1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
use crate::matrix::*;
use russell_openblas::*;

/// Performs the eigen-decomposition of a square matrix
///
/// Computes the eigenvalues `l` and right eigenvectors `v`, such that:
///
/// ```text
/// a ⋅ vj = lj ⋅ vj
/// ```
///
/// where `lj` is the component j of `l` and `vj` is the column j of `v`.
///
/// # Output
///
/// * `l_real` -- (m) eigenvalues; real part
/// * `l_imag` -- (m) eigenvalues; imaginary part
/// * `v_real` -- (m,m) **right** eigenvectors (as columns); real part
/// * `v_imag` -- (m,m) **right** eigenvectors (as columns); imaginary part
///
/// # Input
///
/// * `a` -- (m,m) general matrix [will be modified]
///
/// # Note
///
/// * The matrix `a` will be modified
///
/// # Similarity transformation
///
/// The eigen-decomposition leads to a similarity transformation like so:
///
/// ```text
/// a = v⋅λ⋅v⁻¹
/// ```
///
/// where `v` is a matrix whose columns are the m linearly independent eigenvectors of `a`,
/// and `λ` is a matrix whose diagonal are the eigenvalues of `a`. Thus, the following is valid:
///
/// ```text
/// a⋅v = v⋅λ
/// ```
///
/// Let us define the error `err` as follows:
///
/// ```text
/// err := a⋅v - v⋅λ
/// ```
///
/// # Example
///
/// ```
/// # fn main() -> Result<(), &'static str> {
/// // import
/// use russell_lab::*;
/// use russell_chk::*;
///
/// // set matrix
/// let data: &[&[f64]] = &[
///     &[2.0, 0.0, 0.0],
///     &[0.0, 3.0, 4.0],
///     &[0.0, 4.0, 9.0],
/// ];
/// let mut a = Matrix::from(data)?;
///
/// // allocate output arrays
/// let m = a.nrow();
/// let mut l_real = vec![0.0; m];
/// let mut l_imag = vec![0.0; m];
/// let mut v_real = Matrix::new(m, m);
/// let mut v_imag = Matrix::new(m, m);
///
/// // perform the eigen-decomposition
/// eigen_decomp(
///     &mut l_real,
///     &mut l_imag,
///     &mut v_real,
///     &mut v_imag,
///     &mut a,
/// )?;
///
/// // check results
/// let l_real_correct = "[11.0, 1.0, 2.0]";
/// let l_imag_correct = "[0.0, 0.0, 0.0]";
/// let v_real_correct = "┌                      ┐\n\
///                       │  0.000  0.000  1.000 │\n\
///                       │  0.447  0.894  0.000 │\n\
///                       │  0.894 -0.447  0.000 │\n\
///                       └                      ┘";
/// let v_imag_correct = "┌       ┐\n\
///                       │ 0 0 0 │\n\
///                       │ 0 0 0 │\n\
///                       │ 0 0 0 │\n\
///                       └       ┘";
/// assert_eq!(format!("{:?}", l_real), l_real_correct);
/// assert_eq!(format!("{:?}", l_imag), l_imag_correct);
/// assert_eq!(format!("{:.3}", v_real), v_real_correct);
/// assert_eq!(format!("{}", v_imag), v_imag_correct);
///
/// // check eigen-decomposition (similarity transformation) of a
/// // symmetric matrix with real-only eigenvalues and eigenvectors
/// let a_copy = Matrix::from(data)?;
/// let lam = Matrix::diagonal(&l_real);
/// let mut a_v = Matrix::new(m, m);
/// let mut v_l = Matrix::new(m, m);
/// let mut err = Matrix::filled(m, m, f64::MAX);
/// mat_mat_mul(&mut a_v, 1.0, &a_copy, &v_real)?;
/// mat_mat_mul(&mut v_l, 1.0, &v_real, &lam)?;
/// add_matrices(&mut err, 1.0, &a_v, -1.0, &v_l)?;
/// assert_approx_eq!(err.norm(EnumMatrixNorm::Max), 0.0, 1e-15);
/// # Ok(())
/// # }
/// ```
pub fn eigen_decomp(
    l_real: &mut [f64],
    l_imag: &mut [f64],
    v_real: &mut Matrix,
    v_imag: &mut Matrix,
    a: &mut Matrix,
) -> Result<(), &'static str> {
    let (m, n) = (a.nrow, a.ncol);
    if m != n {
        return Err("matrix must be square");
    }
    let m_i32 = to_i32(m);
    let mut v = vec![0.0; m * m];
    let mut empty: Vec<f64> = Vec::new();
    dgeev(
        false,
        true,
        m_i32,
        &mut a.data,
        m_i32,
        l_real,
        l_imag,
        &mut empty,
        1,
        &mut v,
        m_i32,
    )?;
    dgeev_data(&mut v_real.data, &mut v_imag.data, l_imag, &v)?;
    Ok(())
}

/// Performs the eigen-decomposition of a square matrix (left and right)
///
/// Computes the eigenvalues `l` and left eigenvectors `u`, such that:
///
/// ```text
/// ujᴴ ⋅ a = lj ⋅ ujᴴ
/// ```
///
/// where `lj` is the component j of `l` and `ujᴴ` is the column j of `uᴴ`,
/// with `uᴴ` being the conjugate-transpose of `u`.
///
/// Also, computes the right eigenvectors `v`, such that:
///
/// ```text
/// a ⋅ vj = lj ⋅ vj
/// ```
///
/// where `vj` is the column j of `v`.
///
/// # Output
///
/// * `l_real` -- (m) eigenvalues; real part
/// * `l_imag` -- (m) eigenvalues; imaginary part
/// * `u_real` -- (m,m) **left** eigenvectors (as columns); real part
/// * `u_imag` -- (m,m) **left** eigenvectors (as columns); imaginary part
/// * `v_real` -- (m,m) **right** eigenvectors (as columns); real part
/// * `v_imag` -- (m,m) **right** eigenvectors (as columns); imaginary part
///
/// # Input
///
/// * `a` -- (m,m) general matrix [will be modified]
///
/// # Note
///
/// * The matrix `a` will be modified
///
/// # Example
///
/// ```
/// # fn main() -> Result<(), &'static str> {
/// // import
/// use russell_lab::*;
///
/// // set matrix
/// let data: &[&[f64]] = &[
///     &[0.0, 1.0, 0.0],
///     &[0.0, 0.0, 1.0],
///     &[1.0, 0.0, 0.0],
/// ];
/// let mut a = Matrix::from(data)?;
///
/// // allocate output arrays
/// let m = a.nrow();
/// let mut l_real = vec![0.0; m];
/// let mut l_imag = vec![0.0; m];
/// let mut u_real = Matrix::new(m, m);
/// let mut u_imag = Matrix::new(m, m);
/// let mut v_real = Matrix::new(m, m);
/// let mut v_imag = Matrix::new(m, m);
///
/// // perform the eigen-decomposition
/// eigen_decomp_lr(
///     &mut l_real,
///     &mut l_imag,
///     &mut u_real,
///     &mut u_imag,
///     &mut v_real,
///     &mut v_imag,
///     &mut a,
/// )?;
///
/// // check results
/// let l_real_correct = "[-0.5, -0.5, 0.9999999999999998]";
/// let l_imag_correct = "[0.8660254037844389, -0.8660254037844389, 0.0]";
/// let u_real_correct = "┌                      ┐\n\
///                       │ -0.289 -0.289 -0.577 │\n\
///                       │  0.577  0.577 -0.577 │\n\
///                       │ -0.289 -0.289 -0.577 │\n\
///                       └                      ┘";
/// let u_imag_correct = "┌                      ┐\n\
///                       │ -0.500  0.500  0.000 │\n\
///                       │  0.000 -0.000  0.000 │\n\
///                       │  0.500 -0.500  0.000 │\n\
///                       └                      ┘";
/// let v_real_correct = "┌                      ┐\n\
///                       │  0.577  0.577 -0.577 │\n\
///                       │ -0.289 -0.289 -0.577 │\n\
///                       │ -0.289 -0.289 -0.577 │\n\
///                       └                      ┘";
/// let v_imag_correct = "┌                      ┐\n\
///                       │  0.000 -0.000  0.000 │\n\
///                       │  0.500 -0.500  0.000 │\n\
///                       │ -0.500  0.500  0.000 │\n\
///                       └                      ┘";
/// assert_eq!(format!("{:?}", l_real), l_real_correct);
/// assert_eq!(format!("{:?}", l_imag), l_imag_correct);
/// assert_eq!(format!("{:.3}", u_real), u_real_correct);
/// assert_eq!(format!("{:.3}", u_imag), u_imag_correct);
/// assert_eq!(format!("{:.3}", v_real), v_real_correct);
/// assert_eq!(format!("{:.3}", v_imag), v_imag_correct);
/// # Ok(())
/// # }
/// ```
pub fn eigen_decomp_lr(
    l_real: &mut [f64],
    l_imag: &mut [f64],
    u_real: &mut Matrix,
    u_imag: &mut Matrix,
    v_real: &mut Matrix,
    v_imag: &mut Matrix,
    a: &mut Matrix,
) -> Result<(), &'static str> {
    let (m, n) = (a.nrow, a.ncol);
    if m != n {
        return Err("matrix must be square");
    }
    let m_i32 = to_i32(m);
    let mut u = vec![0.0; m * m];
    let mut v = vec![0.0; m * m];
    dgeev(
        true,
        true,
        m_i32,
        &mut a.data,
        m_i32,
        l_real,
        l_imag,
        &mut u,
        m_i32,
        &mut v,
        m_i32,
    )?;
    dgeev_data_lr(
        &mut u_real.data,
        &mut u_imag.data,
        &mut v_real.data,
        &mut v_imag.data,
        l_imag,
        &u,
        &v,
    )?;
    Ok(())
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#[cfg(test)]
mod tests {
    use super::*;
    use crate::EnumMatrixNorm;
    use russell_chk::*;

    fn check_real_eigen(data: &[&[f64]], v: &Matrix, l: &[f64]) -> Result<(), &'static str> {
        let a = Matrix::from(data)?;
        let m = a.nrow;
        let lam = Matrix::diagonal(&l);
        let mut a_v = Matrix::new(m, m);
        let mut v_l = Matrix::new(m, m);
        let mut err = Matrix::filled(m, m, f64::MAX);
        mat_mat_mul(&mut a_v, 1.0, &a, &v)?;
        mat_mat_mul(&mut v_l, 1.0, &v, &lam)?;
        add_matrices(&mut err, 1.0, &a_v, -1.0, &v_l)?;
        assert_approx_eq!(err.norm(EnumMatrixNorm::Max), 0.0, 1e-15);
        Ok(())
    }

    #[test]
    fn eigen_decomp_fails_on_non_square() {
        let mut a = Matrix::new(3, 4);
        let m = a.nrow;
        let mut l_real = vec![0.0; m];
        let mut l_imag = vec![0.0; m];
        let mut v_real = Matrix::new(m, m);
        let mut v_imag = Matrix::new(m, m);
        assert_eq!(
            eigen_decomp(&mut l_real, &mut l_imag, &mut v_real, &mut v_imag, &mut a),
            Err("matrix must be square")
        );
    }

    #[test]
    fn eigen_decomp_lr_fails_on_non_square() {
        let mut a = Matrix::new(3, 4);
        let m = a.nrow;
        let mut l_real = vec![0.0; m];
        let mut l_imag = vec![0.0; m];
        let mut u_real = Matrix::new(m, m);
        let mut u_imag = Matrix::new(m, m);
        let mut v_real = Matrix::new(m, m);
        let mut v_imag = Matrix::new(m, m);
        assert_eq!(
            eigen_decomp_lr(
                &mut l_real,
                &mut l_imag,
                &mut u_real,
                &mut u_imag,
                &mut v_real,
                &mut v_imag,
                &mut a,
            ),
            Err("matrix must be square"),
        );
    }

    #[test]
    fn eigen_decomp_works() -> Result<(), &'static str> {
        #[rustfmt::skip]
        let data: &[&[f64]] = &[
            &[0.0, 1.0, 0.0],
            &[0.0, 0.0, 1.0],
            &[1.0, 0.0, 0.0],
        ];
        let mut a = Matrix::from(data)?;
        let m = a.nrow;
        let mut l_real = vec![0.0; m];
        let mut l_imag = vec![0.0; m];
        let mut v_real = Matrix::new(m, m);
        let mut v_imag = Matrix::new(m, m);
        eigen_decomp(&mut l_real, &mut l_imag, &mut v_real, &mut v_imag, &mut a)?;
        let s3 = f64::sqrt(3.0);
        let l_real_correct = &[-0.5, -0.5, 1.0];
        let l_imag_correct = &[s3 / 2.0, -s3 / 2.0, 0.0];
        #[rustfmt::skip]
        let v_real_correct = Matrix::from(&[
            &[ 1.0/s3,  1.0/s3, -1.0/s3],
            &[-0.5/s3, -0.5/s3, -1.0/s3],
            &[-0.5/s3, -0.5/s3, -1.0/s3],
        ])?;
        #[rustfmt::skip]
        let v_imag_correct = Matrix::from(&[
            &[ 0.0,  0.0, 0.0],
            &[ 0.5, -0.5, 0.0],
            &[-0.5,  0.5, 0.0],
        ])?;
        assert_vec_approx_eq!(l_real, l_real_correct, 1e-15);
        assert_vec_approx_eq!(l_imag, l_imag_correct, 1e-15);
        assert_vec_approx_eq!(v_real.data, v_real_correct.data, 1e-15);
        assert_vec_approx_eq!(v_imag.data, v_imag_correct.data, 1e-15);
        Ok(())
    }

    #[test]
    fn eigen_decomp_rep_works() -> Result<(), &'static str> {
        // rep: repeated eigenvalues
        #[rustfmt::skip]
        let data: &[&[f64]] = &[
            &[2.0, 0.0, 0.0, 0.0],
            &[1.0, 2.0, 0.0, 0.0],
            &[0.0, 1.0, 3.0, 0.0],
            &[0.0, 0.0, 1.0, 3.0],
        ];
        let mut a = Matrix::from(data)?;
        let m = a.nrow;
        let mut l_real = vec![0.0; m];
        let mut l_imag = vec![0.0; m];
        let mut v_real = Matrix::new(m, m);
        let mut v_imag = Matrix::new(m, m);
        eigen_decomp(&mut l_real, &mut l_imag, &mut v_real, &mut v_imag, &mut a)?;
        let l_real_correct = &[3.0, 3.0, 2.0, 2.0];
        let l_imag_correct = &[0.0, 0.0, 0.0, 0.0];
        let os3 = 1.0 / f64::sqrt(3.0);
        #[rustfmt::skip]
        let v_real_correct = Matrix::from(&[
            &[ 0.0,  0.0,  0.0,  0.0],
            &[ 0.0,  0.0,  os3, -os3],
            &[ 0.0,  0.0, -os3,  os3],
            &[ 1.0, -1.0,  os3, -os3],
        ])?;
        #[rustfmt::skip]
        let v_imag_correct = Matrix::from(&[
            &[0.0, 0.0, 0.0, 0.0],
            &[0.0, 0.0, 0.0, 0.0],
            &[0.0, 0.0, 0.0, 0.0],
            &[0.0, 0.0, 0.0, 0.0],
        ])?;
        assert_vec_approx_eq!(l_real, l_real_correct, 1e-15);
        assert_vec_approx_eq!(l_imag, l_imag_correct, 1e-15);
        assert_vec_approx_eq!(v_real.data, v_real_correct.data, 1e-15);
        assert_vec_approx_eq!(v_imag.data, v_imag_correct.data, 1e-15);
        check_real_eigen(&data, &v_real, &l_real)?;
        Ok(())
    }

    #[test]
    fn eigen_decomp_lr_works() -> Result<(), &'static str> {
        #[rustfmt::skip]
        let data: &[&[f64]] = &[
            &[0.0, 1.0, 0.0],
            &[0.0, 0.0, 1.0],
            &[1.0, 0.0, 0.0],
        ];
        let mut a = Matrix::from(data)?;
        let m = a.nrow;
        let mut l_real = vec![0.0; m];
        let mut l_imag = vec![0.0; m];
        let mut u_real = Matrix::new(m, m);
        let mut u_imag = Matrix::new(m, m);
        let mut v_real = Matrix::new(m, m);
        let mut v_imag = Matrix::new(m, m);
        eigen_decomp_lr(
            &mut l_real,
            &mut l_imag,
            &mut u_real,
            &mut u_imag,
            &mut v_real,
            &mut v_imag,
            &mut a,
        )?;
        let s3 = f64::sqrt(3.0);
        let l_real_correct = &[-0.5, -0.5, 1.0];
        let l_imag_correct = &[s3 / 2.0, -s3 / 2.0, 0.0];
        #[rustfmt::skip]
        let u_real_correct = Matrix::from(&[
            &[-0.5/s3, -0.5/s3, -1.0/s3],
            &[ 1.0/s3,  1.0/s3, -1.0/s3],
            &[-0.5/s3, -0.5/s3, -1.0/s3],
        ])?;
        #[rustfmt::skip]
        let u_imag_correct = Matrix::from(&[
            &[-0.5,  0.5, 0.0],
            &[ 0.0,  0.0, 0.0],
            &[ 0.5, -0.5, 0.0],
        ])?;
        #[rustfmt::skip]
        let v_real_correct = Matrix::from(&[
            &[ 1.0/s3,  1.0/s3, -1.0/s3],
            &[-0.5/s3, -0.5/s3, -1.0/s3],
            &[-0.5/s3, -0.5/s3, -1.0/s3],
        ])?;
        #[rustfmt::skip]
        let v_imag_correct = Matrix::from(&[
            &[ 0.0,  0.0, 0.0],
            &[ 0.5, -0.5, 0.0],
            &[-0.5,  0.5, 0.0],
        ])?;
        assert_vec_approx_eq!(l_real, l_real_correct, 1e-15);
        assert_vec_approx_eq!(l_imag, l_imag_correct, 1e-15);
        assert_vec_approx_eq!(u_real.data, u_real_correct.data, 1e-15);
        assert_vec_approx_eq!(u_imag.data, u_imag_correct.data, 1e-15);
        assert_vec_approx_eq!(v_real.data, v_real_correct.data, 1e-15);
        assert_vec_approx_eq!(v_imag.data, v_imag_correct.data, 1e-15);
        Ok(())
    }
}