1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
//! (Docs from nim-lapper, by Brent Pendersen)
//! This module provides a simple data-structure for fast interval searches. It does not use an
//! interval tree, instead, it operates on the assumtion that most intervals are of similar length;
//! or, more exactly, that the longest interval in the set is not long compred to the average
//! distance between intervals. On any dataset where that is not the case, this method will not
//! perform well. For cases where this holds true (as it often does with genomic data), we can sort
//! by start and use binary search on the starts, accounting for the length of the longest
//! interval. The advantage of this approach is simplicity of implementation and speed. In
//! realistic tests queries returning the overlapping intervals are 1000 times faster than brute
//! force and queries that merely check for the overlaps are > 5000 times faster.
//!
//! The main methods are `find` and `seek` where the latter uses a cursor and is very fast for
//! cases when the queries are sorted. This is another innovation in this library that allows an
//! additional ~50% speed improvement when consecutive queries are known to be in sort order.
//!
//! The overlap function for this assumes a zero based genomic coordinate system. So [start, stop)
//! is not inclusive of the stop position for neither the queries, nor the Intervals.
//!
//! # Examples
//!
//! ```rust
//!    use rust_lapper::{Interval, Lapper};
//!    use std::cmp;
//!    type Iv = Interval<u32>;
//!
//!    // create some fake data
//!    let data: Vec<Iv> = (0..20).step_by(5).map(|x| Iv{start: x, stop: x + 2, val: 0}).collect();
//!    println!("{:#?}", data);
//!
//!    // make lapper structure
//!    let laps = Lapper::new(data);
//!
//!    assert_eq!(laps.find(6, 11).next(), Some(&Iv{start: 5, stop: 7, val: 0}));
//!
//!    let mut sim: i32 = 0;
//!    let mut cursor = 0;
//!    // Calculate the overlap between the query and the found intervals, sum total overlap
//!    for i in (0..10).step_by(3) {
//!        sim += laps
//!            .seek(i, i + 2, &mut cursor)
//!            .map(|iv| cmp::min(i + 2, iv.stop) - cmp::max(i, iv.start))
//!            .sum::<i32>();
//!    }
//!    assert_eq!(sim, 4);
//! ```
// TODO: Add benchmarks
use std::cmp::Ordering;

#[derive(Eq, Debug, Hash)]
pub struct Interval<T: Eq> {
    pub start: i32,
    pub stop: i32,
    pub val: T,
}

/// Primary object of the library. The public intervals holds all the intervals and can be used for
/// iterating / pulling values out of the tree.
#[derive(Debug)]
pub struct Lapper<T: Eq> {
    pub intervals: Vec<Interval<T>>,
    max_len: i32,
    cursor: usize,
}

impl<T: Eq> Ord for Interval<T> {
    #[inline]
    fn cmp(&self, other: &Interval<T>) -> Ordering {
        if self.start < other.start {
            return Ordering::Less;
        } else if other.start < self.start {
            return Ordering::Greater;
        } else {
            return self.stop.cmp(&other.stop);
        }
    }
}

impl<T: Eq> PartialOrd for Interval<T> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(&other))
    }
}

impl<T: Eq> PartialEq for Interval<T> {
    #[inline]
    fn eq(&self, other: &Interval<T>) -> bool {
        self.start == other.start && self.stop == other.stop
    }
}

impl<T: Eq> Interval<T> {
    pub fn overlap(&self, start: i32, stop: i32) -> bool {
        self.start < stop && self.stop > start
    }
}

impl<T: Eq> Lapper<T> {
    pub fn new(mut intervals: Vec<Interval<T>>) -> Self {
        intervals.sort();
        let mut max_len = 0;
        for interval in intervals.iter() {
            if interval.stop - interval.start > max_len {
                max_len = interval.stop - interval.start;
            }
        }
        let lapper = Lapper {
            intervals,
            max_len,
            cursor: 0,
        };
        lapper
    }

    pub fn len(&self) -> usize {
        self.intervals.len()
    }

    pub fn iter<'a>(&'a self) -> IterLapper<'a, T> {
        IterLapper {
            inner: self,
            pos: 0,
        }
    }

    fn lower_bound(&self, start: i32) -> usize {
        let mut result = 0;
        let mut count = self.intervals.len();
        let mut step: usize;
        let mut pos: usize;

        while count != 0 {
            step = count / 2;
            pos = result + step;
            if self.intervals[pos].start < start {
                result = pos + 1;
                count -= step + 1;
            } else {
                count = step;
            }
        }
        result
    }

    /// Find all intervals that overlap start .. stop
    pub fn find<'a>(&'a self, start: i32, stop: i32) -> IterFind<'a, T> {
        IterFind {
            inner: self,
            off: self.lower_bound(start - self.max_len),
            end: self.intervals.len(),
            start,
            stop,
        }
    }

    /// Find all intevals that overlap start .. stop. This method will work when queries
    /// to this lapper are in sorted (start) order. It uses a linear search from the last query
    /// instead of a binary search. A reference to a cursor must be passed in. This reference will
    /// be modified and should be reused in the next query. This allows seek to not need to make
    /// the lapper object mutable, and thus use the same lapper accross threads.
    pub fn seek<'a>(&'a self, start: i32, stop: i32, cursor: &mut usize) -> IterFind<'a, T> {
        if *cursor == 0 || (*cursor < self.intervals.len() && self.intervals[*cursor].start > start)
        //if *cursor == 0 || self.intervals[*cursor].start > start {
        {
            *cursor = self.lower_bound(start - self.max_len);
        }

        while *cursor + 1 < self.intervals.len()
            && self.intervals[*cursor + 1].start < (start - self.max_len)
        {
            *cursor += 1;
        }

        IterFind {
            inner: self,
            off: *cursor,
            end: self.intervals.len(),
            start,
            stop,
        }
    }
}

/// Find Iterator
pub struct IterFind<'a, T>
where
    T: Eq + 'a,
{
    inner: &'a Lapper<T>,
    off: usize,
    end: usize,
    start: i32,
    stop: i32,
}

impl<'a, T: Eq> Iterator for IterFind<'a, T> {
    type Item = &'a Interval<T>;

    fn next(&mut self) -> Option<Self::Item> {
        while self.off < self.end {
            let interval = &self.inner.intervals[self.off];
            self.off += 1;
            if interval.overlap(self.start, self.stop) {
                return Some(interval);
            }
        }
        None
    }
}

/// Lapper Iterator
pub struct IterLapper<'a, T>
where
    T: Eq + 'a,
{
    inner: &'a Lapper<T>,
    pos: usize,
}

impl<'a, T: Eq> Iterator for IterLapper<'a, T> {
    type Item = &'a Interval<T>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.pos >= self.inner.intervals.len() {
            None
        } else {
            self.pos += 1;
            self.inner.intervals.get(self.pos - 1)
        }
    }
}

impl<T: Eq> IntoIterator for Lapper<T> {
    type Item = Interval<T>;
    type IntoIter = ::std::vec::IntoIter<Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.intervals.into_iter()
    }
}

impl<'a, T: Eq> IntoIterator for &'a Lapper<T> {
    type Item = &'a Interval<T>;
    type IntoIter = std::slice::Iter<'a, Interval<T>>;

    fn into_iter(self) -> std::slice::Iter<'a, Interval<T>> {
        self.intervals.iter()
    }
}

impl<'a, T: Eq> IntoIterator for &'a mut Lapper<T> {
    type Item = &'a mut Interval<T>;
    type IntoIter = std::slice::IterMut<'a, Interval<T>>;

    fn into_iter(self) -> std::slice::IterMut<'a, Interval<T>> {
        self.intervals.iter_mut()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    type Iv = Interval<u32>;
    fn setup_nonoverlapping() -> Lapper<u32> {
        let data: Vec<Iv> = (0..100)
            .step_by(20)
            .map(|x| Iv {
                start: x,
                stop: x + 10,
                val: 0,
            })
            .collect();
        let lapper = Lapper::new(data);
        lapper
    }
    fn setup_overlapping() -> Lapper<u32> {
        let data: Vec<Iv> = (0..100)
            .step_by(10)
            .map(|x| Iv {
                start: x,
                stop: x + 15,
                val: 0,
            })
            .collect();
        let lapper = Lapper::new(data);
        lapper
    }
    fn setup_single() -> Lapper<u32> {
        let data: Vec<Iv> = vec![Iv {
            start: 10,
            stop: 35,
            val: 0,
        }];
        let lapper = Lapper::new(data);
        lapper
    }

    // Test that a query stop that hits an interval start returns no interval
    #[test]
    fn test_query_stop_interval_start() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        assert_eq!(None, lapper.find(15, 20).next());
        assert_eq!(None, lapper.seek(15, 20, &mut cursor).next())
    }

    // Test that a query start that hits an interval end returns no interval
    #[test]
    fn test_query_start_interval_stop() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        assert_eq!(None, lapper.find(30, 35).next());
        assert_eq!(None, lapper.seek(30, 35, &mut cursor).next())
    }

    // Test that a query that overlaps the start of an interval returns that interval
    #[test]
    fn test_query_overlaps_interval_start() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(15, 25).next());
        assert_eq!(Some(&expected), lapper.seek(15, 25, &mut cursor).next())
    }

    // Test that a query that overlaps the stop of an interval returns that interval
    #[test]
    fn test_query_overlaps_interval_stop() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(25, 35).next());
        assert_eq!(Some(&expected), lapper.seek(25, 35, &mut cursor).next())
    }

    // Test that a query that is enveloped by interval returns interval
    #[test]
    fn test_interval_envelops_query() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(22, 27).next());
        assert_eq!(Some(&expected), lapper.seek(22, 27, &mut cursor).next())
    }

    // Test that a query that envolops an interval returns that interval
    #[test]
    fn test_query_envolops_interval() {
        let lapper = setup_nonoverlapping();
        let mut cursor = 0;
        let expected = Iv {
            start: 20,
            stop: 30,
            val: 0,
        };
        assert_eq!(Some(&expected), lapper.find(15, 35).next());
        assert_eq!(Some(&expected), lapper.seek(15, 35, &mut cursor).next())
    }

    #[test]
    fn test_overlapping_intervals() {
        let lapper = setup_overlapping();
        let mut cursor = 0;
        let e1 = Iv {
            start: 0,
            stop: 15,
            val: 0,
        };
        let e2 = Iv {
            start: 10,
            stop: 25,
            val: 0,
        };
        assert_eq!(vec![&e1, &e2], lapper.find(8, 20).collect::<Vec<&Iv>>());
        assert_eq!(
            vec![&e1, &e2],
            lapper.seek(8, 20, &mut cursor).collect::<Vec<&Iv>>()
        );
    }

    // Test that it's not possible to induce index out of bounds by pushing the cursor past the end
    // of the lapper.
    #[test]
    fn test_seek_over_len() {
        let lapper = setup_nonoverlapping();
        let single = setup_single();
        let mut cursor: usize = 0;

        for interval in lapper.iter() {
            for o_interval in single.seek(interval.start, interval.stop, &mut cursor) {
                println!("{:#?}", o_interval);
            }
        }
    }
}