1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
use crate::error::ResamplerConstructionError;
use crate::sinc::make_sincs;
use crate::windows::WindowFunction;
use num_complex::Complex;
use num_integer as integer;
use num_traits::Zero;
use std::sync::Arc;

use crate::error::{ResampleError, ResampleResult};
use crate::{update_mask_from_buffers, validate_buffers, Resampler, Sample};
use realfft::{ComplexToReal, RealFftPlanner, RealToComplex};

/// A helper for resampling a single chunk of data.
struct FftResampler<T> {
    fft_size_in: usize,
    fft_size_out: usize,
    filter_f: Vec<Complex<T>>,
    fft: Arc<dyn RealToComplex<T>>,
    ifft: Arc<dyn ComplexToReal<T>>,
    scratch_fw: Vec<Complex<T>>,
    scratch_inv: Vec<Complex<T>>,
    input_buf: Vec<T>,
    input_f: Vec<Complex<T>>,
    output_f: Vec<Complex<T>>,
    output_buf: Vec<T>,
}

/// A synchronous resampler that needs a fixed number of audio frames for input
/// and returns a variable number of frames.
///
/// The resampling is done by FFT:ing the input data. The spectrum is then extended or
/// truncated as well as multiplied with an antialiasing filter
/// before it's inverse transformed to get the resampled waveforms.
pub struct FftFixedIn<T> {
    nbr_channels: usize,
    chunk_size_in: usize,
    fft_size_in: usize,
    fft_size_out: usize,
    overlaps: Vec<Vec<T>>,
    input_buffers: Vec<Vec<T>>,
    channel_mask: Vec<bool>,
    saved_frames: usize,
    resampler: FftResampler<T>,
}

/// A synchronous resampler that needs a varying number of audio frames for input
/// and returns a fixed number of frames.
///
/// The resampling is done by FFT:ing the input data. The spectrum is then extended or
/// truncated as well as multiplied with an antialiasing filter
/// before it's inverse transformed to get the resampled waveforms.
pub struct FftFixedOut<T> {
    nbr_channels: usize,
    chunk_size_out: usize,
    fft_size_in: usize,
    fft_size_out: usize,
    overlaps: Vec<Vec<T>>,
    output_buffers: Vec<Vec<T>>,
    channel_mask: Vec<bool>,
    saved_frames: usize,
    frames_needed: usize,
    resampler: FftResampler<T>,
}

/// A synchronous resampler that accepts a fixed number of audio frames for input
/// and returns a fixed number of frames.
///
/// The resampling is done by FFT:ing the input data. The spectrum is then extended or
/// truncated as well as multiplied with an antialiasing filter
/// before it's inverse transformed to get the resampled waveforms.
pub struct FftFixedInOut<T> {
    nbr_channels: usize,
    chunk_size_in: usize,
    chunk_size_out: usize,
    fft_size_in: usize,
    channel_mask: Vec<bool>,
    overlaps: Vec<Vec<T>>,
    resampler: FftResampler<T>,
}

fn validate_sample_rates(input: usize, output: usize) -> Result<(), ResamplerConstructionError> {
    if input == 0 || output == 0 {
        return Err(ResamplerConstructionError::InvalidSampleRate { input, output });
    }
    Ok(())
}

impl<T> FftResampler<T>
where
    T: Sample,
{
    //
    pub fn new(fft_size_in: usize, fft_size_out: usize) -> Self {
        // calculate antialiasing cutoff
        let cutoff = if fft_size_in > fft_size_out {
            0.4f32.powf(16.0 / fft_size_out as f32) * fft_size_out as f32 / fft_size_in as f32
        } else {
            0.4f32.powf(16.0 / fft_size_in as f32)
        };
        debug!(
            "Create new FftResampler, fft_size_in: {}, fft_size_out: {}, cutoff: {}",
            fft_size_in, fft_size_out, cutoff
        );
        let sinc = make_sincs::<T>(fft_size_in, 1, cutoff, WindowFunction::BlackmanHarris2);
        let mut filter_t: Vec<T> = vec![T::zero(); 2 * fft_size_in];
        let mut filter_f: Vec<Complex<T>> = vec![Complex::zero(); fft_size_in + 1];
        for (n, f) in filter_t.iter_mut().enumerate().take(fft_size_in) {
            *f = sinc[0][n] / T::coerce(2 * fft_size_in);
        }

        let input_f: Vec<Complex<T>> = vec![Complex::zero(); fft_size_in + 1];
        let input_buf: Vec<T> = vec![T::zero(); 2 * fft_size_in];
        let output_f: Vec<Complex<T>> = vec![Complex::zero(); fft_size_out + 1];
        let output_buf: Vec<T> = vec![T::zero(); 2 * fft_size_out];
        let mut planner = RealFftPlanner::<T>::new();
        let fft = planner.plan_fft_forward(2 * fft_size_in);
        let ifft = planner.plan_fft_inverse(2 * fft_size_out);
        fft.process(&mut filter_t, &mut filter_f).unwrap();
        let scratch_fw = fft.make_scratch_vec();
        let scratch_inv = ifft.make_scratch_vec();

        FftResampler {
            fft_size_in,
            fft_size_out,
            filter_f,
            fft,
            ifft,
            scratch_fw,
            scratch_inv,
            input_buf,
            input_f,
            output_f,
            output_buf,
        }
    }

    /// Resample a small chunk
    fn resample_unit(&mut self, wave_in: &[T], wave_out: &mut [T], overlap: &mut [T]) {
        // Copy to input buffer and clear padding area
        self.input_buf[0..self.fft_size_in].copy_from_slice(wave_in);
        for item in self
            .input_buf
            .iter_mut()
            .skip(self.fft_size_in)
            .take(self.fft_size_in)
        {
            *item = T::zero();
        }

        // FFT and store result in history, update index
        self.fft
            .process_with_scratch(&mut self.input_buf, &mut self.input_f, &mut self.scratch_fw)
            .unwrap();

        let new_len = if self.fft_size_in < self.fft_size_out {
            self.fft_size_in + 1
        } else {
            self.fft_size_out
        };

        // multiply with filter FT
        self.input_f
            .iter_mut()
            .take(new_len)
            .zip(self.filter_f.iter())
            .for_each(|(spec, filt)| *spec *= filt);

        // copy to modified spectrum
        self.output_f[0..new_len].copy_from_slice(&self.input_f[0..new_len]);
        for val in self.output_f[new_len..].iter_mut() {
            *val = Complex::zero();
        }
        // IFFT result, store result and overlap
        self.ifft
            .process_with_scratch(
                &mut self.output_f,
                &mut self.output_buf,
                &mut self.scratch_inv,
            )
            .unwrap();
        for (n, item) in wave_out.iter_mut().enumerate().take(self.fft_size_out) {
            *item = self.output_buf[n] + overlap[n];
        }
        overlap.copy_from_slice(&self.output_buf[self.fft_size_out..]);
    }
}

impl<T> FftFixedInOut<T>
where
    T: Sample,
{
    /// Create a new FftFixedInOut
    ///
    /// Parameters are:
    /// - `sample_rate_input`: Input sample rate, must be > 0.
    /// - `sample_rate_output`: Output sample rate, must be > 0.
    /// - `chunk_size_in`: desired length of input data in frames, actual value may be different.
    /// - `nbr_channels`: number of channels in input/output.
    pub fn new(
        sample_rate_input: usize,
        sample_rate_output: usize,
        chunk_size_in: usize,
        nbr_channels: usize,
    ) -> Result<Self, ResamplerConstructionError> {
        validate_sample_rates(sample_rate_input, sample_rate_output)?;

        debug!(
            "Create new FftFixedInOut, sample_rate_input: {}, sample_rate_output: {} chunk_size_in: {}, channels: {}",
            sample_rate_input, sample_rate_output, chunk_size_in, nbr_channels
        );

        let gcd = integer::gcd(sample_rate_input, sample_rate_output);
        let min_chunk_out = sample_rate_output / gcd;
        let wanted = chunk_size_in;
        let fft_chunks = (wanted as f32 / min_chunk_out as f32).ceil() as usize;
        let fft_size_out = fft_chunks * sample_rate_output / gcd;
        let fft_size_in = fft_chunks * sample_rate_input / gcd;

        let resampler = FftResampler::<T>::new(fft_size_in, fft_size_out);

        let overlaps: Vec<Vec<T>> = vec![vec![T::zero(); fft_size_out]; nbr_channels];

        let channel_mask = vec![true; nbr_channels];

        Ok(FftFixedInOut {
            nbr_channels,
            chunk_size_in: fft_size_in,
            chunk_size_out: fft_size_out,
            fft_size_in,
            overlaps,
            resampler,
            channel_mask,
        })
    }
}

impl<T> Resampler<T> for FftFixedInOut<T>
where
    T: Sample,
{
    fn process_into_buffer<V: AsRef<[T]>>(
        &mut self,
        wave_in: &[V],
        wave_out: &mut [Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<()> {
        if let Some(mask) = active_channels_mask {
            self.channel_mask.copy_from_slice(mask);
        } else {
            update_mask_from_buffers(wave_in, &mut self.channel_mask);
        };

        validate_buffers(
            wave_in,
            wave_out,
            &self.channel_mask,
            self.nbr_channels,
            self.chunk_size_in,
        )?;

        for (chan, active) in self.channel_mask.iter().enumerate() {
            if *active {
                if self.chunk_size_out > wave_out[chan].capacity() {
                    trace!(
                        "Allocating more space for channel {}, old capacity: {}, new: {}",
                        chan,
                        wave_out[chan].capacity(),
                        self.chunk_size_out
                    );
                }
                wave_out[chan].resize(self.chunk_size_out, T::zero());
                self.resampler.resample_unit(
                    wave_in[chan].as_ref(),
                    &mut wave_out[chan],
                    &mut self.overlaps[chan],
                )
            }
        }
        Ok(())
    }

    fn input_frames_max(&self) -> usize {
        self.fft_size_in
    }

    fn input_frames_next(&self) -> usize {
        self.fft_size_in
    }

    fn nbr_channels(&self) -> usize {
        self.nbr_channels
    }

    fn output_frames_max(&self) -> usize {
        self.chunk_size_out
    }

    fn output_frames_next(&self) -> usize {
        self.output_frames_max()
    }

    /// Update the resample ratio. This is not supported by this resampler and
    /// always returns an [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio(&mut self, _new_ratio: f64) -> ResampleResult<()> {
        Err(ResampleError::SyncNotAdjustable)
    }

    /// Update the resample ratio relative to the original one. This is not
    /// supported by this resampler and always returns an [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio_relative(&mut self, _rel_ratio: f64) -> ResampleResult<()> {
        Err(ResampleError::SyncNotAdjustable)
    }
}

impl<T> FftFixedOut<T>
where
    T: Sample,
{
    /// Create a new FftFixedOut
    ///
    /// Parameters are:
    /// - `sample_rate_input`: Input sample rate, must be > 0.
    /// - `sample_rate_output`: Output sample rate, must be > 0.
    /// - `chunk_size_out`: length of output data in frames.
    /// - `sub_chunks`: desired number of subchunks for processing, actual number may be different.
    /// - `nbr_channels`: number of channels in input/output.
    pub fn new(
        sample_rate_input: usize,
        sample_rate_output: usize,
        chunk_size_out: usize,
        sub_chunks: usize,
        nbr_channels: usize,
    ) -> Result<Self, ResamplerConstructionError> {
        validate_sample_rates(sample_rate_input, sample_rate_output)?;

        let gcd = integer::gcd(sample_rate_input, sample_rate_output);
        let min_chunk_out = sample_rate_output / gcd;
        let wanted_subsize = chunk_size_out / sub_chunks;
        let fft_chunks = (wanted_subsize as f32 / min_chunk_out as f32).ceil() as usize;
        let fft_size_out = fft_chunks * sample_rate_output / gcd;
        let fft_size_in = fft_chunks * sample_rate_input / gcd;

        let resampler = FftResampler::<T>::new(fft_size_in, fft_size_out);

        debug!(
            "Create new FftFixedOut, sample_rate_input: {}, sample_rate_output: {} chunk_size_in: {}, channels: {}, fft_size_in: {}, fft_size_out: {}",
            sample_rate_input, sample_rate_output, chunk_size_out, nbr_channels, fft_size_in, fft_size_out
        );

        let overlaps: Vec<Vec<T>> = vec![vec![T::zero(); fft_size_out]; nbr_channels];
        let output_buffers: Vec<Vec<T>> =
            vec![vec![T::zero(); chunk_size_out + fft_size_out]; nbr_channels];

        let channel_mask = vec![true; nbr_channels];

        let saved_frames = 0;
        let chunks_needed = (chunk_size_out as f32 / fft_size_out as f32).ceil() as usize;
        let frames_needed = chunks_needed * fft_size_in;

        Ok(FftFixedOut {
            nbr_channels,
            chunk_size_out,
            fft_size_in,
            fft_size_out,
            overlaps,
            output_buffers,
            saved_frames,
            frames_needed,
            resampler,
            channel_mask,
        })
    }
}

impl<T> Resampler<T> for FftFixedOut<T>
where
    T: Sample,
{
    fn process_into_buffer<V: AsRef<[T]>>(
        &mut self,
        wave_in: &[V],
        wave_out: &mut [Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<()> {
        if let Some(mask) = active_channels_mask {
            self.channel_mask.copy_from_slice(mask);
        } else {
            update_mask_from_buffers(wave_in, &mut self.channel_mask);
        };

        validate_buffers(
            wave_in,
            wave_out,
            &self.channel_mask,
            self.nbr_channels,
            self.frames_needed,
        )?;

        for (chan, active) in self.channel_mask.iter().enumerate() {
            if *active {
                if self.chunk_size_out > wave_out[chan].capacity() {
                    trace!(
                        "Allocating more space for channel {}, old capacity: {}, new: {}",
                        chan,
                        wave_out[chan].capacity(),
                        self.chunk_size_out
                    );
                }
                wave_out[chan].resize(self.chunk_size_out, T::zero());
                for (in_chunk, out_chunk) in wave_in[chan].as_ref().chunks(self.fft_size_in).zip(
                    self.output_buffers[chan][self.saved_frames..].chunks_mut(self.fft_size_out),
                ) {
                    self.resampler
                        .resample_unit(in_chunk, out_chunk, &mut self.overlaps[chan]);
                }
            }
        }
        let processed_frames =
            self.saved_frames + self.fft_size_out * (self.frames_needed / self.fft_size_in);

        // copy to output, and save extra frames for next round
        if processed_frames >= self.chunk_size_out {
            self.saved_frames = processed_frames - self.chunk_size_out;
            for (chan, active) in self.channel_mask.iter().enumerate() {
                if *active {
                    wave_out[chan][..]
                        .copy_from_slice(&self.output_buffers[chan][0..self.chunk_size_out]);
                    self.output_buffers[chan].copy_within(
                        self.chunk_size_out..(self.chunk_size_out + self.saved_frames),
                        0,
                    );
                }
            }
        } else {
            self.saved_frames = processed_frames;
        }
        //calculate number of needed frames from next round
        let frames_needed_out = if self.chunk_size_out > self.saved_frames {
            self.chunk_size_out - self.saved_frames
        } else {
            0
        };
        let chunks_needed = (frames_needed_out as f32 / self.fft_size_out as f32).ceil() as usize;
        self.frames_needed = chunks_needed * self.fft_size_in;
        Ok(())
    }

    fn input_frames_max(&self) -> usize {
        (self.chunk_size_out as f32 / self.fft_size_out as f32).ceil() as usize * self.fft_size_in
    }

    fn input_frames_next(&self) -> usize {
        self.frames_needed
    }

    fn nbr_channels(&self) -> usize {
        self.nbr_channels
    }

    fn output_frames_max(&self) -> usize {
        self.chunk_size_out
    }

    fn output_frames_next(&self) -> usize {
        self.output_frames_max()
    }

    /// Update the resample ratio. This is not supported by this resampler and
    /// always returns [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio(&mut self, _new_ratio: f64) -> ResampleResult<()> {
        Err(ResampleError::SyncNotAdjustable)
    }

    /// Update the resample ratio relative to the original one. This is not
    /// supported by this resampler and always returns [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio_relative(&mut self, _rel_ratio: f64) -> ResampleResult<()> {
        Err(ResampleError::SyncNotAdjustable)
    }
}

impl<T> FftFixedIn<T>
where
    T: Sample,
{
    /// Create a new FftFixedIn
    ///
    /// Parameters are:
    /// - `sample_rate_input`: Input sample rate, must be > 0.
    /// - `sample_rate_output`: Output sample rate, must be > 0.
    /// - `chunk_size_in`: length of input data in frames.
    /// - `sub_chunks`: desired number of subchunks for processing, actual number used may be different.
    /// - `nbr_channels`: number of channels in input/output.
    pub fn new(
        sample_rate_input: usize,
        sample_rate_output: usize,
        chunk_size_in: usize,
        sub_chunks: usize,
        nbr_channels: usize,
    ) -> Result<Self, ResamplerConstructionError> {
        validate_sample_rates(sample_rate_input, sample_rate_output)?;

        let gcd = integer::gcd(sample_rate_input, sample_rate_output);
        let min_chunk_in = sample_rate_input / gcd;
        let wanted_subsize = chunk_size_in / sub_chunks;
        let fft_chunks = (wanted_subsize as f32 / min_chunk_in as f32).ceil() as usize;
        let fft_size_out = fft_chunks * sample_rate_output / gcd;
        let fft_size_in = fft_chunks * sample_rate_input / gcd;

        let resampler = FftResampler::<T>::new(fft_size_in, fft_size_out);
        debug!(
            "Create new FftFixedOut, sample_rate_input: {}, sample_rate_output: {} chunk_size_in: {}, channels: {}, fft_size_in: {}, fft_size_out: {}",
            sample_rate_input, sample_rate_output, chunk_size_in, nbr_channels, fft_size_in, fft_size_out
        );

        let overlaps: Vec<Vec<T>> = vec![vec![T::zero(); fft_size_out]; nbr_channels];
        let input_buffers: Vec<Vec<T>> =
            vec![vec![T::zero(); chunk_size_in + fft_size_in]; nbr_channels];

        let channel_mask = vec![true; nbr_channels];

        let saved_frames = 0;

        Ok(FftFixedIn {
            nbr_channels,
            chunk_size_in,
            fft_size_in,
            fft_size_out,
            overlaps,
            input_buffers,
            saved_frames,
            resampler,
            channel_mask,
        })
    }
}

impl<T> Resampler<T> for FftFixedIn<T>
where
    T: Sample,
{
    fn process_into_buffer<V: AsRef<[T]>>(
        &mut self,
        wave_in: &[V],
        wave_out: &mut [Vec<T>],
        active_channels_mask: Option<&[bool]>,
    ) -> ResampleResult<()> {
        if let Some(mask) = active_channels_mask {
            self.channel_mask.copy_from_slice(mask);
        } else {
            update_mask_from_buffers(wave_in, &mut self.channel_mask);
        };

        validate_buffers(
            wave_in,
            wave_out,
            &self.channel_mask,
            self.nbr_channels,
            self.chunk_size_in,
        )?;

        // copy new samples to input buffer
        for (chan, active) in self.channel_mask.iter().enumerate() {
            if *active {
                for (input, buffer) in wave_in[chan].as_ref().iter().zip(
                    self.input_buffers[chan]
                        .iter_mut()
                        .skip(self.saved_frames)
                        .take(self.chunk_size_in),
                ) {
                    *buffer = *input;
                }
            }
        }
        self.saved_frames += self.chunk_size_in;

        let nbr_chunks_ready =
            (self.saved_frames as f32 / self.fft_size_in as f32).floor() as usize;
        let needed_len = nbr_chunks_ready * self.fft_size_out;
        for (chan, active) in self.channel_mask.iter().enumerate() {
            if *active {
                if needed_len > wave_out[chan].capacity() {
                    trace!(
                        "Allocating more space for channel {}, old capacity: {}, new: {}",
                        chan,
                        wave_out[chan].capacity(),
                        needed_len
                    );
                }
                wave_out[chan].resize(needed_len, T::zero());
                for (in_chunk, out_chunk) in self.input_buffers[chan]
                    .chunks(self.fft_size_in)
                    .take(nbr_chunks_ready)
                    .zip(wave_out[chan].chunks_mut(self.fft_size_out))
                {
                    self.resampler
                        .resample_unit(in_chunk, out_chunk, &mut self.overlaps[chan]);
                }
            }
        }

        // save extra frames for next round
        let frames_in_used = nbr_chunks_ready * self.fft_size_in;
        let extra = self.saved_frames - frames_in_used;

        if self.saved_frames > frames_in_used {
            for (chan, active) in self.channel_mask.iter().enumerate() {
                if *active {
                    self.input_buffers[chan].copy_within(frames_in_used..self.saved_frames, 0);
                }
            }
        }
        self.saved_frames = extra;
        Ok(())
    }

    fn input_frames_max(&self) -> usize {
        self.chunk_size_in
    }

    fn input_frames_next(&self) -> usize {
        self.chunk_size_in
    }

    fn nbr_channels(&self) -> usize {
        self.nbr_channels
    }

    fn output_frames_max(&self) -> usize {
        self.chunk_size_in * (self.fft_size_out / self.fft_size_in + 1)
    }

    fn output_frames_next(&self) -> usize {
        (((self.saved_frames + self.chunk_size_in) as f32) / self.fft_size_in as f32).floor()
            as usize
            * self.fft_size_out
    }

    /// Update the resample ratio. This is not supported by this resampler and
    /// always returns [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio(&mut self, _new_ratio: f64) -> ResampleResult<()> {
        Err(ResampleError::SyncNotAdjustable)
    }

    /// Update the resample ratio relative to the original one. This is not
    /// supported by this resampler and always returns [ResampleError::SyncNotAdjustable].
    fn set_resample_ratio_relative(&mut self, _rel_ratio: f64) -> ResampleResult<()> {
        Err(ResampleError::SyncNotAdjustable)
    }
}

#[cfg(test)]
mod tests {
    use crate::synchro::{FftFixedIn, FftFixedInOut, FftFixedOut, FftResampler};
    use crate::Resampler;

    #[test]
    fn resample_unit() {
        let mut resampler = FftResampler::<f64>::new(147, 1000);
        let mut wave_in = vec![0.0; 147];

        wave_in[0] = 0.3;
        wave_in[1] = 0.7;
        wave_in[2] = 1.0;
        wave_in[3] = 1.0;
        wave_in[4] = 0.7;
        wave_in[5] = 0.3;

        let mut wave_out = vec![0.0; 1000];
        let mut overlap = vec![0.0; 1000];
        resampler.resample_unit(&wave_in, &mut wave_out, &mut overlap);
        let vecsum = wave_out.iter().sum::<f64>();
        let maxval = wave_out.iter().cloned().fold(0. / 0., f64::max);
        assert!((vecsum - 4.0 * 1000.0 / 147.0).abs() < 1.0e-6);
        assert!((maxval - 1.0).abs() < 0.1);
    }

    #[test]
    fn make_resampler_fio() {
        // asking for 1024 give the nearest which is 1029 -> 1120
        let mut resampler = FftFixedInOut::<f64>::new(44100, 48000, 1024, 2).unwrap();
        let frames = resampler.input_frames_next();
        let waves = vec![vec![0.0f64; frames]; 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 1120);
    }

    #[test]
    fn make_resampler_fio_skipped() {
        // asking for 1024 give the nearest which is 1029 -> 1120
        let mut resampler = FftFixedInOut::<f64>::new(44100, 48000, 1024, 2).unwrap();
        let frames = resampler.input_frames_next();
        let waves = vec![vec![0.0f64; frames], Vec::new()];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 1120);
        assert!(out[1].is_empty());
    }

    #[test]
    fn make_resampler_fo() {
        let mut resampler = FftFixedOut::<f64>::new(44100, 192000, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 294);
        let waves = vec![vec![0.0f64; frames]; 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 1024);
    }

    #[test]
    fn make_resampler_fo_skipped() {
        let mut resampler = FftFixedOut::<f64>::new(44100, 192000, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 294);
        let waves = vec![vec![0.0f64; frames], Vec::new()];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 1024);
        assert!(out[1].is_empty());
    }

    #[test]
    fn make_resampler_fo_empty() {
        let mut resampler = FftFixedOut::<f64>::new(44100, 192000, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 294);
        let waves = vec![Vec::new(); 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert!(out[0].is_empty());
        assert!(out[1].is_empty());
    }

    #[test]
    fn make_resampler_fi() {
        let mut resampler = FftFixedIn::<f64>::new(44100, 48000, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 1024);
        let waves = vec![vec![0.0f64; frames]; 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 640);
    }

    #[test]
    fn make_resampler_fi_noalloc() {
        let mut resampler = FftFixedIn::<f64>::new(44100, 48000, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 1024);
        let waves = vec![vec![0.0f64; frames]; 2];
        let mut out = vec![vec![0.0f64; 2 * frames]; 2];
        let mask = vec![true; 2];
        resampler
            .process_into_buffer(&waves, &mut out, Some(&mask))
            .unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 640);
    }

    #[test]
    fn make_resampler_fi_downsample() {
        let mut resampler = FftFixedIn::<f64>::new(48000, 16000, 1200, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 1200);
        let waves = vec![vec![0.0f64; frames]; 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 400);
    }

    #[test]
    fn make_resampler_fi_skipped() {
        let mut resampler = FftFixedIn::<f64>::new(44100, 48000, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 1024);
        let waves = vec![vec![0.0f64; frames], Vec::new()];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 640);
        assert!(out[1].is_empty());
    }

    #[test]
    fn make_resampler_fi_empty() {
        let mut resampler = FftFixedIn::<f64>::new(44100, 48000, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 1024);
        let waves = vec![Vec::new(); 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert!(out[0].is_empty());
        assert!(out[1].is_empty());
    }

    #[test]
    fn make_resampler_fio_unusualratio() {
        // asking for 1024 give the nearest which is 1029 -> 1120
        let mut resampler = FftFixedInOut::<f64>::new(44100, 44110, 1024, 2).unwrap();
        let frames = resampler.input_frames_next();
        let waves = vec![vec![0.0f64; frames]; 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 4411);
    }

    #[test]
    fn make_resampler_fo_unusualratio() {
        let mut resampler = FftFixedOut::<f64>::new(44100, 44110, 1024, 2, 2).unwrap();
        let frames = resampler.input_frames_next();
        assert_eq!(frames, 4410);
        let waves = vec![vec![0.0f64; frames]; 2];
        let out = resampler.process(&waves, None).unwrap();
        assert_eq!(out.len(), 2);
        assert_eq!(out[0].len(), 1024);
    }
}