-zero so we round if necessary.
                            let mut tmp = remainder.low64();
                            let round = if (tmp as i64) < 0 {
                                // We round if we wrapped around
                                true
                            } else {
                                tmp <<= 1;
                                if tmp > divisor64 {
                                    true
                                } else {
                                    tmp == divisor64 && quotient.lo & 0x1 != 0
                                }
                            };

                            // If we need to round, try to do so.
                            if round {
                                if let Ok(new_scale) = round_up(&mut quotient, scale) {
                                    scale = new_scale;
                                } else {
                                    // Overflowed
                                    return DivResult::Overflow;
                                }
                            }
                            break;
                        }
                    }

                    // Do some scaling
                    let power = POWERS_10[power_scale];
                    scale += power_scale as i32;

                    // Increase the quotient by the power that was looked up
                    let overflow = increase_scale(&mut quotient, power as u64);
                    if overflow > 0 {
                        return DivResult::Overflow;
                    }
                    increase_scale64(&mut remainder, power as u64);

                    let tmp = remainder.partial_divide_64(divisor64);
                    if let Err(DivError::Overflow) = quotient.add32(tmp) {
                        if let Ok(adj) = unscale_from_overflow(&mut quotient, scale, remainder.low64() != 0) {
                            scale = adj;
                        } else {
                            // Still overflowing
                            return DivResult::Overflow;
                        }
                        break;
                    }
                }
            } else {
                // It's 96 bits
                // Start by finishing the shift left
                let divisor_mid = divisor.mid;
                let divisor_hi = divisor.hi;
                let mut divisor = divisor;
                divisor.set_low64(divisor64);
                divisor.hi = ((divisor_mid as u64 + ((divisor_hi as u64) << 32)) >> (32 - power_scale)) as u32;

                let quo = remainder.partial_divide_96(&divisor);
                quotient.set_low64(quo as u64);
                quotient.hi = 0;

                loop {
                    let mut rem_low64 = remainder.low64();
                    if rem_low64 == 0 && remainder.hi == 0 {
                        // If the scale is positive then we're actually done
                        if scale >= 0 {
                            break;
                        }
                        power_scale = 9usize.min((-scale) as usize);
                    } else {
                        // We may need to normalize later, so set the flag appropriately
                        require_unscale = true;

                        // We have a remainder so we effectively want to try to adjust the quotient and add
                        // the remainder into the quotient. We do this below, however first of all we want
                        // to try to avoid overflowing so we do that check first.
                        let will_overflow = if scale == MAX_PRECISION_I32 {
                            true
                        } else {
                            // Figure out how much we can scale by
                            if let Ok(s) = find_scale(&quotient, scale) {
                                power_scale = s;
                            } else {
                                return DivResult::Overflow;
                            }
                            // If it comes back as 0 (i.e. 10^0 = 1) then we're going to overflow since
                            // we're doing nothing.
                            power_scale == 0
                        };
                        if will_overflow {
                            // No more scaling can be done, but remainder is non-zero so we round if necessary.
                            let round = if (remainder.hi as i32) < 0 {
                                // We round if we wrapped around
                                true
                            } else {
                                let tmp = remainder.mid >> 31;
                                rem_low64 <<= 1;
                                remainder.set_low64(rem_low64);
                                remainder.hi = (remainder.hi << 1) + tmp;

                                if remainder.hi > divisor.hi {
                                    true
                                } else if remainder.hi == divisor.hi {
                                    let divisor_low64 = divisor.low64();
                                    if rem_low64 > divisor_low64 {
                                        true
                                    } else {
                                        rem_low64 == divisor_low64 && (quotient.lo & 1) != 0
                                    }
                                } else {
                                    false
                                }
                            };

                            // If we need to round, try to do so.
                            if round {
                                if let Ok(new_scale) = round_up(&mut quotient, scale) {
                                    scale = new_scale;
                                } else {
                                    // Overflowed
                                    return DivResult::Overflow;
                                }
                            }
                            break;
                        }
                    }

                    // Do some scaling
                    let power = POWERS_10[power_scale];
                    scale += power_scale as i32;

                    // Increase the quotient by the power that was looked up
                    let overflow = increase_scale(&mut quotient, power as u64);
                    if overflow > 0 {
                        return DivResult::Overflow;
                    }
                    let mut tmp_remainder = Dec12 {
                        lo: remainder.lo,
                        mid: remainder.mid,
                        hi: remainder.hi,
                    };
                    let overflow = increase_scale(&mut tmp_remainder, power as u64);
                    remainder.lo = tmp_remainder.lo;
                    remainder.mid = tmp_remainder.mid;
                    remainder.hi = tmp_remainder.hi;
                    remainder.overflow = overflow;

                    let tmp = remainder.partial_divide_96(&divisor);
                    if let Err(DivError::Overflow) = quotient.add32(tmp) {
                        if let Ok(adj) =
                            unscale_from_overflow(&mut quotient, scale, (remainder.low64() | remainder.high64()) != 0)
                        {
                            scale = adj;
                        } else {
                            // Still overflowing
                            return DivResult::Overflow;
                        }
                        break;
                    }
                }
            }
        }
        if require_unscale {
            scale = unscale(&mut quotient, scale);
        }
        DivResult::Ok(Decimal {
            lo: quotient.lo,
            mid: quotient.mid,
            hi: quotient.hi,
            flags: flags(sign_negative, scale as u32),
        })
    }

    // Multiply num by power (multiple of 10). Power must be 32 bits.
    // Returns the overflow, if any
    fn increase_scale(num: &mut Dec12, power: u64) -> u32 {
        let mut tmp = (num.lo as u64) * power;
        num.lo = tmp as u32;
        tmp >>= 32;
        tmp += (num.mid as u64) * power;
        num.mid = tmp as u32;
        tmp >>= 32;
        tmp += (num.hi as u64) * power;
        num.hi = tmp as u32;
        (tmp >> 32) as u32
    }

    // Multiply num by power (multiple of 10). Power must be 32 bits.
    fn increase_scale64(num: &mut Dec16, power: u64) {
        let mut tmp = (num.lo as u64) * power;
        num.lo = tmp as u32;
        tmp >>= 32;
        tmp += (num.mid as u64) * power;
        num.set_mid64(tmp)
    }

    // Adjust the number to deal with an overflow. This function follows being scaled up (i.e. multiplied
    // by 10, so this effectively tries to reverse that by dividing by 10 then feeding in the high bit
    // to undo the overflow and rounding instead.
    // Returns the updated scale.
    fn unscale_from_overflow(num: &mut Dec12, scale: i32, sticky: bool) -> Result<i32, DivError> {
        let scale = scale - 1;
        if scale < 0 {
            return Err(DivError::Overflow);
        }

        // This function is called when the hi portion has "overflowed" upon adding one and has wrapped
        // back around to 0. Consequently, we need to "feed" that back in, but also rescaling down
        // to reverse out the overflow.
        const HIGH_BIT: u64 = 0x1_0000_0000;
        num.hi = (HIGH_BIT / 10) as u32;

        // Calc the mid
        let mut tmp = ((HIGH_BIT % 10) << 32) + (num.mid as u64);
        let mut val = (tmp / 10) as u32;
        num.mid = val;

        // Calc the lo using a similar method
        tmp = ((tmp - (val as u64) * 10) << 32) + (num.lo as u64);
        val = (tmp / 10) as u32;
        num.lo = val;

        // Work out the remainder, and round if we have one (since it doesn't fit)
        let remainder = (tmp - (val as u64) * 10) as u32;
        if remainder > 5 || (remainder == 5 && (sticky || num.lo & 0x1 > 0)) {
            let _ = num.add32(1);
        }
        Ok(scale)
    }

    // Determine the maximum value of x that ensures that the quotient when scaled up by 10^x
    // still fits in 96 bits. Ultimately, we want to make scale positive - if we can't then
    // we're going to overflow. Because x is ultimately used to lookup inside the POWERS array, it
    // must be a valid value 0 <= x <= 9
    fn find_scale(num: &Dec12, scale: i32) -> Result<usize, DivError> {
        const OVERFLOW_MAX_9_HI: u32 = 4;
        const OVERFLOW_MAX_8_HI: u32 = 42;
        const OVERFLOW_MAX_7_HI: u32 = 429;
        const OVERFLOW_MAX_6_HI: u32 = 4294;
        const OVERFLOW_MAX_5_HI: u32 = 42949;
        const OVERFLOW_MAX_4_HI: u32 = 429496;
        const OVERFLOW_MAX_3_HI: u32 = 4294967;
        const OVERFLOW_MAX_2_HI: u32 = 42949672;
        const OVERFLOW_MAX_1_HI: u32 = 429496729;
        const OVERFLOW_MAX_9_LOW64: u64 = 5441186219426131129;

        let hi = num.hi;
        let low64 = num.low64();
        let mut x = 0usize;

        // Quick check to stop us from trying to scale any more.
        //
        if hi > OVERFLOW_MAX_1_HI {
            // If it's less than 0, which it probably is - overflow. We can't do anything.
            if scale < 0 {
                return Err(DivError::Overflow);
            }
            return Ok(x);
        }

        if scale > MAX_PRECISION_I32 - 9 {
            // We can't scale by 10^9 without exceeding the max scale factor.
            // Instead, we'll try to scale by the most that we can and see if that works.
            // This is safe to do due to the check above. e.g. scale > 19 in the above, so it will
            // evaluate to 9 or less below.
            x = (MAX_PRECISION_I32 - scale) as usize;
            if hi < POWER_OVERFLOW_VALUES[x - 1].hi {
                if x as i32 + scale < 0 {
                    // We still overflow
                    return Err(DivError::Overflow);
                }
                return Ok(x);
            }
        } else if hi < OVERFLOW_MAX_9_HI || hi == OVERFLOW_MAX_9_HI && low64 <= OVERFLOW_MAX_9_LOW64 {
            return Ok(9);
        }

        // Do a binary search to find a power to scale by that is less than 9
        x = if hi > OVERFLOW_MAX_5_HI {
            if hi > OVERFLOW_MAX_3_HI {
                if hi > OVERFLOW_MAX_2_HI {
                    1
                } else {
                    2
                }
            } else {
                if hi > OVERFLOW_MAX_4_HI {
                    3
                } else {
                    4
                }
            }
        } else {
            if hi > OVERFLOW_MAX_7_HI {
                if hi > OVERFLOW_MAX_6_HI {
                    5
                } else {
                    6
                }
            } else {
                if hi > OVERFLOW_MAX_8_HI {
                    7
                } else {
                    8
                }
            }
        };

        // Double check what we've found won't overflow. Otherwise, we go one below.
        if hi == POWER_OVERFLOW_VALUES[x - 1].hi && low64 > POWER_OVERFLOW_VALUES[x - 1].low64() {
            x -= 1;
        }

        // Confirm we've actually resolved things
        if x as i32 + scale < 0 {
            Err(DivError::Overflow)
        } else {
            Ok(x)
        }
    }

    #[inline]
    fn round_up(num: &mut Dec12, scale: i32) -> Result<i32, DivError> {
        let low64 = num.low64().wrapping_add(1);
        num.set_low64(low64);
        if low64 != 0 {
            return Ok(scale);
        }
        let hi = num.hi.wrapping_add(1);
        num.hi = hi;
        if hi != 0 {
            return Ok(scale);
        }
        unscale_from_overflow(num, scale, true)
    }

    fn unscale(num: &mut Dec12, scale: i32) -> i32 {
        // Since 10 = 2 * 5, there must be a factor of 2 for every power of 10 we can extract.
        // We use this as a quick test on whether to try a given power.
        let mut scale = scale;
        while num.lo == 0 && scale >= 8 && num.div32_const(100000000) {
            scale -= 8;
        }

        if (num.lo & 0xF) == 0 && scale >= 4 && num.div32_const(10000) {
            scale -= 4;
        }

        if (num.lo & 0x3) == 0 && scale >= 2 && num.div32_const(100) {
            scale -= 2;
        }

        if (num.lo & 0x1) == 0 && scale >= 1 && num.div32_const(10) {
            scale -= 1;
        }
        scale
    }
}

// Returns remainder
pub(crate) fn div_by_u32(bits: &mut [u32], divisor: u32) -> u32 {
    if divisor == 0 {
        // Divide by zero
        panic!("Internal error: divide by zero");
    } else if divisor == 1 {
        // dividend remains unchanged
        0
    } else {
        let mut remainder = 0u32;
        let divisor = u64::from(divisor);
        for part in bits.iter_mut().rev() {
            let temp = (u64::from(remainder) << 32) + u64::from(*part);
            remainder = (temp % divisor) as u32;
            *part = (temp / divisor) as u32;
        }

        remainder
    }
}

fn div_by_10(bits: &mut [u32; 3]) -> u32 {
    let mut remainder = 0u32;
    let divisor = 10u64;
    for part in bits.iter_mut().rev() {
        let temp = (u64::from(remainder) << 32) + u64::from(*part);
        remainder = (temp % divisor) as u32;
        *part = (temp / divisor) as u32;
    }

    remainder
}

#[inline]
fn shl1_internal(bits: &mut [u32], carry: u32) -> u32 {
    let mut carry = carry;
    for part in bits.iter_mut() {
        let b = *part >> 31;
        *part = (*part << 1) | carry;
        carry = b;
    }
    carry
}

#[inline]
fn cmp_internal(left: &[u32; 3], right: &[u32; 3]) -> Ordering {
    let left_hi: u32 = left[2];
    let right_hi: u32 = right[2];
    let left_lo: u64 = u64::from(left[1]) << 32 | u64::from(left[0]);
    let right_lo: u64 = u64::from(right[1]) << 32 | u64::from(right[0]);
    if left_hi < right_hi || (left_hi <= right_hi && left_lo < right_lo) {
        Ordering::Less
    } else if left_hi == right_hi && left_lo == right_lo {
        Ordering::Equal
    } else {
        Ordering::Greater
    }
}

#[inline]
pub(crate) fn is_all_zero(bits: &[u32]) -> bool {
    bits.iter().all(|b| *b == 0)
}

/// Returns the convergence of both the arithmetic and geometric mean.
/// Used internally.
fn arithmetic_geo_mean_of_2(a: &Decimal, b: &Decimal) -> Decimal {
    const TOLERANCE: Decimal = Decimal {
        flags: flags(false, 7),
        lo: 5,
        mid: 0,
        hi: 0,
    };
    let diff = (a - b).abs();

    if diff < TOLERANCE {
        *a
    } else {
        arithmetic_geo_mean_of_2(&mean_of_2(a, b), &geo_mean_of_2(a, b))
    }
}

/// The Arithmetic mean. Used internally.
fn mean_of_2(a: &Decimal, b: &Decimal) -> Decimal {
    (a + b) / TWO
}

/// The geometric mean. Used internally.
fn geo_mean_of_2(a: &Decimal, b: &Decimal) -> Decimal {
    (a * b).sqrt().unwrap()
}

macro_rules! impl_from {
    ($T:ty, $from_ty:path) => {
        impl core::convert::From<$T> for Decimal {
            #[inline]
            fn from(t: $T) -> Self {
                $from_ty(t).unwrap()
            }
        }
    };
}
impl_from!(isize, FromPrimitive::from_isize);
impl_from!(i8, FromPrimitive::from_i8);
impl_from!(i16, FromPrimitive::from_i16);
impl_from!(i32, FromPrimitive::from_i32);
impl_from!(i64, FromPrimitive::from_i64);
impl_from!(usize, FromPrimitive::from_usize);
impl_from!(u8, FromPrimitive::from_u8);
impl_from!(u16, FromPrimitive::from_u16);
impl_from!(u32, FromPrimitive::from_u32);
impl_from!(u64, FromPrimitive::from_u64);

#[cfg(has_i128)]
impl_from!(i128, FromPrimitive::from_i28);
#[cfg(has_i128)]
impl_from!(u128, FromPrimitive::from_u28);

macro_rules! forward_val_val_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        impl $imp<$res> for $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: $res) -> $res {
                (&self).$method(&other)
            }
        }
    };
}

macro_rules! forward_ref_val_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        impl<'a> $imp<$res> for &'a $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: $res) -> $res {
                self.$method(&other)
            }
        }
    };
}

macro_rules! forward_val_ref_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        impl<'a> $imp<&'a $res> for $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: &$res) -> $res {
                (&self).$method(other)
            }
        }
    };
}

macro_rules! forward_all_binop {
    (impl $imp:ident for $res:ty, $method:ident) => {
        forward_val_val_binop!(impl $imp for $res, $method);
        forward_ref_val_binop!(impl $imp for $res, $method);
        forward_val_ref_binop!(impl $imp for $res, $method);
    };
}

impl Zero for Decimal {
    fn zero() -> Decimal {
        Decimal {
            flags: 0,
            hi: 0,
            lo: 0,
            mid: 0,
        }
    }

    fn is_zero(&self) -> bool {
        self.lo.is_zero() && self.mid.is_zero() && self.hi.is_zero()
    }
}

impl One for Decimal {
    fn one() -> Decimal {
        Decimal {
            flags: 0,
            hi: 0,
            lo: 1,
            mid: 0,
        }
    }
}

impl Signed for Decimal {
    fn abs(&self) -> Self {
        self.abs()
    }

    fn abs_sub(&self, other: &Self) -> Self {
        if self <= other {
            Decimal::zero()
        } else {
            self.abs()
        }
    }

    fn signum(&self) -> Self {
        if self.is_zero() {
            Decimal::zero()
        } else {
            let mut value = Decimal::one();
            if self.is_sign_negative() {
                value.set_sign_negative(true);
            }
            value
        }
    }

    fn is_positive(&self) -> bool {
        self.is_sign_positive()
    }

    fn is_negative(&self) -> bool {
        self.is_sign_negative()
    }
}

// dedicated implementation for the most common case.
fn parse_str_radix_10(str: &str) -> Result<Decimal, crate::Error> {
    if str.is_empty() {
        return Err(Error::new("Invalid decimal: empty"));
    }

    let mut offset = 0;
    let mut len = str.len();
    let bytes = str.as_bytes();
    let mut negative = false; // assume positive

    // handle the sign
    if bytes[offset] == b'-' {
        negative = true; // leading minus means negative
        offset += 1;
        len -= 1;
    } else if bytes[offset] == b'+' {
        // leading + allowed
        offset += 1;
        len -= 1;
    }

    // should now be at numeric part of the significand
    let mut digits_before_dot: i32 = -1; // digits before '.', -1 if no '.'
    let mut coeff = ArrayVec::<[_; 30]>::new(); // integer significand array

    let mut maybe_round = false;
    while len > 0 {
        let b = bytes[offset];
        match b {
            b'0'..=b'9' => {
                coeff.push(u32::from(b - b'0'));
                offset += 1;
                len -= 1;

                // If the coefficient is longer than the max, exit early
                if coeff.len() as u32 > 28 {
                    maybe_round = true;
                    break;
                }
            }
            b'.' => {
                if digits_before_dot >= 0 {
                    return Err(Error::new("Invalid decimal: two decimal points"));
                }
                digits_before_dot = coeff.len() as i32;
                offset += 1;
                len -= 1;
            }
            b'_' => {
                // Must start with a number...
                if coeff.is_empty() {
                    return Err(Error::new("Invalid decimal: must start lead with a number"));
                }
                offset += 1;
                len -= 1;
            }
            _ => return Err(Error::new("Invalid decimal: unknown character")),
        }
    }

    // If we exited before the end of the string then do some rounding if necessary
    if maybe_round && offset < bytes.len() {
        let next_byte = bytes[offset];
        let digit = match next_byte {
            b'0'..=b'9' => u32::from(next_byte - b'0'),
            b'_' => 0,
            b'.' => {
                // Still an error if we have a second dp
                if digits_before_dot >= 0 {
                    return Err(Error::new("Invalid decimal: two decimal points"));
                }
                0
            }
            _ => return Err(Error::new("Invalid decimal: unknown character")),
        };

        // Round at midpoint
        if digit >= 5 {
            let mut index = coeff.len() - 1;
            loop {
                let new_digit = coeff[index] + 1;
                if new_digit <= 9 {
                    coeff[index] = new_digit;
                    break;
                } else {
                    coeff[index] = 0;
                    if index == 0 {
                        coeff.insert(0, 1u32);
                        digits_before_dot += 1;
                        coeff.pop();
                        break;
                    }
                }
                index -= 1;
            }
        }
    }

    // here when no characters left
    if coeff.is_empty() {
        return Err(Error::new("Invalid decimal: no digits found"));
    }

    let mut scale = if digits_before_dot >= 0 {
        // we had a decimal place so set the scale
        (coeff.len() as u32) - (digits_before_dot as u32)
    } else {
        0
    };

    let mut data = [0u32, 0u32, 0u32];
    let mut tmp = [0u32, 0u32, 0u32];
    let len = coeff.len();
    for (i, digit) in coeff.iter().enumerate() {
        // If the data is going to overflow then we should go into recovery mode
        tmp[0] = data[0];
        tmp[1] = data[1];
        tmp[2] = data[2];
        let overflow = mul_by_10(&mut tmp);
        if overflow > 0 {
            // This means that we have more data to process, that we're not sure what to do with.
            // This may or may not be an issue - depending on whether we're past a decimal point
            // or not.
            if (i as i32) < digits_before_dot && i + 1 < len {
                return Err(Error::new("Invalid decimal: overflow from too many digits"));
            }

            if *digit >= 5 {
                let carry = add_one_internal(&mut data);
                if carry > 0 {
                    // Highly unlikely scenario which is more indicative of a bug
                    return Err(Error::new("Invalid decimal: overflow when rounding"));
                }
            }
            // We're also one less digit so reduce the scale
            let diff = (len - i) as u32;
            if diff > scale {
                return Err(Error::new("Invalid decimal: overflow from scale mismatch"));
            }
            scale -= diff;
            break;
        } else {
            data[0] = tmp[0];
            data[1] = tmp[1];
            data[2] = tmp[2];
            let carry = add_by_internal(&mut data, &[*digit]);
            if carry > 0 {
                // Highly unlikely scenario which is more indicative of a bug
                return Err(Error::new("Invalid decimal: overflow from carry"));
            }
        }
    }

    Ok(Decimal {
        lo: data[0],
        mid: data[1],
        hi: data[2],
        flags: flags(negative, scale),
    })
}

pub fn parse_str_radix_n(str: &str, radix: u32) -> Result<Decimal, crate::Error> {
    if str.is_empty() {
        return Err(Error::new("Invalid decimal: empty"));
    }
    if radix < 2 {
        return Err(Error::new("Unsupported radix < 2"));
    }
    if radix > 36 {
        // As per trait documentation
        return Err(Error::new("Unsupported radix > 36"));
    }

    let mut offset = 0;
    let mut len = str.len();
    let bytes = str.as_bytes();
    let mut negative = false; // assume positive

    // handle the sign
    if bytes[offset] == b'-' {
        negative = true; // leading minus means negative
        offset += 1;
        len -= 1;
    } else if bytes[offset] == b'+' {
        // leading + allowed
        offset += 1;
        len -= 1;
    }

    // should now be at numeric part of the significand
    let mut digits_before_dot: i32 = -1; // digits before '.', -1 if no '.'
    let mut coeff = ArrayVec::<[_; 96]>::new(); // integer significand array

    // Supporting different radix
    let (max_n, max_alpha_lower, max_alpha_upper) = if radix <= 10 {
        (b'0' + (radix - 1) as u8, 0, 0)
    } else {
        let adj = (radix - 11) as u8;
        (b'9', adj + b'a', adj + b'A')
    };

    // Estimate the max precision. All in all, it needs to fit into 96 bits.
    // Rather than try to estimate, I've included the constants directly in here. We could,
    // perhaps, replace this with a formula if it's faster - though it does appear to be log2.
    let estimated_max_precision = match radix {
        2 => 96,
        3 => 61,
        4 => 48,
        5 => 42,
        6 => 38,
        7 => 35,
        8 => 32,
        9 => 31,
        10 => 28,
        11 => 28,
        12 => 27,
        13 => 26,
        14 => 26,
        15 => 25,
        16 => 24,
        17 => 24,
        18 => 24,
        19 => 23,
        20 => 23,
        21 => 22,
        22 => 22,
        23 => 22,
        24 => 21,
        25 => 21,
        26 => 21,
        27 => 21,
        28 => 20,
        29 => 20,
        30 => 20,
        31 => 20,
        32 => 20,
        33 => 20,
        34 => 19,
        35 => 19,
        36 => 19,
        _ => return Err(Error::new("Unsupported radix")),
    };

    let mut maybe_round = false;
    while len > 0 {
        let b = bytes[offset];
        match b {
            b'0'..=b'9' => {
                if b > max_n {
                    return Err(Error::new("Invalid decimal: invalid character"));
                }
                coeff.push(u32::from(b - b'0'));
                offset += 1;
                len -= 1;

                // If the coefficient is longer than the max, exit early
                if coeff.len() as u32 > estimated_max_precision {
                    maybe_round = true;
                    break;
                }
            }
            b'a'..=b'z' => {
                if b > max_alpha_lower {
                    return Err(Error::new("Invalid decimal: invalid character"));
                }
                coeff.push(u32::from(b - b'a') + 10);
                offset += 1;
                len -= 1;

                if coeff.len() as u32 > estimated_max_precision {
                    maybe_round = true;
                    break;
                }
            }
            b'A'..=b'Z' => {
                if b > max_alpha_upper {
                    return Err(Error::new("Invalid decimal: invalid character"));
                }
                coeff.push(u32::from(b - b'A') + 10);
                offset += 1;
                len -= 1;

                if coeff.len() as u32 > estimated_max_precision {
                    maybe_round = true;
                    break;
                }
            }
            b'.' => {
                if digits_before_dot >= 0 {
                    return Err(Error::new("Invalid decimal: two decimal points"));
                }
                digits_before_dot = coeff.len() as i32;
                offset += 1;
                len -= 1;
            }
            b'_' => {
                // Must start with a number...
                if coeff.is_empty() {
                    return Err(Error::new("Invalid decimal: must start lead with a number"));
                }
                offset += 1;
                len -= 1;
            }
            _ => return Err(Error::new("Invalid decimal: unknown character")),
        }
    }

    // If we exited before the end of the string then do some rounding if necessary
    if maybe_round && offset < bytes.len() {
        let next_byte = bytes[offset];
        let digit = match next_byte {
            b'0'..=b'9' => {
                if next_byte > max_n {
                    return Err(Error::new("Invalid decimal: invalid character"));
                }
                u32::from(next_byte - b'0')
            }
            b'a'..=b'z' => {
                if next_byte > max_alpha_lower {
                    return Err(Error::new("Invalid decimal: invalid character"));
                }
                u32::from(next_byte - b'a') + 10
            }
            b'A'..=b'Z' => {
                if next_byte > max_alpha_upper {
                    return Err(Error::new("Invalid decimal: invalid character"));
                }
                u32::from(next_byte - b'A') + 10
            }
            b'_' => 0,
            b'.' => {
                // Still an error if we have a second dp
                if digits_before_dot >= 0 {
                    return Err(Error::new("Invalid decimal: two decimal points"));
                }
                0
            }
            _ => return Err(Error::new("Invalid decimal: unknown character")),
        };

        // Round at midpoint
        let midpoint = if radix & 0x1 == 1 { radix / 2 } else { (radix + 1) / 2 };
        if digit >= midpoint {
            let mut index = coeff.len() - 1;
            loop {
                let new_digit = coeff[index] + 1;
                if new_digit <= 9 {
                    coeff[index] = new_digit;
                    break;
                } else {
                    coeff[index] = 0;
                    if index == 0 {
                        coeff.insert(0, 1u32);
                        digits_before_dot += 1;
                        coeff.pop();
                        break;
                    }
                }
                index -= 1;
            }
        }
    }

    // here when no characters left
    if coeff.is_empty() {
        return Err(Error::new("Invalid decimal: no digits found"));
    }

    let mut scale = if digits_before_dot >= 0 {
        // we had a decimal place so set the scale
        (coeff.len() as u32) - (digits_before_dot as u32)
    } else {
        0
    };

    // Parse this using specified radix
    let mut data = [0u32, 0u32, 0u32];
    let mut tmp = [0u32, 0u32, 0u32];
    let len = coeff.len();
    for (i, digit) in coeff.iter().enumerate() {
        // If the data is going to overflow then we should go into recovery mode
        tmp[0] = data[0];
        tmp[1] = data[1];
        tmp[2] = data[2];
        let overflow = mul_by_u32(&mut tmp, radix);
        if overflow > 0 {
            // This means that we have more data to process, that we're not sure what to do with.
            // This may or may not be an issue - depending on whether we're past a decimal point
            // or not.
            if (i as i32) < digits_before_dot && i + 1 < len {
                return Err(Error::new("Invalid decimal: overflow from too many digits"));
            }

            if *digit >= 5 {
                let carry = add_one_internal(&mut data);
                if carry > 0 {
                    // Highly unlikely scenario which is more indicative of a bug
                    return Err(Error::new("Invalid decimal: overflow when rounding"));
                }
            }
            // We're also one less digit so reduce the scale
            let diff = (len - i) as u32;
            if diff > scale {
                return Err(Error::new("Invalid decimal: overflow from scale mismatch"));
            }
            scale -= diff;
            break;
        } else {
            data[0] = tmp[0];
            data[1] = tmp[1];
            data[2] = tmp[2];
            let carry = add_by_internal(&mut data, &[*digit]);
            if carry > 0 {
                // Highly unlikely scenario which is more indicative of a bug
                return Err(Error::new("Invalid decimal: overflow from carry"));
            }
        }
    }

    Ok(Decimal {
        lo: data[0],
        mid: data[1],
        hi: data[2],
        flags: flags(negative, scale),
    })
}

impl Num for Decimal {
    type FromStrRadixErr = Error;

    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
        Decimal::from_str_radix(str, radix)
    }
}

impl FromStr for Decimal {
    type Err = Error;

    fn from_str(value: &str) -> Result<Decimal, Self::Err> {
        parse_str_radix_10(value)
    }
}

impl FromPrimitive for Decimal {
    fn from_i32(n: i32) -> Option<Decimal> {
        let flags: u32;
        let value_copy: i64;
        if n >= 0 {
            flags = 0;
            value_copy = n as i64;
        } else {
            flags = SIGN_MASK;
            value_copy = -(n as i64);
        }
        Some(Decimal {
            flags,
            lo: value_copy as u32,
            mid: 0,
            hi: 0,
        })
    }

    fn from_i64(n: i64) -> Option<Decimal> {
        let flags: u32;
        let value_copy: i128;
        if n >= 0 {
            flags = 0;
            value_copy = n as i128;
        } else {
            flags = SIGN_MASK;
            value_copy = -(n as i128);
        }
        Some(Decimal {
            flags,
            lo: value_copy as u32,
            mid: (value_copy >> 32) as u32,
            hi: 0,
        })
    }

    fn from_u32(n: u32) -> Option<Decimal> {
        Some(Decimal {
            flags: 0,
            lo: n,
            mid: 0,
            hi: 0,
        })
    }

    fn from_u64(n: u64) -> Option<Decimal> {
        Some(Decimal {
            flags: 0,
            lo: n as u32,
            mid: (n >> 32) as u32,
            hi: 0,
        })
    }

    fn from_f32(n: f32) -> Option<Decimal> {
        // Handle the case if it is NaN, Infinity or -Infinity
        if !n.is_finite() {
            return None;
        }

        // It's a shame we can't use a union for this due to it being broken up by bits
        // i.e. 1/8/23 (sign, exponent, mantissa)
        // See https://en.wikipedia.org/wiki/IEEE_754-1985
        // n = (sign*-1) * 2^exp * mantissa
        // Decimal of course stores this differently... 10^-exp * significand
        let raw = n.to_bits();
        let positive = (raw >> 31) == 0;
        let biased_exponent = ((raw >> 23) & 0xFF) as i32;
        let mantissa = raw & 0x007F_FFFF;

        // Handle the special zero case
        if biased_exponent == 0 && mantissa == 0 {
            let mut zero = Decimal::zero();
            if !positive {
                zero.set_sign_negative(true);
            }
            return Some(zero);
        }

        // Get the bits and exponent2
        let mut exponent2 = biased_exponent - 127;
        let mut bits = [mantissa, 0u32, 0u32];
        if biased_exponent == 0 {
            // Denormalized number - correct the exponent
            exponent2 += 1;
        } else {
            // Add extra hidden bit to mantissa
            bits[0] |= 0x0080_0000;
        }

        // The act of copying a mantissa as integer bits is equivalent to shifting
        // left the mantissa 23 bits. The exponent is reduced to compensate.
        exponent2 -= 23;

        // Convert to decimal
        Decimal::base2_to_decimal(&mut bits, exponent2, positive, false)
    }

    fn from_f64(n: f64) -> Option<Decimal> {
        // Handle the case if it is NaN, Infinity or -Infinity
        if !n.is_finite() {
            return None;
        }

        // It's a shame we can't use a union for this due to it being broken up by bits
        // i.e. 1/11/52 (sign, exponent, mantissa)
        // See https://en.wikipedia.org/wiki/IEEE_754-1985
        // n = (sign*-1) * 2^exp * mantissa
        // Decimal of course stores this differently... 10^-exp * significand
        let raw = n.to_bits();
        let positive = (raw >> 63) == 0;
        let biased_exponent = ((raw >> 52) & 0x7FF) as i32;
        let mantissa = raw & 0x000F_FFFF_FFFF_FFFF;

        // Handle the special zero case
        if biased_exponent == 0 && mantissa == 0 {
            let mut zero = Decimal::zero();
            if !positive {
                zero.set_sign_negative(true);
            }
            return Some(zero);
        }

        // Get the bits and exponent2
        let mut exponent2 = biased_exponent - 1023;
        let mut bits = [
            (mantissa & 0xFFFF_FFFF) as u32,
            ((mantissa >> 32) & 0xFFFF_FFFF) as u32,
            0u32,
        ];
        if biased_exponent == 0 {
            // Denormalized number - correct the exponent
            exponent2 += 1;
        } else {
            // Add extra hidden bit to mantissa
            bits[1] |= 0x0010_0000;
        }

        // The act of copying a mantissa as integer bits is equivalent to shifting
        // left the mantissa 52 bits. The exponent is reduced to compensate.
        exponent2 -= 52;

        // Convert to decimal
        Decimal::base2_to_decimal(&mut bits, exponent2, positive, true)
    }
}

impl ToPrimitive for Decimal {
    fn to_i64(&self) -> Option<i64> {
        let d = self.trunc();
        // Quick overflow check
        if d.hi != 0 || (d.mid & 0x8000_0000) > 0 {
            // Overflow
            return None;
        }

        let raw: i64 = (i64::from(d.mid) << 32) | i64::from(d.lo);
        if self.is_sign_negative() {
            Some(-raw)
        } else {
            Some(raw)
        }
    }

    fn to_i128(&self) -> Option<i128> {
        let d = self.trunc();
        let raw: i128 = ((i128::from(d.hi) << 64) | i128::from(d.mid) << 32) | i128::from(d.lo);
        if self.is_sign_negative() {
            Some(-raw)
        } else {
            Some(raw)
        }
    }

    fn to_u64(&self) -> Option<u64> {
        if self.is_sign_negative() {
            return None;
        }

        let d = self.trunc();
        if d.hi != 0 {
            // Overflow
            return None;
        }

        Some((u64::from(d.mid) << 32) | u64::from(d.lo))
    }

    fn to_u128(&self) -> Option<u128> {
        if self.is_sign_negative() {
            return None;
        }

        let d = self.trunc();
        Some((u128::from(d.hi) << 64) | (u128::from(d.mid) << 32) | u128::from(d.lo))
    }

    fn to_f64(&self) -> Option<f64> {
        if self.scale() == 0 {
            let integer = self.to_i64();
            match integer {
                Some(i) => Some(i as f64),
                None => None,
            }
        } else {
            let sign: f64 = if self.is_sign_negative() { -1.0 } else { 1.0 };
            let mut mantissa: u128 = self.lo.into();
            mantissa |= (self.mid as u128) << 32;
            mantissa |= (self.hi as u128) << 64;
            // scale is at most 28, so this fits comfortably into a u128.
            let scale = self.scale();
            let precision: u128 = 10_u128.pow(scale);
            let integral_part = mantissa / precision;
            let frac_part = mantissa % precision;
            let frac_f64 = (frac_part as f64) / (precision as f64);
            let value = sign * ((integral_part as f64) + frac_f64);
            let round_to = 10f64.powi(self.scale() as i32);
            Some(value * round_to / round_to)
        }
    }
}

impl core::convert::TryFrom<f32> for Decimal {
    type Error = crate::Error;

    fn try_from(value: f32) -> Result<Self, Error> {
        Self::from_f32(value).ok_or_else(|| Error::new("Failed to convert to Decimal"))
    }
}

impl core::convert::TryFrom<f64> for Decimal {
    type Error = crate::Error;

    fn try_from(value: f64) -> Result<Self, Error> {
        Self::from_f64(value).ok_or_else(|| Error::new("Failed to convert to Decimal"))
    }
}

impl core::convert::TryFrom<Decimal> for f32 {
    type Error = crate::Error;

    fn try_from(value: Decimal) -> Result<Self, Self::Error> {
        Decimal::to_f32(&value).ok_or_else(|| Error::new("Failed to convert to f32"))
    }
}

impl core::convert::TryFrom<Decimal> for f64 {
    type Error = crate::Error;

    fn try_from(value: Decimal) -> Result<Self, Self::Error> {
        Decimal::to_f64(&value).ok_or_else(|| Error::new("Failed to convert to f64"))
    }
}

// impl that doesn't allocate for serialization purposes.
pub(crate) fn to_str_internal(value: &Decimal, append_sign: bool, precision: Option<usize>) -> ArrayString<[u8; 30]> {
    // Get the scale - where we need to put the decimal point
    let scale = value.scale() as usize;

    // Convert to a string and manipulate that (neg at front, inject decimal)
    let mut chars = ArrayVec::<[_; 30]>::new();
    let mut working = [value.lo, value.mid, value.hi];
    while !is_all_zero(&working) {
        let remainder = div_by_u32(&mut working, 10u32);
        chars.push(char::from(b'0' + remainder as u8));
    }
    while scale > chars.len() {
        chars.push('0');
    }

    let prec = match precision {
        Some(prec) => prec,
        None => scale,
    };

    let len = chars.len();
    let whole_len = len - scale;
    let mut rep = ArrayString::new();
    if append_sign && value.is_sign_negative() {
        rep.push('-');
    }
    for i in 0..whole_len + prec {
        if i == len - scale {
            if i == 0 {
                rep.push('0');
            }
            rep.push('.');
        }

        if i >= len {
            rep.push('0');
        } else {
            let c = chars[len - i - 1];
            rep.push(c);
        }
    }

    // corner case for when we truncated everything in a low fractional
    if rep.is_empty() {
        rep.push('0');
    }

    rep
}

impl fmt::Display for Decimal {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        let rep = to_str_internal(self, false, f.precision());
        f.pad_integral(self.is_sign_positive(), "", rep.as_str())
    }
}

impl fmt::Debug for Decimal {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::Display::fmt(self, f)
    }
}

fn fmt_scientific_notation(value: &Decimal, exponent_symbol: &str, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    #[cfg(not(feature = "std"))]
    use alloc::string::ToString;

    // Get the scale - this is the e value. With multiples of 10 this may get bigger.
    let mut exponent = -(value.scale() as isize);

    // Convert the integral to a string
    let mut chars = Vec::new();
    let mut working = [value.lo, value.mid, value.hi];
    while !is_all_zero(&working) {
        let remainder = div_by_u32(&mut working, 10u32);
        chars.push(char::from(b'0' + remainder as u8));
    }

    // First of all, apply scientific notation rules. That is:
    //  1. If non-zero digit comes first, move decimal point left so that e is a positive integer
    //  2. If decimal point comes first, move decimal point right until after the first non-zero digit
    // Since decimal notation naturally lends itself this way, we just need to inject the decimal
    // point in the right place and adjust the exponent accordingly.

    let len = chars.len();
    let mut rep;
    if len > 1 {
        if chars.iter().take(len - 1).all(|c| *c == '0') {
            // Chomp off the zero's.
            rep = chars.iter().skip(len - 1).collect::<String>();
        } else {
            chars.insert(len - 1, '.');
            rep = chars.iter().rev().collect::<String>();
        }
        exponent += (len - 1) as isize;
    } else {
        rep = chars.iter().collect::<String>();
    }

    rep.push_str(exponent_symbol);
    rep.push_str(&exponent.to_string());
    f.pad_integral(value.is_sign_positive(), "", &rep)
}

impl fmt::LowerExp for Decimal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt_scientific_notation(self, "e", f)
    }
}

impl fmt::UpperExp for Decimal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt_scientific_notation(self, "E", f)
    }
}

impl Neg for Decimal {
    type Output = Decimal;

    fn neg(self) -> Decimal {
        let mut copy = self;
        copy.set_sign_negative(true);
        copy
    }
}

impl<'a> Neg for &'a Decimal {
    type Output = Decimal;

    fn neg(self) -> Decimal {
        Decimal {
            flags: flags(!self.is_sign_negative(), self.scale()),
            hi: self.hi,
            lo: self.lo,
            mid: self.mid,
        }
    }
}

forward_all_binop!(impl Add for Decimal, add);

impl<'a, 'b> Add<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline(always)]
    fn add(self, other: &Decimal) -> Decimal {
        match self.checked_add(*other) {
            Some(sum) => sum,
            None => panic!("Addition overflowed"),
        }
    }
}

impl AddAssign for Decimal {
    fn add_assign(&mut self, other: Decimal) {
        let result = self.add(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> AddAssign<&'a Decimal> for Decimal {
    fn add_assign(&mut self, other: &'a Decimal) {
        Decimal::add_assign(self, *other)
    }
}

impl<'a> AddAssign<Decimal> for &'a mut Decimal {
    fn add_assign(&mut self, other: Decimal) {
        Decimal::add_assign(*self, other)
    }
}

impl<'a> AddAssign<&'a Decimal> for &'a mut Decimal {
    fn add_assign(&mut self, other: &'a Decimal) {
        Decimal::add_assign(*self, *other)
    }
}

forward_all_binop!(impl Sub for Decimal, sub);

impl<'a, 'b> Sub<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline(always)]
    fn sub(self, other: &Decimal) -> Decimal {
        match self.checked_sub(*other) {
            Some(diff) => diff,
            None => panic!("Subtraction overflowed"),
        }
    }
}

impl SubAssign for Decimal {
    fn sub_assign(&mut self, other: Decimal) {
        let result = self.sub(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> SubAssign<&'a Decimal> for Decimal {
    fn sub_assign(&mut self, other: &'a Decimal) {
        Decimal::sub_assign(self, *other)
    }
}

impl<'a> SubAssign<Decimal> for &'a mut Decimal {
    fn sub_assign(&mut self, other: Decimal) {
        Decimal::sub_assign(*self, other)
    }
}

impl<'a> SubAssign<&'a Decimal> for &'a mut Decimal {
    fn sub_assign(&mut self, other: &'a Decimal) {
        Decimal::sub_assign(*self, *other)
    }
}

forward_all_binop!(impl Mul for Decimal, mul);

impl<'a, 'b> Mul<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline]
    fn mul(self, other: &Decimal) -> Decimal {
        match self.checked_mul(*other) {
            Some(prod) => prod,
            None => panic!("Multiplication overflowed"),
        }
    }
}

impl MulAssign for Decimal {
    fn mul_assign(&mut self, other: Decimal) {
        let result = self.mul(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> MulAssign<&'a Decimal> for Decimal {
    fn mul_assign(&mut self, other: &'a Decimal) {
        Decimal::mul_assign(self, *other)
    }
}

impl<'a> MulAssign<Decimal> for &'a mut Decimal {
    fn mul_assign(&mut self, other: Decimal) {
        Decimal::mul_assign(*self, other)
    }
}

impl<'a> MulAssign<&'a Decimal> for &'a mut Decimal {
    fn mul_assign(&mut self, other: &'a Decimal) {
        Decimal::mul_assign(*self, *other)
    }
}

forward_all_binop!(impl Div for Decimal, div);

impl<'a, 'b> Div<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    fn div(self, other: &Decimal) -> Decimal {
        match ops::div_impl(&self, other) {
            DivResult::Ok(quot) => quot,
            DivResult::Overflow => panic!("Division overflowed"),
            DivResult::DivByZero => panic!("Division by zero"),
        }
    }
}

impl DivAssign for Decimal {
    fn div_assign(&mut self, other: Decimal) {
        let result = self.div(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> DivAssign<&'a Decimal> for Decimal {
    fn div_assign(&mut self, other: &'a Decimal) {
        Decimal::div_assign(self, *other)
    }
}

impl<'a> DivAssign<Decimal> for &'a mut Decimal {
    fn div_assign(&mut self, other: Decimal) {
        Decimal::div_assign(*self, other)
    }
}

impl<'a> DivAssign<&'a Decimal> for &'a mut Decimal {
    fn div_assign(&mut self, other: &'a Decimal) {
        Decimal::div_assign(*self, *other)
    }
}

forward_all_binop!(impl Rem for Decimal, rem);

impl<'a, 'b> Rem<&'b Decimal> for &'a Decimal {
    type Output = Decimal;

    #[inline]
    fn rem(self, other: &Decimal) -> Decimal {
        match self.checked_rem(*other) {
            Some(rem) => rem,
            None => panic!("Division by zero"),
        }
    }
}

impl RemAssign for Decimal {
    fn rem_assign(&mut self, other: Decimal) {
        let result = self.rem(other);
        self.lo = result.lo;
        self.mid = result.mid;
        self.hi = result.hi;
        self.flags = result.flags;
    }
}

impl<'a> RemAssign<&'a Decimal> for Decimal {
    fn rem_assign(&mut self, other: &'a Decimal) {
        Decimal::rem_assign(self, *other)
    }
}

impl<'a> RemAssign<Decimal> for &'a mut Decimal {
    fn rem_assign(&mut self, other: Decimal) {
        Decimal::rem_assign(*self, other)
    }
}

impl<'a> RemAssign<&'a Decimal> for &'a mut Decimal {
    fn rem_assign(&mut self, other: &'a Decimal) {
        Decimal::rem_assign(*self, *other)
    }
}

impl PartialEq for Decimal {
    #[inline]
    fn eq(&self, other: &Decimal) -> bool {
        self.cmp(other) == Equal
    }
}

impl Eq for Decimal {}

impl Hash for Decimal {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let n = self.normalize();
        n.lo.hash(state);
        n.mid.hash(state);
        n.hi.hash(state);
        n.flags.hash(state);
    }
}

impl PartialOrd for Decimal {
    #[inline]
    fn partial_cmp(&self, other: &Decimal) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Decimal {
    fn cmp(&self, other: &Decimal) -> Ordering {
        // Quick exit if major differences
        if self.is_zero() && other.is_zero() {
            return Ordering::Equal;
        }
        let self_negative = self.is_sign_negative();
        let other_negative = other.is_sign_negative();
        if self_negative && !other_negative {
            return Ordering::Less;
        } else if !self_negative && other_negative {
            return Ordering::Greater;
        }

        // If we have 1.23 and 1.2345 then we have
        //  123 scale 2 and 12345 scale 4
        //  We need to convert the first to
        //  12300 scale 4 so we can compare equally
        let left: &Decimal;
        let right: &Decimal;
        if self_negative && other_negative {
            // Both are negative, so reverse cmp
            left = other;
            right = self;
        } else {
            left = self;
            right = other;
        }
        let mut left_scale = left.scale();
        let mut right_scale = right.scale();

        if left_scale == right_scale {
            // Fast path for same scale
            if left.hi != right.hi {
                return left.hi.cmp(&right.hi);
            }
            if left.mid != right.mid {
                return left.mid.cmp(&right.mid);
            }
            return left.lo.cmp(&right.lo);
        }

        // Rescale and compare
        let mut left_raw = [left.lo, left.mid, left.hi];
        let mut right_raw = [right.lo, right.mid, right.hi];
        rescale_to_maximum_scale(&mut left_raw, &mut left_scale, &mut right_raw, &mut right_scale);
        cmp_internal(&left_raw, &right_raw)
    }
}

impl Sum for Decimal {
    fn sum<I: Iterator<Item = Decimal>>(iter: I) -> Self {
        let mut sum = Decimal::zero();
        for i in iter {
            sum += i;
        }
        sum
    }
}

impl<'a> Sum<&'a Decimal> for Decimal {
    fn sum<I: Iterator<Item = &'a Decimal>>(iter: I) -> Self {
        let mut sum = Decimal::zero();
        for i in iter {
            sum += i;
        }
        sum
    }
}

#[cfg(test)]
mod test {
    // Tests on private methods.
    //
    // All public tests should go under `tests/`.

    use super::*;

    #[test]
    fn it_can_rescale_to_maximum_scale() {
        fn extract(value: &str) -> ([u32; 3], u32) {
            let v = Decimal::from_str(value).unwrap();
            ([v.lo, v.mid, v.hi], v.scale())
        }

        let tests = &[
            ("1", "1", "1", "1"),
            ("1", "1.0", "1.0", "1.0"),
            ("1", "1.00000", "1.00000", "1.00000"),
            ("1", "1.0000000000", "1.0000000000", "1.0000000000"),
            (
                "1",
                "1.00000000000000000000",
                "1.00000000000000000000",
                "1.00000000000000000000",
            ),
            ("1.1", "1.1", "1.1", "1.1"),
            ("1.1", "1.10000", "1.10000", "1.10000"),
            ("1.1", "1.1000000000", "1.1000000000", "1.1000000000"),
            (
                "1.1",
                "1.10000000000000000000",
                "1.10000000000000000000",
                "1.10000000000000000000",
            ),
            (
                "0.6386554621848739495798319328",
                "11.815126050420168067226890757",
                "0.638655462184873949579831933",
                "11.815126050420168067226890757",
            ),
            (
                "0.0872727272727272727272727272", // Scale 28
                "843.65000000",                   // Scale 8
                "0.0872727272727272727272727",    // 25
                "843.6500000000000000000000000",  // 25
            ),
        ];

        for &(left_raw, right_raw, expected_left, expected_right) in tests {
            // Left = the value to rescale
            // Right = the new scale we're scaling to
            // Expected = the expected left value after rescale
            let (expected_left, expected_lscale) = extract(expected_left);
            let (expected_right, expected_rscale) = extract(expected_right);

            let (mut left, mut left_scale) = extract(left_raw);
            let (mut right, mut right_scale) = extract(right_raw);
            rescale_to_maximum_scale(&mut left, &mut left_scale, &mut right, &mut right_scale);
            assert_eq!(left, expected_left);
            assert_eq!(left_scale, expected_lscale);
            assert_eq!(right, expected_right);
            assert_eq!(right_scale, expected_rscale);

            // Also test the transitive case
            let (mut left, mut left_scale) = extract(left_raw);
            let (mut right, mut right_scale) = extract(right_raw);
            rescale_to_maximum_scale(&mut right, &mut right_scale, &mut left, &mut left_scale);
            assert_eq!(left, expected_left);
            assert_eq!(left_scale, expected_lscale);
            assert_eq!(right, expected_right);
            assert_eq!(right_scale, expected_rscale);
        }
    }

    #[test]
    fn it_can_rescale_internal() {
        fn extract(value: &str) -> ([u32; 3], u32) {
            let v = Decimal::from_str(value).unwrap();
            ([v.lo, v.mid, v.hi], v.scale())
        }

        let tests = &[
            ("1", 0, "1"),
            ("1", 1, "1.0"),
            ("1", 5, "1.00000"),
            ("1", 10, "1.0000000000"),
            ("1", 20, "1.00000000000000000000"),
            ("0.6386554621848739495798319328", 27, "0.638655462184873949579831933"),
            (
                "843.65000000",                  // Scale 8
                25,                              // 25
                "843.6500000000000000000000000", // 25
            ),
            (
                "843.65000000",                     // Scale 8
                30,                                 // 30
                "843.6500000000000000000000000000", // 28
            ),
        ];

        for &(value_raw, new_scale, expected_value) in tests {
            let (expected_value, _) = extract(expected_value);
            let (mut value, mut value_scale) = extract(value_raw);
            rescale_internal(&mut value, &mut value_scale, new_scale);
            assert_eq!(value, expected_value);
        }
    }

    #[test]
    fn declarative_dec_sum() {
        let vs = (0..10).map(|i| i.into()).collect::<Vec<Decimal>>();
        let sum: Decimal = vs.iter().cloned().sum();

        assert_eq!(sum, Decimal::from(45))
    }

    #[test]
    fn declarative_ref_dec_sum() {
        let vs = (0..10).map(|i| i.into()).collect::<Vec<Decimal>>();
        let sum: Decimal = vs.iter().sum();

        assert_eq!(sum, Decimal::from(45))
    }

    #[test]
    fn test_geo_mean_of_2() {
        let test_cases = &[
            (
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
            ),
            (
                Decimal::from_str("4").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("3.4641016151377545870548926830").unwrap(),
            ),
            (
                Decimal::from_str("12").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("6.000000000000000000000000000").unwrap(),
            ),
        ];

        for case in test_cases {
            assert_eq!(case.2, geo_mean_of_2(&case.0, &case.1));
        }
    }

    #[test]
    fn test_mean_of_2() {
        let test_cases = &[
            (
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
                Decimal::from_str("2").unwrap(),
            ),
            (
                Decimal::from_str("4").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("3.5").unwrap(),
            ),
            (
                Decimal::from_str("12").unwrap(),
                Decimal::from_str("3").unwrap(),
                Decimal::from_str("7.5").unwrap(),
            ),
        ];

        for case in test_cases {
            assert_eq!(case.2, mean_of_2(&case.0, &case.1));
        }
    }

    #[test]
    fn test_shl1_internal() {
        struct TestCase {
            // One thing to be cautious of is that the structure of a number here for shifting left is
            // the reverse of how you may conceive this mentally. i.e. a[2] contains the higher order
            // bits: a[2] a[1] a[0]
            given: [u32; 3],
            given_carry: u32,
            expected: [u32; 3],
            expected_carry: u32,
        }
        let tests = [
            TestCase {
                given: [1, 0, 0],
                given_carry: 0,
                expected: [2, 0, 0],
                expected_carry: 0,
            },
            TestCase {
                given: [1, 0, 2147483648],
                given_carry: 1,
                expected: [3, 0, 0],
                expected_carry: 1,
            },
        ];
        for case in &tests {
            let mut test = [case.given[0], case.given[1], case.given[2]];
            let carry = shl1_internal(&mut test, case.given_carry);
            assert_eq!(
                test, case.expected,
                "Bits: {:?} << 1 | {}",
                case.given, case.given_carry
            );
            assert_eq!(
                carry, case.expected_carry,
                "Carry: {:?} << 1 | {}",
                case.given, case.given_carry
            )
        }
    }
}