1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use crate::windows::WindowFunction;
use crate::sinc::make_sincs;
use core::arch::x86_64::{__m128, __m128d};
use core::arch::x86_64::{_mm_add_pd, _mm_hadd_pd, _mm_loadu_pd, _mm_mul_pd, _mm_setzero_pd, _mm_store_sd};
use core::arch::x86_64::{_mm_add_ps, _mm_hadd_ps, _mm_loadu_ps, _mm_mul_ps, _mm_setzero_ps, _mm_store_ss};
use crate::asynchro::SincInterpolator;
use crate::error::{MissingCpuFeature, CpuFeature};
use crate::Sample;

/// Collection of cpu features required for this interpolator.
static FEATURES: &[CpuFeature] = &[CpuFeature::Sse3];

/// Trait governing what can be done with an SseSample.
pub trait SseSample: Sized {
    type Sinc;

    /// Pack sincs into a vector.
    /// 
    /// # Safety
    /// 
    /// This is unsafe because it uses target_enable dispatching. There are no
    /// special requirements from the caller.
    unsafe fn pack_sincs(sincs: Vec<Vec<Self>>) -> Vec<Vec<Self::Sinc>>;

    /// Interpolate a sinc sample.
    /// 
    /// # Safety
    /// 
    /// The caller must ensure that the various indexes are not out of bounds
    /// in the collection of sincs.
    unsafe fn get_sinc_interpolated_unsafe(
        wave: &[Self],
        index: usize,
        subindex: usize,
        sincs: &[Vec<Self::Sinc>],
        length: usize,
    ) -> Self;
}

impl SseSample for f32 {
    type Sinc = __m128;

    #[target_feature(enable = "sse3")]
    unsafe fn pack_sincs(sincs: Vec<Vec<Self>>) -> Vec<Vec<Self::Sinc>> {
        let mut packed_sincs = Vec::new();
        for sinc in sincs.iter() {
            let mut packed = Vec::new();
            for elements in sinc.chunks(4) {
                let packed_elems = _mm_loadu_ps(&elements[0]);
                packed.push(packed_elems);
            }
            packed_sincs.push(packed);
        }
        packed_sincs
    }

    #[target_feature(enable = "sse3")]
    unsafe fn get_sinc_interpolated_unsafe(
        wave: &[f32],
        index: usize,
        subindex: usize,
        sincs: &[Vec<Self::Sinc>],
        length: usize,
    ) -> f32 {
        let sinc = sincs.get_unchecked(subindex);
        let wave_cut = &wave[index..(index + length)];
        let mut acc0 = _mm_setzero_ps();
        let mut acc1 = _mm_setzero_ps();
        let mut w_idx = 0;
        let mut s_idx = 0;
        for _ in 0..wave_cut.len() / 8 {
            let w0 = _mm_loadu_ps(wave_cut.get_unchecked(w_idx));
            let w1 = _mm_loadu_ps(wave_cut.get_unchecked(w_idx + 4));
            let s0 = _mm_mul_ps(w0, *sinc.get_unchecked(s_idx));
            let s1 = _mm_mul_ps(w1, *sinc.get_unchecked(s_idx + 1));
            acc0 = _mm_add_ps(acc0, s0);
            acc1 = _mm_add_ps(acc1, s1);
            w_idx += 8;
            s_idx += 2;
        }
        let temp4 = _mm_add_ps(acc0, acc1);
        let temp2 = _mm_hadd_ps(temp4, temp4);
        let temp1 = _mm_hadd_ps(temp2, temp2);
        let mut result = 0.0;
        _mm_store_ss(&mut result, temp1);
        result
    }
}

impl SseSample for f64 {
    type Sinc = __m128d;

    #[target_feature(enable = "sse3")]
    unsafe fn pack_sincs(sincs: Vec<Vec<f64>>) -> Vec<Vec<Self::Sinc>> {
        let mut packed_sincs = Vec::new();
        for sinc in sincs.iter() {
            let mut packed = Vec::new();
            for elements in sinc.chunks(2) {
                let packed_elems = _mm_loadu_pd(&elements[0]);
                packed.push(packed_elems);
            }
            packed_sincs.push(packed);
        }
        packed_sincs
    }

    #[target_feature(enable = "sse3")]
    unsafe fn get_sinc_interpolated_unsafe(
        wave: &[f64],
        index: usize,
        subindex: usize,
        sincs: &[Vec<Self::Sinc>],
        length: usize,
    ) -> f64 {
        let sinc = sincs.get_unchecked(subindex);
        let wave_cut = &wave[index..(index + length)];
        let mut acc0 = _mm_setzero_pd();
        let mut acc1 = _mm_setzero_pd();
        let mut acc2 = _mm_setzero_pd();
        let mut acc3 = _mm_setzero_pd();
        let mut w_idx = 0;
        let mut s_idx = 0;
        for _ in 0..wave_cut.len() / 8 {
            let w0 = _mm_loadu_pd(wave_cut.get_unchecked(w_idx));
            let w1 = _mm_loadu_pd(wave_cut.get_unchecked(w_idx + 2));
            let w2 = _mm_loadu_pd(wave_cut.get_unchecked(w_idx + 4));
            let w3 = _mm_loadu_pd(wave_cut.get_unchecked(w_idx + 6));
            let s0 = _mm_mul_pd(w0, *sinc.get_unchecked(s_idx));
            let s1 = _mm_mul_pd(w1, *sinc.get_unchecked(s_idx + 1));
            let s2 = _mm_mul_pd(w2, *sinc.get_unchecked(s_idx + 2));
            let s3 = _mm_mul_pd(w3, *sinc.get_unchecked(s_idx + 3));
            acc0 = _mm_add_pd(acc0, s0);
            acc1 = _mm_add_pd(acc1, s1);
            acc2 = _mm_add_pd(acc2, s2);
            acc3 = _mm_add_pd(acc3, s3);
            w_idx += 8;
            s_idx += 4;
        }
        let temp2_0 = _mm_add_pd(acc0, acc1);
        let temp2_1 = _mm_add_pd(acc2, acc3);
        let temp2 = _mm_hadd_pd(temp2_0, temp2_1);
        let temp1 = _mm_hadd_pd(temp2, temp2);
        let mut result = 0.0;
        _mm_store_sd(&mut result, temp1);
        result
    }
}

/// A SSE accelerated interpolator
pub struct SseInterpolator<T> where T: SseSample {
    sincs: Vec<Vec<T::Sinc>>,
    length: usize,
    nbr_sincs: usize,
}

impl<T> SincInterpolator<T> for SseInterpolator<T> where T: SseSample {
    /// Calculate the scalar produt of an input wave and the selected sinc filter
    fn get_sinc_interpolated(&self, wave: &[T], index: usize, subindex: usize) -> T {
        assert!((index + self.length) < wave.len(), "Tried to interpolate for index {}, max for the given input is {}", index, wave.len()-self.length-1);
        assert!(subindex < self.nbr_sincs, "Tried to use sinc subindex {}, max is {}", subindex, self.nbr_sincs-1);
        unsafe { T::get_sinc_interpolated_unsafe(wave, index, subindex, &self.sincs, self.length) }
    }

    fn len(&self) -> usize {
        self.length
    }

    fn nbr_sincs(&self) -> usize {
        self.nbr_sincs
    }
}

impl<T> SseInterpolator<T> where T: Sample {
    /// Create a new SseInterpolator
    ///
    /// Parameters are:
    /// - `sinc_len`: Length of sinc functions.
    /// - `oversampling_factor`: Number of intermediate sincs (oversampling factor).
    /// - `f_cutoff`: Relative cutoff frequency.
    /// - `window`: Window function to use.
    pub fn new(
        sinc_len: usize,
        oversampling_factor: usize,
        f_cutoff: f32,
        window: WindowFunction,
    ) -> Result<Self, MissingCpuFeature> {
        if let Some(feature) = FEATURES.iter().find(|f| !f.is_detected()) {
            return Err(MissingCpuFeature(*feature));
        }

        assert!(sinc_len % 8 == 0, "Sinc length must be a multiple of 8.");
        let sincs = make_sincs(sinc_len, oversampling_factor, f_cutoff, window);
        let sincs = unsafe { <T as SseSample>::pack_sincs(sincs) };

        Ok(Self {
            sincs,
            length: sinc_len,
            nbr_sincs: oversampling_factor,
        })
    }
}

#[cfg(test)]
mod tests {
    use crate::asynchro::SincInterpolator;
    use crate::interpolator_sse::SseInterpolator;
    use crate::sinc::make_sincs;
    use crate::WindowFunction;
    use num_traits::Float;
    use rand::Rng;

    fn get_sinc_interpolated<T: Float>(wave: &[T], index: usize, sinc: &[T]) -> T {
        let wave_cut = &wave[index..(index + sinc.len())];
        wave_cut
            .iter()
            .zip(sinc.iter())
            .fold(T::zero(), |acc, (x, y)| acc + *x * *y)
    }

    #[test]
    fn test_sse_interpolator_64() {
        let mut rng = rand::thread_rng();
        let mut wave = Vec::new();
        for _ in 0..2048 {
            wave.push(rng.gen::<f64>());
        }
        let sinc_len = 256;
        let f_cutoff = 0.9473371669037001;
        let oversampling_factor = 256;
        let window = WindowFunction::BlackmanHarris2;
        let sincs = make_sincs::<f64>(sinc_len, oversampling_factor, f_cutoff, window);
        let interpolator =
            SseInterpolator::<f64>::new(sinc_len, oversampling_factor, f_cutoff, window).unwrap();
        let value = interpolator.get_sinc_interpolated(&wave, 333, 123);
        let check = get_sinc_interpolated(&wave, 333, &sincs[123]);
        assert!((value - check).abs() < 1.0e-9);
    }

    #[test]
    fn test_sse_interpolator_32() {
        let mut rng = rand::thread_rng();
        let mut wave = Vec::new();
        for _ in 0..2048 {
            wave.push(rng.gen::<f32>());
        }
        let sinc_len = 256;
        let f_cutoff = 0.9473371669037001;
        let oversampling_factor = 256;
        let window = WindowFunction::BlackmanHarris2;
        let sincs = make_sincs::<f32>(sinc_len, oversampling_factor, f_cutoff, window);
        let interpolator =
            SseInterpolator::<f32>::new(sinc_len, oversampling_factor, f_cutoff, window).unwrap();
        let value = interpolator.get_sinc_interpolated(&wave, 333, 123);
        let check = get_sinc_interpolated(&wave, 333, &sincs[123]);
        assert!((value - check).abs() < 1.0e-5);
    }
}