1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
//! (Docs from nim-lapper, by Brent Pendersen)
//! This module provides a simple data-structure for fast interval searches.
//! ```text
//!       0  1  2  3  4  5  6  7  8  9  10 11
//! (0,10]X  X  X  X  X  X  X  X  X  X
//! (2,5]       X  X  X
//! (3,8]          X  X  X  X  X
//! (3,8]          X  X  X  X  X
//! (3,8]          X  X  X  X  X
//! (3,8]          X  X  X  X  X
//! (5,9]                X  X  X  X
//! (8,11]                        X  X  X
//!
//! Query: (8, 11]
//! Answer: ((0,10], (5,9], (8,11])
//! ```
//! The main methods are `find` and `seek` where the latter uses a cursor and is very fast for
//! cases when the queries are sorted. This is another innovation in this library that allows an
//! additional ~50% speed improvement when consecutive queries are known to be in sort order.
//!
//! The overlap function for this assumes a zero based genomic coordinate system. So [start, stop)
//! is not inclusive of the stop position for neither the queries, nor the Intervals.
//!
//! Lapper does not use an interval tree, instead, it operates on the assumtion that most intervals are
//! of similar length; or, more exactly, that the longest interval in the set is not long compred to
//! the average distance between intervals.
//!
//! For cases where this holds true (as it often does with genomic data), we can sort by start and 
//! use binary search on the starts, accounting for the length of the longest interval. The advantage
//! of this approach is simplicity of implementation and speed. In realistic tests queries returning
//! the overlapping intervals are 1000 times faster than brute force and queries that merely check 
//! for the overlaps are > 5000 times faster.
//! 
//! On any dataset where that is not the case, It is suggested that you set the `{find,seek}_skip`
//! methods. This allows the lapper to redo its binary search if no intervals have been found in the
//! last N intervals seen, as would happen in a scenario with very long intervals. An example of this
//! can be seen in the diagram above. Without setting max_misses, every interval between the first and
//! the last one would need to be tested. By seeting max_misses to 2, after (2, 5] and the first (3, 8]
//! miss, the sublist that hasn't been tested yet would be binar searched to find a better offset, and
//! skip the other 3 (3, 8], and head strait to (5, 9]. You should benchmark this for your data. It
//! can cause a best case dataset to be slower, as just iterating over misses is still often
//! faster than redoing a binary search. 
//!
//! A better alternative, if it's possible in your scenario, is to use merge_overlaps first, and
//! then use the normal find and seek methods. 
//!
//! # Examples
//!
//! ```rust
//!    use rust_lapper::{Interval, Lapper};
//!    use std::cmp;
//!    type Iv = Interval<u32>;
//!
//!    // create some fake data
//!    let data: Vec<Iv> = (0..20).step_by(5).map(|x| Iv{start: x, stop: x + 2, val: 0}).collect();
//!    println!("{:#?}", data);
//!
//!    // make lapper structure
//!    let laps = Lapper::new(data);
//!
//!    assert_eq!(laps.find(6, 11).next(), Some(&Iv{start: 5, stop: 7, val: 0}));
//!    
//!    // Demonstration of seek function. By passing in the &mut cursor, seek can have thread local
//!    // cursors going
//!    let mut sim: usize = 0;
//!    let mut cursor = 0;
//!    // Calculate the overlap between the query and the found intervals, sum total overlap
//!    for i in (0..10).step_by(3) {
//!        sim += laps
//!            .seek(i, i + 2, &mut cursor)
//!            .map(|iv| cmp::min(i + 2, iv.stop) - cmp::max(i, iv.start))
//!            .sum::<usize>();
//!    }
//!    assert_eq!(sim, 4);
//! ```
use std::cmp::Ordering;
use std::collections::{VecDeque};

/// Represent a range from [start, stop)
/// Inclusive start, exclusive of stop
#[derive(Eq, Debug, Clone)]
pub struct Interval<T: Eq + Clone> {
    pub start: usize,
    pub stop: usize,
    pub val: T,
}

/// Primary object of the library. The public intervals holds all the intervals and can be used for
/// iterating / pulling values out of the tree.
#[derive(Debug)]
pub struct Lapper<T: Eq + Clone> {
    /// List of intervasl
    pub intervals: Vec<Interval<T>>,
    /// The length of the longest interval
    max_len: usize,
    /// A cursor to hold the position in the list in between searches with `seek` method
    cursor: usize,
    /// The calculated number of positions covered by the intervals
    cov: Option<usize>,
    /// Whether or not overlaps have been merged
    pub overlaps_merged: bool,
}

impl<T: Eq + Clone> Interval<T> {
    /// Compute the intsect between two intervals
    #[inline]
    pub fn intersect(&self, other: &Interval<T>) -> usize {
        std::cmp::min(self.stop, other.stop).checked_sub(std::cmp::max(self.start, other.start)).unwrap_or(0)
    }

    /// Check if two intervals overlap
    #[inline]
    pub fn overlap(&self, start: usize, stop: usize) -> bool {
        self.start < stop && self.stop > start
    }
}

impl<T: Eq + Clone> Ord for Interval<T> {
    #[inline]
    fn cmp(&self, other: &Interval<T>) -> Ordering {
        if self.start < other.start {
            Ordering::Less
        } else if other.start < self.start {
            Ordering::Greater
        } else {
            self.stop.cmp(&other.stop)
        }
    }
}

impl<T: Eq + Clone> PartialOrd for Interval<T> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

impl<T: Eq + Clone> PartialEq for Interval<T> {
    #[inline]
    fn eq(&self, other: &Interval<T>) -> bool {
        self.start == other.start && self.stop == other.stop
    }
}


impl<T: Eq + Clone> Lapper<T> {
    /// Create a new instance of Lapper by passing in a vector of Intervals. This vector will
    /// immediately be sorted by start order. 
    pub fn new(mut intervals: Vec<Interval<T>>) -> Self {
        intervals.sort();
        let mut max_len = 0;
        for interval in intervals.iter() {
            let i_len = interval.stop.checked_sub(interval.start).unwrap_or(0);
            if i_len > max_len {
                max_len = i_len;
            }
        }
        Lapper {
            intervals,
            max_len,
            cursor: 0,
            cov: None,
            overlaps_merged: false,
        }
    }

    /// Get the number over intervals in Lapper
    #[inline]
    pub fn len(&self) -> usize {
        self.intervals.len()
    }
    
    /// Check if lapper is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.intervals.is_empty()
    }

    /// Get the number of positions covered by the intervals in Lapper. This provides immutable
    /// access if it has already been set, or on the fly calculation.
    #[inline]
    pub fn cov(&self) -> usize {
        match self.cov {
            None => self.calculate_coverage(),
            Some(cov) => cov
        }
    }

    /// Get the number fo positions covered by the intervals in Lapper and store it. If you are
    /// going to be using the coverage, you should set it to avoid calculating it over and over.
    pub fn set_cov(&mut self) -> usize {
        let cov = self.calculate_coverage();
        self.cov = Some(cov);
        cov
    }


    /// Calculate teh actual coverage behind the scenes.
    fn calculate_coverage(&self) -> usize {
        let mut moving_interval = Interval{start: 0, stop: 0, val: 0};
        let mut cov = 0;
        
        for interval in self.intervals.iter() {
            // If it overlaps, embrace, extend, extinguish
            if moving_interval.overlap(interval.start, interval.stop) {
                moving_interval.start = std::cmp::min(moving_interval.start, interval.start);
                moving_interval.stop = std::cmp::max(moving_interval.stop, interval.stop);
            } else { // add the set and move on
                cov += moving_interval.stop - moving_interval.start;
                moving_interval.start = interval.start;
                moving_interval.stop = interval.stop;
            }
        }
        // add in the last bit
        cov += moving_interval.stop - moving_interval.start;
        cov
    }

    /// Return an iterator over the intervals in Lapper
    #[inline]
    pub fn iter(&self) -> IterLapper<T> {
        IterLapper {
            inner: self,
            pos: 0,
        }
    }

    /// Merge any intervals that overlap with eachother within the Lapper. This is an easy way to
    /// speed up queries.
    pub fn merge_overlaps(&mut self) {
        let mut stack: VecDeque<&mut Interval<T>> = VecDeque::new();
        let mut ivs = self.intervals.iter_mut();
        if let Some(first) = ivs.next() {
            stack.push_back(first);
            for interval in ivs {
                let mut top = stack.pop_back().unwrap();
                if top.stop < interval.start {
                    stack.push_back(top);
                    stack.push_back(interval);
                } else if top.stop < interval.stop {
                    top.stop = interval.stop;
                    //stack.pop_back();
                    stack.push_back(top);
                } else { // they were equal
                    stack.push_back(top);
                }
            }
            self.overlaps_merged = true;
            self.intervals = stack.into_iter().map(|x| Interval{start: x.start, stop: x.stop, val: x.val.clone()}).collect();
        }
    }

    /// Determine the first index that we should start checking for overlaps for via a binary
    /// search.
    #[inline]
    fn lower_bound(&self, start: usize) -> usize {
        let mut result = 0;
        let mut count = self.intervals.len();
        let mut step: usize;
        let mut pos: usize;

        while count != 0 {
            step = count / 2;
            pos = result + step;
            if self.intervals[pos].start < start {
                result = pos + 1;
                count -= step + 1;
            } else {
                count = step;
            }
        }
        result
    }

    #[inline]
    fn lower_bound_offset(&self, start: usize, intervals: &[Interval<T>]) -> usize {
        let mut result = 0;
        let mut count = intervals.len();
        let mut step: usize;
        let mut pos: usize;

        while count != 0 {
            step = count / 2;
            pos = result + step;
            if intervals[pos].start < start {
                result = pos + 1;
                count -= step + 1;
            } else {
                count = step;
            }
        }
        result
    }

    /// Find the union and the intersect of two lapper objects.
    /// Union: The set of positions found in both lappers
    /// Intersect: The number of positions where both lappers intersect. Note that a position only
    /// counts one time, multiple Intervals covering the same position don't add up.
    #[inline]
    pub fn union_and_intersect(&self, other: &Self) -> (usize, usize) {
        let mut cursor: usize = 0;

        if !self.overlaps_merged || !other.overlaps_merged {
            let mut intersections: Vec<Interval<bool>> = vec![];
            for self_iv in self.iter() {
                for other_iv in other.seek(self_iv.start, self_iv.stop, &mut cursor) {
                    let start = std::cmp::max(self_iv.start, other_iv.start);
                    let stop = std::cmp::min(self_iv.stop, other_iv.stop);
                    intersections.push(Interval{start, stop, val: true});
                }
            }
            let mut temp_lapper = Lapper::new(intersections);
            temp_lapper.merge_overlaps();
            temp_lapper.set_cov();
            let union = self.cov() + other.cov() - temp_lapper.cov();
            (union, temp_lapper.cov())
        } else {
            let mut intersect = 0;
            for c1_iv in self.iter() {
                for c2_iv in other.seek(c1_iv.start, c1_iv.stop, &mut cursor) {
                    let local_intersect = c1_iv.intersect(c2_iv);
                    intersect += local_intersect;
                }
            }
            let union = self.cov() + other.cov() - intersect;
            (union, intersect)
        }
        
    }

    /// Find the intersect of two lapper objects.
    /// Intersect: The number of positions where both lappers intersect. Note that a position only
    /// counts one time, multiple Intervals covering the same position don't add up
    #[inline]
    pub fn intersect(&self, other: &Self) -> usize {        
        self.union_and_intersect(other).1
    }

    /// Find the union of two lapper objects.
    #[inline]
    pub fn union(&self, other: &Self) -> usize {
        self.union_and_intersect(other).0
    }

    /// Find all intervals that overlap start .. stop
    #[inline]
    pub fn find(&self, start: usize, stop: usize) -> IterFind<T> {
        IterFind {
            inner: self,
            off: self.lower_bound(start.checked_sub(self.max_len).unwrap_or(0)),
            end: self.intervals.len(),
            start,
            stop,
        }
    }

    /// Find all intevals that overlap start .. stop. This method will work when queries
    /// to this lapper are in sorted (start) order. It uses a linear search from the last query
    /// instead of a binary search. A reference to a cursor must be passed in. This reference will
    /// be modified and should be reused in the next query. This allows seek to not need to make
    /// the lapper object mutable, and thus use the same lapper accross threads.
    #[inline]
    pub fn seek<'a>(&'a self, start: usize, stop: usize, cursor: &mut usize) -> IterFind<'a, T> {
        if *cursor == 0 || (*cursor < self.intervals.len() && self.intervals[*cursor].start > start)
        //if *cursor == 0 || self.intervals[*cursor].start > start {
        {
            *cursor = self.lower_bound(start.checked_sub(self.max_len).unwrap_or(0));
        }

        while *cursor + 1 < self.intervals.len()
            && self.intervals[*cursor + 1].start < start.checked_sub(self.max_len).unwrap_or(0)
        {
            *cursor += 1;
        }

        IterFind {
            inner: self,
            off: *cursor,
            end: self.intervals.len(),
            start,
            stop,
        }
    }
    /// Find all intervals that overlap start .. stop.
    /// This method will redo the binary search for a good offset if no overlap has been seen in the
    /// last max_misses intervals. This is beneficial for datasets with very long intervals that
    /// engulf many small intervals.
    #[inline]
    pub fn find_skip(&self, start: usize, stop: usize, max_misses: u32) -> IterFindSkip<T> {
        IterFindSkip {
            inner: self,
            off: self.lower_bound(start.checked_sub(self.max_len).unwrap_or(0)),
            end: self.intervals.len(),
            start,
            stop,
            max_misses,
        }
    }

    /// Find all intevals that overlap start .. stop. This method will work when queries
    /// to this lapper are in sorted (start) order. It uses a linear search from the last query
    /// instead of a binary search. A reference to a cursor must be passed in. This reference will
    /// be modified and should be reused in the next query. This allows seek to not need to make
    /// the lapper object mutable, and thus use the same lapper accross threads. This method will
    /// redo the binary search for a good offset if no overlap has been seen in the last max_misses
    /// intervals. This is beneficial for datasets with very long intervals that engulf many small
    /// intervals.
    #[inline]
    pub fn seek_skip<'a>(&'a self, start: usize, stop: usize, cursor: &mut usize, max_misses: u32) -> IterFindSkip<'a, T> {
        if *cursor == 0 || (*cursor < self.intervals.len() && self.intervals[*cursor].start > start)
        //if *cursor == 0 || self.intervals[*cursor].start > start {
        {
            *cursor = self.lower_bound(start.checked_sub(self.max_len).unwrap_or(0));
        }

        while *cursor + 1 < self.intervals.len()
            && self.intervals[*cursor + 1].start < start.checked_sub(self.max_len).unwrap_or(0)
        {
            *cursor += 1;
        }

        IterFindSkip {
            inner: self,
            off: *cursor,
            end: self.intervals.len(),
            start,
            stop,
            max_misses,
        }
    }
}

/// Find Iterator
#[derive(Debug)]
pub struct IterFind<'a, T>
where
    T: Eq + Clone + 'a,
{
    inner: &'a Lapper<T>,
    off: usize,
    end: usize,
    start: usize,
    stop: usize,
}

impl<'a, T: Eq + Clone> Iterator for IterFind<'a, T> {
    type Item = &'a Interval<T>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        while self.off < self.end {
            let interval = &self.inner.intervals[self.off];
            self.off += 1;
            if interval.overlap(self.start, self.stop) {
                return Some(interval);
            } else if interval.start >= self.stop {
                break;
            }
        }
        None
    }
}

// FindSkipMisses Iterator
#[derive(Debug)]
pub struct IterFindSkip<'a, T>
where
    T: Eq + Clone + 'a,
{
    inner: &'a Lapper<T>,
    off: usize,
    end: usize,
    start: usize,
    stop: usize,
    max_misses: u32,
}

impl<'a, T: Eq + Clone> Iterator for IterFindSkip<'a, T> {
    type Item = &'a Interval<T>;

    // This is doing a tricky thing. If we haven't seen an overlap in the last max_misses
    // intervals, then we are probably in a scenario where there was a very long interval that
    // encompasses a bunch of small intervals. Instead of iterating over all the small intervals,
    // recalculate the offset by doing a binary search on slice of the intervals from current
    // offset .. end. This drastically reduceds the worst case scenario, and barely affects the
    // best case.
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let mut misses = 0;
        while self.off < self.end {
            if misses > self.max_misses {
                let new_off = self.inner.lower_bound_offset(self.start.checked_sub(self.inner.max_len).unwrap_or(0), &self.inner.intervals[self.off..]) + self.off;
                self.off = new_off;
                misses = 0;
            }
            if self.off == self.end {
                break;
            }
            let interval = &self.inner.intervals[self.off];
            self.off += 1;
            if interval.overlap(self.start, self.stop) {
                return Some(interval);
            } else if interval.start >= self.stop {
                break;
            }
            misses += 1;
        }
        None
    }
}
/// Lapper Iterator
pub struct IterLapper<'a, T>
where
    T: Eq + Clone + 'a,
{
    inner: &'a Lapper<T>,
    pos: usize,
}

impl<'a, T: Eq + Clone> Iterator for IterLapper<'a, T> {
    type Item = &'a Interval<T>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.pos >= self.inner.intervals.len() {
            None
        } else {
            self.pos += 1;
            self.inner.intervals.get(self.pos - 1)
        }
    }
}

impl<T: Eq + Clone> IntoIterator for Lapper<T> {
    type Item = Interval<T>;
    type IntoIter = ::std::vec::IntoIter<Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.intervals.into_iter()
    }
}

impl<'a, T: Eq + Clone> IntoIterator for &'a Lapper<T> {
    type Item = &'a Interval<T>;
    type IntoIter = std::slice::Iter<'a, Interval<T>>;

    fn into_iter(self) -> std::slice::Iter<'a, Interval<T>> {
        self.intervals.iter()
    }
}

impl<'a, T: Eq + Clone> IntoIterator for &'a mut Lapper<T> {
    type Item = &'a mut Interval<T>;
    type IntoIter = std::slice::IterMut<'a, Interval<T>>;

    fn into_iter(self) -> std::slice::IterMut<'a, Interval<T>> {
        self.intervals.iter_mut()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    type Iv = Interval<u32>;
    fn setup_nonoverlapping() -> Lapper<u32> {
        let data: Vec<Iv> = (0..100)
            .step_by(20)
            .map(|x| Iv {
                start: x,
                stop: x + 10,
                val: 0,
            })
            .collect();
        let lapper = Lapper::new(data);
        lapper
    }
    fn setup_overlapping() -> Lapper<u32> {
        let data: Vec<Iv> = (0..100)
            .step_by(10)
            .map(|x| Iv {
                start: x,
                stop: x + 15,
                val: 0,
            })
            .collect();
        let lapper = Lapper::new(data);
        lapper
    }
    fn setup_badlapper() -> Lapper<u32> {
        let data: Vec<Iv> = vec![
            Iv{start: 70, stop: 120, val: 0}, // max_len = 50
            Iv{start: 10, stop: 15, val: 0},
            Iv{start: 10, stop: 15, val: 0}, // exact overlap
            Iv{start: 12, stop: 15, val: 0}, // inner overlap
            Iv{start: 14, stop: 16, val: 0}, // overlap end
            Iv{start: 40, stop: 45, val: 0},
            Iv{start: 50, stop: 55, val: 0},
            Iv{start: 60, stop: 65, val: 0},
            Iv{start: 68, stop: 71, val: 0}, // overlap start
            Iv{start: 70, stop: 75, val: 0},
        ];
        let lapper = Lapper::new(data);
        lapper
    }
    fn setup_single() -> Lapper<u32> {
        let data: Vec<Iv> = vec![Iv {
            start: 10,
            stop: 35,
            val: 0,
        }];
        let lapper = Lapper::new(data);
        lapper
    }

    // Test that a query stop that hits an interval start returns no interval
    #[test]
    fn test_query_stop_interval_start() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        assert_eq!(None, lapper.find(15, 20).next());
        assert_eq!(None, lapper.seek(15, 20, &mut cursor).next())
    }

    // Test that a query start that hits an interval end returns no interval
    #[test]
    fn test_query_start_interval_stop() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        assert_eq!(None, lapper.find(30, 35).next());
        assert_eq!(None, lapper.seek(30, 35, &mut cursor).next())
    }

    // Test that a query that overlaps the start of an interval returns that interval
    #[test]
    fn test_query_overlaps_interval_start() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(15, 25).next());
        assert_eq!(Some(&expected), lapper.seek(15, 25, &mut cursor).next())
    }

    // Test that a query that overlaps the stop of an interval returns that interval
    #[test]
    fn test_query_overlaps_interval_stop() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(25, 35).next());
        assert_eq!(Some(&expected), lapper.seek(25, 35, &mut cursor).next())
    }

    // Test that a query that is enveloped by interval returns interval
    #[test]
    fn test_interval_envelops_query() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(22, 27).next());
        assert_eq!(Some(&expected), lapper.seek(22, 27, &mut cursor).next())
    }

    // Test that a query that envolops an interval returns that interval
    #[test]
    fn test_query_envolops_interval() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(15, 35).next());
        assert_eq!(Some(&expected), lapper.seek(15, 35, &mut cursor).next())
    }

    #[test]
    fn test_overlapping_intervals() {
        let lapper = setup_overlapping();
        let mut cursor = 0;
        let e1 = Iv {
            start: 0,
            stop: 15,
            val: 0,
        };
        let e2 = Iv {
            start: 10,
            stop: 25,
            val: 0,
        };
        assert_eq!(vec![&e1, &e2], lapper.find(8, 20).collect::<Vec<&Iv>>());
        assert_eq!(
            vec![&e1, &e2],
            lapper.seek(8, 20, &mut cursor).collect::<Vec<&Iv>>()
        );
    }

    #[test]
    fn test_merge_overlaps() {
        let mut lapper = setup_badlapper();
        let expected: Vec<&Iv> = vec![
            &Iv{start: 10, stop: 16, val: 0},
            &Iv{start: 40, stop: 45, val: 0},
            &Iv{start: 50, stop: 55, val: 0},
            &Iv{start: 60, stop: 65, val: 0},
            &Iv{start: 68, stop: 120, val: 0}, // max_len = 50
        ];
        lapper.merge_overlaps();
        assert_eq!(expected, lapper.iter().collect::<Vec<&Iv>>())
        
    }

    #[test]
    fn test_lapper_cov() {
        let mut lapper = setup_badlapper();
        let before = lapper.cov();
        lapper.merge_overlaps();
        let after = lapper.cov();
        assert_eq!(before, after);

        let mut lapper = setup_nonoverlapping();
        lapper.set_cov();
        assert_eq!(lapper.cov(), 50);
    }

    #[test]
    fn test_interval_intersects() {
        let i1 = Iv{start: 70, stop: 120, val: 0}; // max_len = 50
        let i2 = Iv{start: 10, stop: 15, val: 0};
        let i3 = Iv{start: 10, stop: 15, val: 0}; // exact overlap
        let i4 = Iv{start: 12, stop: 15, val: 0}; // inner overlap
        let i5 = Iv{start: 14, stop: 16, val: 0}; // overlap end
        let i6 = Iv{start: 40, stop: 50, val: 0};
        let i7 = Iv{start: 50, stop: 55, val: 0};
        let i_8 = Iv{start: 60, stop: 65, val: 0};
        let i9 = Iv{start: 68, stop: 71, val: 0}; // overlap start
        let i10 = Iv{start: 70, stop: 75, val: 0};

        assert_eq!(i2.intersect(&i3), 5); // exact match
        assert_eq!(i2.intersect(&i4), 3); // inner intersect
        assert_eq!(i2.intersect(&i5), 1); // end intersect
        assert_eq!(i9.intersect(&i10), 1); // start intersect
        assert_eq!(i7.intersect(&i_8), 0); // no intersect
        assert_eq!(i6.intersect(&i7), 0); // no intersect stop = start
        assert_eq!(i1.intersect(&i10), 5); // inner intersect at start
    }

    #[test]
    fn test_union_and_intersect() {
        let data1: Vec<Iv> = vec![
            Iv{start: 70, stop: 120, val: 0}, // max_len = 50
            Iv{start: 10, stop: 15, val: 0}, // exact overlap
            Iv{start: 12, stop: 15, val: 0}, // inner overlap
            Iv{start: 14, stop: 16, val: 0}, // overlap end
            Iv{start: 68, stop: 71, val: 0}, // overlap start
        ];
        let data2: Vec<Iv> = vec![

            Iv{start: 10, stop: 15, val: 0},
            Iv{start: 40, stop: 45, val: 0},
            Iv{start: 50, stop: 55, val: 0},
            Iv{start: 60, stop: 65, val: 0},
            Iv{start: 70, stop: 75, val: 0},
        ];
        
        let (mut lapper1, mut lapper2) = (Lapper::new(data1), Lapper::new(data2)) ;
        // Should be the same either way it's calculated
        let (union, intersect) = lapper1.union_and_intersect(&lapper2);
        assert_eq!(intersect, 10);
        assert_eq!(union, 73);
        let (union, intersect) = lapper2.union_and_intersect(&lapper1);
        assert_eq!(intersect, 10);
        assert_eq!(union, 73);
        lapper1.merge_overlaps();
        lapper1.set_cov();
        lapper2.merge_overlaps();
        lapper2.set_cov();

        // Should be the same either way it's calculated
        let (union, intersect) = lapper1.union_and_intersect(&lapper2);
        assert_eq!(intersect, 10);
        assert_eq!(union, 73);
        let (union, intersect) = lapper2.union_and_intersect(&lapper1);
        assert_eq!(intersect, 10);
        assert_eq!(union, 73);
    }

    #[test]
    fn test_find_overlaps_in_large_intervals() {
        let data1: Vec<Iv> = vec![
            Iv{start: 0, stop: 8, val: 0},
            Iv{start: 1, stop: 10, val: 0}, 
            Iv{start: 2, stop: 5, val: 0}, 
            Iv{start: 3, stop: 8, val: 0},
            Iv{start: 4, stop: 7, val: 0},
            Iv{start: 5, stop: 8, val: 0},
            Iv{start: 8, stop: 8, val: 0},
            Iv{start: 9, stop: 11, val: 0},
            Iv{start: 10, stop: 13, val: 0},
            Iv{start: 100, stop: 200, val: 0},
            Iv{start: 110, stop: 120, val: 0},
            Iv{start: 110, stop: 124, val: 0},
            Iv{start: 111, stop: 160, val: 0},
            Iv{start: 150, stop: 200, val: 0},
        ];
        let lapper = Lapper::new(data1);
        let found = lapper.find_skip(8, 11, 2).collect::<Vec<&Iv>>();
        assert_eq!(found, vec![
            &Iv{start: 1, stop: 10, val: 0}, 
            &Iv{start: 9, stop: 11, val: 0},
            &Iv{start: 10, stop: 13, val: 0},
        ]);
        let found = lapper.find_skip(145, 151, 2).collect::<Vec<&Iv>>();
        assert_eq!(found, vec![
            &Iv{start: 100, stop: 200, val: 0},
            &Iv{start: 111, stop: 160, val: 0},
            &Iv{start: 150, stop: 200, val: 0},
        ]);

    }

    // BUG TESTS - these are tests that came from real life

    // Test that it's not possible to induce index out of bounds by pushing the cursor past the end
    // of the lapper.
    #[test]
    fn test_seek_over_len() {
        let lapper = setup_nonoverlapping();
        let single = setup_single();
        let mut cursor: usize = 0;

        for interval in lapper.iter() {
            for o_interval in single.seek(interval.start, interval.stop, &mut cursor) {
                println!("{:#?}", o_interval);
            }
        }
    }

    // Test that if lower_bound puts us before the first match, we still return a match
    #[test]
    fn test_find_over_behind_first_match() {
        let lapper = setup_badlapper();
        let e1 = Iv {start: 50, stop: 55, val: 0};
        let found = lapper.find(50, 55).next();
        assert_eq!(found, Some(&e1));
    }

    // When there is a very long interval that spans many little intervals, test that the little
    // intevals still get returne properly
    #[test]
    fn test_bad_skips() {
        let data = vec![
            Iv{start:25264912, stop: 25264986, val: 0},	
            Iv{start:27273024, stop: 27273065	, val: 0},
            Iv{start:27440273, stop: 27440318	, val: 0},
            Iv{start:27488033, stop: 27488125	, val: 0},
            Iv{start:27938410, stop: 27938470	, val: 0},
            Iv{start:27959118, stop: 27959171	, val: 0},
            Iv{start:28866309, stop: 33141404	, val: 0},
        ];
        let mut lapper = Lapper::new(data);

        let found = lapper.find_skip(28974798, 33141355, 2).collect::<Vec<&Iv>>();
        assert_eq!(found, vec![
            &Iv{start:28866309, stop: 33141404	, val: 0},
        ])

    }
}