1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
use crate::{
    builders::{AtomicNodeStack, BuildAlgorithm},
    Primitive, Ray,
};
use crate::{utils::*, BuildType};
use crate::{Aabb, Bvh, BvhNode};
use glam::*;
use rayon::prelude::*;
use std::num::NonZeroUsize;
use std::{
    cmp::Ordering,
    fmt::Debug,
    ops::BitAnd,
    sync::atomic::{AtomicUsize, Ordering::SeqCst},
};

#[derive(Debug, Copy, Clone)]
struct SpatialBin {
    pub aabb: Aabb<i32>,
    pub accumulated_aabb: Aabb,
    pub entry: usize,
    pub exit: usize,
}

#[derive(Debug, Copy, Clone)]
struct ObjectSplit {
    pub cost: f32,
    pub index: usize,
    pub axis: usize,
    pub left_box: Aabb<i32>,
    pub right_box: Aabb<i32>,
}

impl Default for ObjectSplit {
    fn default() -> Self {
        Self {
            cost: std::f32::MAX,
            index: 1,
            axis: 0,
            left_box: Aabb::empty(),
            right_box: Aabb::empty(),
        }
    }
}

#[derive(Debug, Copy, Clone)]
struct SpatialSplit {
    pub cost: f32,
    pub position: f32,
    pub axis: usize,
}

impl Default for SpatialSplit {
    fn default() -> Self {
        Self {
            cost: std::f32::MAX,
            position: 0.0,
            axis: 0,
        }
    }
}

#[derive(Debug, Copy, Clone)]
struct SpatialReference {
    aabb: Aabb<i32>,
    center: Vec3,
    prim_id: u32,
}

impl Default for SpatialReference {
    fn default() -> Self {
        Self {
            aabb: Aabb::empty(),
            center: Vec3::ZERO,
            prim_id: 0,
        }
    }
}

pub trait SpatialTriangle {
    fn vertex0(&self) -> Vec3;
    fn vertex1(&self) -> Vec3;
    fn vertex2(&self) -> Vec3;

    fn split(&self, axis: usize, position: f32) -> (Aabb<i32>, Aabb<i32>) {
        let p = [self.vertex0(), self.vertex1(), self.vertex2()];

        let mut left = Aabb::empty();
        let mut right = Aabb::empty();

        let split_edge = |a: Vec3, b: Vec3| -> Vec3 {
            let t = (Vec3::splat(position) - Vec3::splat(a[axis])) / Vec3::splat(b[axis] - a[axis]);
            a * t * (b - a)
        };

        let q0 = p[0][axis] <= position;
        let q1 = p[1][axis] <= position;
        let q2 = p[2][axis] <= position;

        let mut grow_if = |q: bool, pos: Vec3| {
            if q {
                left.grow(pos);
            } else {
                right.grow(pos);
            }
        };

        grow_if(q0, p[0]);
        grow_if(q1, p[1]);
        grow_if(q2, p[2]);

        if q0 ^ q1 {
            let m = split_edge(p[0], p[1]);
            left.grow(m);
            right.grow(m);
        }
        if q1 ^ q2 {
            let m = split_edge(p[1], p[2]);
            left.grow(m);
            right.grow(m);
        }
        if q2 ^ q0 {
            let m = split_edge(p[2], p[0]);
            left.grow(m);
            right.grow(m);
        }

        (left, right)
    }

    #[inline]
    fn intersect(&self, ray: &mut Ray) -> bool {
        let v0 = self.vertex0();
        let v1 = self.vertex1();
        let v2 = self.vertex2();

        let edge1 = v1 - v0;
        let edge2 = v2 - v0;
        let h_val = ray.direction.cross(edge2);
        let a_val = edge1.dot(h_val);
        if a_val > -1e-5 && a_val < 1e-5 {
            return false;
        }
        let f_val = 1.0 / a_val;
        let s_val = ray.origin - v0.xyz();
        let u_val = f_val * s_val.dot(h_val);
        if !(0.0..=1.0).contains(&u_val) {
            return false;
        }
        let q_val = s_val.cross(edge1);
        let v_val = f_val * ray.direction.dot(q_val);
        if v_val < 0. || (u_val + v_val) > 1.0 {
            return false;
        }

        let t: f32 = f_val * edge2.dot(q_val);
        if t > ray.t_min && t < ray.t {
            ray.t = t;
            true
        } else {
            false
        }
    }

    #[inline]
    fn intersect4(&self, packet: &mut crate::RayPacket4, t_min: Vec4) -> Option<[bool; 4]> {
        let v0 = self.vertex0();
        let v1 = self.vertex1();
        let v2 = self.vertex2();

        let zero = Vec4::ZERO;
        let one = Vec4::ONE;

        let p0_x = v0.xxxx();
        let p0_y = v0.yyyy();
        let p0_z = v0.zzzz();

        let p1_x = v1.xxxx();
        let p1_y = v1.yyyy();
        let p1_z = v1.zzzz();

        let p2_x = v2.xxxx();
        let p2_y = v2.yyyy();
        let p2_z = v2.zzzz();

        let edge1_x = p1_x - p0_x;
        let edge1_y = p1_y - p0_y;
        let edge1_z = p1_z - p0_z;

        let edge2_x = p2_x - p0_x;
        let edge2_y = p2_y - p0_y;
        let edge2_z = p2_z - p0_z;

        let h_x = (packet.direction_y * edge2_z) - (packet.direction_z * edge2_y);
        let h_y = (packet.direction_z * edge2_x) - (packet.direction_x * edge2_z);
        let h_z = (packet.direction_x * edge2_y) - (packet.direction_y * edge2_x);

        let a = (edge1_x * h_x) + (edge1_y * h_y) + (edge1_z * h_z);
        let epsilon = Vec4::from([1e-6; 4]);
        let mask = a.cmple(-epsilon) | a.cmpge(epsilon);
        if mask.bitmask() == 0 {
            return None;
        }

        let f = one / a;
        let s_x = packet.origin_x - p0_x;
        let s_y = packet.origin_y - p0_y;
        let s_z = packet.origin_z - p0_z;

        let u = f * ((s_x * h_x) + (s_y * h_y) + (s_z * h_z));
        let mask = mask.bitand(u.cmpge(zero) & u.cmple(one));
        if mask.bitmask() == 0 {
            return None;
        }

        let q_x = s_y * edge1_z - s_z * edge1_y;
        let q_y = s_z * edge1_x - s_x * edge1_z;
        let q_z = s_x * edge1_y - s_y * edge1_x;

        let v = f
            * ((packet.direction_x * q_x)
                + (packet.direction_y * q_y)
                + (packet.direction_z * q_z));
        let mask = mask.bitand(v.cmpge(zero) & (u + v).cmple(one));
        if mask.bitmask() == 0 {
            return None;
        }

        let t_value = f * ((edge2_x * q_x) + (edge2_y * q_y) + (edge2_z * q_z));
        let mask = mask.bitand(t_value.cmpge(t_min) & t_value.cmplt(packet.t));
        let bitmask = mask.bitmask();
        if bitmask == 0 {
            return None;
        }

        packet.t = Vec4::select(mask, t_value, packet.t);

        Some([
            bitmask & 1 != 0,
            bitmask & 2 != 0,
            bitmask & 4 != 0,
            bitmask & 8 != 0,
        ])
    }
}

struct WorkItem {
    pub node: usize,
    pub begin: usize,
    pub end: usize,
    pub split_end: usize,
    pub depth: usize,
    pub is_sorted: bool,
}

impl WorkItem {
    pub(crate) fn new(
        node: usize,
        begin: usize,
        end: usize,
        split_end: usize,
        depth: usize,
        is_sorted: bool,
    ) -> Self {
        Self {
            node,
            begin,
            end,
            split_end,
            depth,
            is_sorted,
        }
    }
    pub(crate) fn work_size(&self) -> usize {
        self.end - self.begin
    }
}

struct SpatialSahBuildTask<'a, T: Primitive<i32> + SpatialTriangle> {
    builder: &'a SpatialSahBuilder<'a, T>,
    allocator: AtomicNodeStack<'a>,
    references: [UnsafeSliceWrapper<'a, SpatialReference>; 3],
    reference_count: &'a AtomicUsize,
    prim_indices: UnsafeSliceWrapper<'a, u32>,
    accumulated_aabbs: UnsafeSliceWrapper<'a, Aabb>,
    work_item: WorkItem,
    spatial_threshold: f32,
}

impl<'a, T: Primitive<i32> + SpatialTriangle> SpatialSahBuildTask<'a, T> {
    #[allow(clippy::too_many_arguments)]
    pub(crate) fn new(
        builder: &'a SpatialSahBuilder<'a, T>,
        allocator: AtomicNodeStack<'a>,
        references: [UnsafeSliceWrapper<'a, SpatialReference>; 3],
        reference_count: &'a AtomicUsize,
        prim_indices: UnsafeSliceWrapper<'a, u32>,
        accumulated_aabbs: UnsafeSliceWrapper<'a, Aabb>,
        work_item: WorkItem,
        spatial_threshold: f32,
    ) -> Self {
        Self {
            builder,
            allocator,
            references,
            reference_count,
            prim_indices,
            accumulated_aabbs,
            work_item,
            spatial_threshold,
        }
    }

    fn find_object_split(&self, begin: usize, end: usize, is_sorted: bool) -> ObjectSplit {
        if !is_sorted {
            // Sort references by the projection of their centers on this axis
            for axis in 0..3 {
                let slice = self.references[axis].range(begin, end);
                slice.sort_by(|a, b| {
                    let a_center = a.center[axis];
                    let b_center = b.center[axis];

                    if a_center < b_center {
                        std::cmp::Ordering::Less
                    } else if (a_center - b_center).abs() < 0.0001 {
                        std::cmp::Ordering::Equal
                    } else {
                        std::cmp::Ordering::Greater
                    }
                });
            }
        }

        let mut best_split = ObjectSplit::default();

        for axis in 0..3 {
            let mut aabb = Aabb::empty();
            let mut i = end - 1;
            while i > begin {
                aabb.grow_bb(&self.references[axis][i].aabb);
                self.accumulated_aabbs.set(i, aabb);
                i -= 1;
            }

            aabb = Aabb::empty();
            for i in begin..(end - 1) {
                aabb.grow_bb(&self.references[axis][i].aabb);
                let cost = aabb.half_area() * (i + 1 - begin) as f32
                    + self.accumulated_aabbs[i + 1].half_area() * (end - (i + 1)) as f32;
                if cost < best_split.cost {
                    best_split = ObjectSplit {
                        cost,
                        axis,
                        index: i + 1,
                        left_box: aabb,
                        right_box: self.accumulated_aabbs[i + 1],
                    }
                }
            }
        }

        best_split
    }

    pub(crate) fn allocate_children(
        &mut self,
        right_begin: usize,
        right_end: usize,
        left_box: Aabb,
        right_box: Aabb,
        is_sorted: bool,
    ) -> (WorkItem, WorkItem) {
        let new_nodes = self.allocator.allocate().unwrap();

        let parent = self.allocator.get_mut(self.work_item.node).unwrap();
        parent.set_left_first(Some(new_nodes.left as u32));
        parent.set_count(None);
        parent.bounds.offset_by(0.0001);

        new_nodes.left_node.bounds = left_box;
        new_nodes.right_node.bounds = right_box;

        // Allocate split space for the two children based on their SAH cost
        // This assumes that reference ranges look like this:
        //  item.begin..right_begin is the range of references on the left,
        //  right_begin..right_end is the range of references on the right,
        //  right_end..work_item.split_end is the free split space
        let remaining_split_count = self.work_item.split_end - right_end;
        let left_cost = left_box.half_area() * (right_begin - self.work_item.begin) as f32;
        let right_cost = right_box.half_area() * (right_end - right_begin) as f32;
        let left_split_count = if remaining_split_count == 0 {
            0
        } else {
            (remaining_split_count as f32 * (left_cost / (left_cost + right_cost))) as usize
        };

        // Move references of the right child to end of the list to leave some split space for the left one
        if left_split_count > 0 {
            unsafe {
                move_backward(
                    self.references[0].as_mut_ptr().add(right_begin),
                    self.references[0].as_mut_ptr().add(right_end),
                    self.references[0]
                        .as_mut_ptr()
                        .add(right_end + left_split_count),
                );
                move_backward(
                    self.references[1].as_mut_ptr().add(right_begin),
                    self.references[1].as_mut_ptr().add(right_end),
                    self.references[1]
                        .as_mut_ptr()
                        .add(right_end + left_split_count),
                );
                move_backward(
                    self.references[2].as_mut_ptr().add(right_begin),
                    self.references[2].as_mut_ptr().add(right_end),
                    self.references[2]
                        .as_mut_ptr()
                        .add(right_end + left_split_count),
                );
            }
        }

        let left_end = right_begin;
        let right_begin = right_begin + left_split_count;
        let right_end = right_end + left_split_count;

        debug_assert!(right_end <= self.work_item.split_end);

        let left_item = WorkItem::new(
            new_nodes.left,
            self.work_item.begin,
            left_end,
            right_begin,
            self.work_item.depth + 1,
            is_sorted,
        );

        let right_item = WorkItem::new(
            new_nodes.right,
            right_begin,
            right_end,
            self.work_item.split_end,
            self.work_item.depth + 1,
            is_sorted,
        );

        (left_item, right_item)
    }

    fn apply_object_split(&mut self, split: ObjectSplit) -> (WorkItem, WorkItem) {
        let other_axis = ((split.axis + 1) % 3, (split.axis + 2) % 3);
        let mut reference_marks = vec![false; self.prim_indices.len()];

        for i in self.work_item.begin..split.index {
            reference_marks[self.references[split.axis][i].prim_id as usize] = true;
        }
        for i in split.index..self.work_item.end {
            reference_marks[self.references[split.axis][i].prim_id as usize] = false;
        }

        let partition_predicate = |a: &SpatialReference, b: &SpatialReference| {
            let a_mark = reference_marks[a.prim_id as usize];
            let b_mark = reference_marks[b.prim_id as usize];
            match (a_mark, b_mark) {
                (false, true) => Ordering::Greater,
                (true, false) => Ordering::Less,
                _ => Ordering::Equal,
            }
        };

        self.references[other_axis.0].as_mut()[self.work_item.begin..self.work_item.end]
            .sort_by(partition_predicate);
        self.references[other_axis.1].as_mut()[self.work_item.begin..self.work_item.end]
            .sort_by(partition_predicate);

        self.allocate_children(
            split.index,
            self.work_item.end,
            split.left_box,
            split.right_box,
            true,
        )
    }

    fn run_binning_pass(
        &mut self,
        split: &mut SpatialSplit,
        axis: usize,
        begin: usize,
        end: usize,
        min: f32,
        max: f32,
    ) -> Option<(f32, f32)> {
        let bin_count = self.builder.bin_count;

        let mut bins = vec![
            SpatialBin {
                aabb: Aabb::empty(),
                accumulated_aabb: Aabb::empty(),
                entry: 0,
                exit: 0,
            };
            bin_count
        ];

        // Split primitives and add the bounding box of the fragments to the bins
        let bin_size = (max - min) / bin_count as f32;
        let inv_size = 1.0 / bin_size;

        for i in begin..end {
            let reference = &self.references[0][i];
            let first_bin = (bin_count - 1)
                .min((inv_size * (reference.aabb.min[axis] - min)).max(0.0) as usize);
            let last_bin = (bin_count - 1)
                .min((inv_size * (reference.aabb.max[axis] - min)).max(0.0) as usize);

            let mut current_aabb = reference.aabb;
            for (j, bin) in bins[first_bin..last_bin].iter_mut().enumerate() {
                let triangle = &self.builder.primitives[reference.prim_id as usize];
                let (mut left_box, right_box) =
                    triangle.split(axis, min + (j + first_bin + 1) as f32 * bin_size);
                left_box.shrink(&current_aabb);
                bin.aabb.grow_bb(&left_box);
                current_aabb.shrink(&right_box);
            }

            bins[last_bin].aabb.grow_bb(&current_aabb);
            bins[first_bin].entry += 1;
            bins[first_bin].exit += 1;
        }

        // Accumulate bounding boxes
        let mut current_aabb = Aabb::empty();
        let mut i = bin_count;
        while i > 0 {
            current_aabb.grow_bb(&bins[i - 1].aabb);
            bins[i - 1].aabb = current_aabb;
            i -= 1;
        }

        // Sweep and compute SAH cost
        let mut left_count = 0;
        let mut right_count = end - begin;
        let mut current_aabb = Aabb::empty();
        let mut found = false;
        for i in 0..(bin_count - 1) {
            left_count += bins[i].entry;
            right_count -= bins[i].exit;
            current_aabb.grow_bb(&bins[i].aabb);

            let cost = left_count as f32 * current_aabb.half_area()
                + right_count as f32 * bins[i + 1].aabb.half_area();
            if cost < split.cost {
                split.cost = cost;
                split.axis = axis;
                split.position = min + (i + 1) as f32 * bin_size;
                found = true;
            }
        }

        if found {
            Some((split.position - bin_size, split.position + bin_size))
        } else {
            None
        }
    }

    fn find_spatial_split(&mut self, begin: usize, end: usize) -> SpatialSplit {
        let node = self.allocator.get_mut(self.work_item.node).unwrap();
        let mut split = SpatialSplit::default();

        for axis in 0..3 {
            let mut min = node.bounds.min[axis];
            let mut max = node.bounds.max[axis];

            for _ in 0..self.builder.binning_pass_count {
                if let Some(next_bounds) =
                    self.run_binning_pass(&mut split, axis, begin, end, min, max)
                {
                    min = next_bounds.0;
                    max = next_bounds.1;
                } else {
                    break;
                }
            }
        }

        split
    }

    fn apply_spatial_split(&mut self, split: SpatialSplit) -> (WorkItem, WorkItem) {
        let mut left_end = self.work_item.begin;
        let mut right_begin = self.work_item.end;
        let mut right_end = self.work_item.end;

        let mut left_box = Aabb::empty();
        let mut right_box = Aabb::empty();

        // Choosing the references that are sorted on the split axis
        // is more efficient than the others, since fewer swaps are
        // necessary for primitives that are completely contained on
        // one side of the partition.
        let references_to_split = self.references[split.axis].as_mut();

        // Partition references such that:
        //  item.begin..left_end is on the left,
        //  left_end..right_begin is in between,
        //  right_begin..work_item.end is on the right
        let mut i = self.work_item.begin;
        while i < right_begin {
            let aabb = &references_to_split[i].aabb;
            if aabb.max[split.axis] <= split.position {
                left_box.grow_bb(aabb);
                references_to_split.swap(i, left_end);
                i += 1;
                left_end += 1;
            } else if aabb.min[split.axis] >= split.position {
                right_box.grow_bb(aabb);
                right_begin -= 1;
                references_to_split.swap(i, right_begin);
            } else {
                i += 1;
            }
        }

        let mut left_count = left_end - self.work_item.begin;
        let mut right_count = right_end - right_begin;
        if (left_count == 0 || right_count == 0) && left_end == right_begin {
            // Sometimes the algorithm will suggest a spatial split is possible, but all
            // references are on a single side. This code block splits the number of primitives
            // equally to either side to prevent every primitive going to one side.
            if left_count > 0 {
                left_end = left_count / 2;
            } else {
                left_end += right_count / 2;
            }
            right_begin = left_end;

            // Recompute the left and right bounding boxes
            left_box = Aabb::empty();
            right_box = Aabb::empty();

            for r in &references_to_split[self.work_item.begin..left_end] {
                left_box.grow_bb(&r.aabb);
            }

            for r in &references_to_split[left_end..self.work_item.end] {
                right_box.grow_bb(&r.aabb);
            }
        }

        // Handle straddling references
        while left_end < right_begin {
            let reference = references_to_split[left_end];
            let (mut left_prim_box, mut right_prim_box) = self.builder.primitives
                [reference.prim_id as usize]
                .split(split.axis, split.position);

            left_prim_box.shrink(&reference.aabb);
            right_prim_box.shrink(&reference.aabb);

            // Make sure there is enough space to split reference
            if self.work_item.split_end - right_end > 0 {
                left_box.grow_bb(&left_prim_box);
                right_box.grow_bb(&right_prim_box);

                references_to_split[right_end] = SpatialReference {
                    aabb: right_prim_box,
                    center: right_prim_box.center(),
                    prim_id: reference.prim_id,
                };

                references_to_split[left_end] = SpatialReference {
                    aabb: left_prim_box,
                    center: left_prim_box.center(),
                    prim_id: reference.prim_id,
                };

                right_end += 1;
                left_end += 1;

                left_count += 1;
                right_count += 1;
            } else if left_count < right_count {
                left_box.grow_bb(&reference.aabb);
                left_end += 1;
                left_count += 1;
            } else {
                right_box.grow_bb(&reference.aabb);
                right_begin -= 1;
                references_to_split.swap(right_begin, left_end);
                right_count += 1;
            }
        }

        self.references[(split.axis + 1) % 3].as_mut()[self.work_item.begin..right_end]
            .copy_from_slice(&references_to_split[self.work_item.begin..right_end]);
        self.references[(split.axis + 2) % 3].as_mut()[self.work_item.begin..right_end]
            .copy_from_slice(&references_to_split[self.work_item.begin..right_end]);

        debug_assert_eq!(left_end, right_begin);
        debug_assert!(right_end <= self.work_item.split_end);

        self.allocate_children(right_begin, right_end, left_box, right_box, false)
    }
}

impl<'a, T: Primitive<i32> + SpatialTriangle> Task for SpatialSahBuildTask<'a, T> {
    fn run(mut self) -> Option<(Self, Self)> {
        let node = self.allocator.get_mut(self.work_item.node).unwrap();
        let spatial_threshold = self.spatial_threshold;
        let reference_count = self.reference_count;
        let prim_indices = self.prim_indices.clone();
        let references = self.references.clone();

        let make_leaf = |node: &mut BvhNode, begin: usize, end: usize| {
            let prim_count = end - begin;
            let first_prim = reference_count.fetch_add(prim_count, SeqCst);

            for i in 0..prim_count {
                prim_indices.set(first_prim + i, references[0][begin + i].prim_id);
            }

            node.set_left_first(Some(first_prim as u32));
            node.set_count(Some(prim_count as u32));
        };

        if self.work_size() <= 1 || self.depth() >= self.builder.max_depth {
            make_leaf(node, self.work_item.begin, self.work_item.end);
            return None;
        }

        let mut best_object_split = self.find_object_split(
            self.work_item.begin,
            self.work_item.end,
            self.work_item.is_sorted,
        );

        let mut best_spatial_split = SpatialSplit::default();
        let mut overlap = best_object_split.left_box;
        overlap.shrink(&best_object_split.right_box);
        let overlap = overlap.area();

        if overlap > spatial_threshold && (self.work_item.split_end - self.work_item.end) > 0 {
            best_spatial_split = self.find_spatial_split(self.work_item.begin, self.work_item.end);
        }

        let best_cost = best_spatial_split.cost.min(best_object_split.cost);
        let mut use_spatial_split = best_cost < best_object_split.cost;

        let max_split_cost = node.bounds.half_area()
            * (self.work_item.work_size() as f32 - self.builder.traversal_cost);
        // Make sure the cost of splitting does not exceed the cost of not splitting
        if best_cost >= max_split_cost {
            // In case splitting results in worse node costs, use median split as fallback strategy
            if self.work_item.work_size() > self.builder.max_leaf_size {
                use_spatial_split = false;
                best_object_split.index = (self.work_item.begin + self.work_item.end) / 2;
                best_object_split.axis = node.bounds.longest_axis();
                best_object_split.left_box = Aabb::empty();
                best_object_split.right_box = Aabb::empty();

                for i in self.work_item.begin..best_object_split.index {
                    best_object_split
                        .left_box
                        .grow_bb(&self.references[best_object_split.axis][i].aabb);
                }
                for i in best_object_split.index..self.work_item.end {
                    best_object_split
                        .right_box
                        .grow_bb(&self.references[best_object_split.axis][i].aabb);
                }
            } else {
                make_leaf(node, self.work_item.begin, self.work_item.end);
                return None;
            }
        }

        let builder = self.builder;
        let allocator = self.allocator.clone();
        let references = self.references.clone();
        let reference_count = self.reference_count;
        let prim_indices = self.prim_indices.clone();
        let accumulated_aabbs = self.accumulated_aabbs.clone();

        let (work_a, work_b) = if use_spatial_split {
            self.apply_spatial_split(best_spatial_split)
        } else {
            self.apply_object_split(best_object_split)
        };

        let task_a = Self::new(
            builder,
            allocator.clone(),
            references.clone(),
            reference_count,
            prim_indices.clone(),
            accumulated_aabbs.clone(),
            work_a,
            spatial_threshold,
        );

        let task_b = Self::new(
            builder,
            allocator,
            references,
            reference_count,
            prim_indices,
            accumulated_aabbs,
            work_b,
            spatial_threshold,
        );

        Some((task_a, task_b))
    }

    fn work_size(&self) -> usize {
        self.work_item.work_size()
    }

    fn depth(&self) -> usize {
        self.work_item.depth
    }
}

pub struct SpatialSahBuilder<'a, T: Primitive<i32> + SpatialTriangle> {
    aabbs: &'a [Aabb<i32>],
    primitives: &'a [T],

    binning_pass_count: usize,
    max_depth: usize,
    bin_count: usize,
    max_leaf_size: usize,

    traversal_cost: f32,
    alpha: f32,
    split_factor: f32,
}

#[allow(dead_code)]
impl<'a, T: Primitive<i32> + SpatialTriangle> SpatialSahBuilder<'a, T> {
    pub(crate) fn new(
        aabbs: &'a [Aabb<i32>],
        primitives: &'a [T],
        primitives_per_leaf: Option<NonZeroUsize>,
    ) -> Self {
        Self {
            aabbs,
            primitives,
            binning_pass_count: 2,
            max_depth: 64,
            bin_count: 16,
            max_leaf_size: primitives_per_leaf.map(|p| p.get()).unwrap_or(1),
            traversal_cost: 1.0,
            alpha: 1e-5,
            split_factor: 0.75,
        }
    }

    /// Number of spatial binning passes that are run in order to
    /// find a spatial split. This increases accuracy without
    /// increasing the number of bins.
    pub(crate) fn with_binning_pass_count(mut self, pass_count: usize) -> Self {
        self.binning_pass_count = pass_count;
        self
    }

    /// Maximum depth of tree
    pub(crate) fn with_max_depth(mut self, depth: usize) -> Self {
        self.max_depth = depth;
        self
    }

    /// Maximum number of bins to check for splitting a node
    pub(crate) fn with_bin_count(mut self, bin_count: usize) -> Self {
        self.bin_count = bin_count;
        self
    }

    /// Maximum number of primitives inside a node
    pub(crate) fn with_max_leaf_size(mut self, max_leaf_size: usize) -> Self {
        self.max_leaf_size = max_leaf_size;
        self
    }

    /// Cost to determine for splitting a node with the SAH algorithm for traversing a node
    pub(crate) fn with_traversal_cost(mut self, traversal_cost: f32) -> Self {
        self.traversal_cost = traversal_cost;
        self
    }

    pub(crate) fn with_split_factor(mut self, split_factor: f32) -> Self {
        self.split_factor = split_factor;
        self
    }

    pub(crate) fn with_alpha(mut self, alpha: f32) -> Self {
        self.alpha = alpha.min(1.0).max(1e-6);
        self
    }
}

impl<'a, T: Primitive<i32> + SpatialTriangle> BuildAlgorithm for SpatialSahBuilder<'a, T> {
    fn build(self) -> Bvh {
        if self.primitives.len() != self.aabbs.len()
            || self.primitives.is_empty()
            || self.aabbs.is_empty()
        {
            return Bvh::default();
        }

        let prim_count = self.aabbs.len();
        let max_reference_count = prim_count + (prim_count as f32 * self.split_factor) as usize;
        let reference_count = AtomicUsize::new(0);

        let mut nodes = vec![BvhNode::new(); 2 * max_reference_count + 1];
        let mut prim_indices = vec![0_u32; max_reference_count];
        let mut accumulated_bboxes = vec![Aabb::empty(); max_reference_count];

        // The references storage containers
        let mut reference_data0 = vec![SpatialReference::default(); max_reference_count];
        let mut reference_data1 = vec![SpatialReference::default(); max_reference_count];
        let mut reference_data2 = vec![SpatialReference::default(); max_reference_count];

        // These wrappers are unsafe, but they allow for must faster builds
        let references = [
            UnsafeSliceWrapper::new(reference_data0.as_mut_slice()),
            UnsafeSliceWrapper::new(reference_data1.as_mut_slice()),
            UnsafeSliceWrapper::new(reference_data2.as_mut_slice()),
        ];

        let root_bounds = Aabb::union_of_list(self.aabbs);

        // Compute the spatial split threshold
        let spatial_threshold = self.alpha * 2.0 * root_bounds.half_area();
        let node_count = AtomicUsize::new(1);
        let (node_stack, first_node) = AtomicNodeStack::new(&node_count, nodes.as_mut_slice());

        #[cfg(feature = "wasm_support")]
        references.iter().for_each(|r| {
            r.as_mut()[0..prim_count]
                .iter_mut()
                .enumerate()
                .for_each(|(i, sref)| {
                    sref.aabb = self.aabbs[i];
                    sref.center = self.primitives.center();
                    sref.prim_id = i as u32;
                });
        });

        #[cfg(not(feature = "wasm_support"))]
        references.iter().par_bridge().for_each(|r| {
            r.as_mut()[0..prim_count]
                .iter_mut()
                .enumerate()
                .for_each(|(i, sref)| {
                    sref.aabb = self.aabbs[i];
                    sref.center = self.primitives[i].center();
                    sref.prim_id = i as u32;
                });
        });

        let prim_wrapper = UnsafeSliceWrapper::new(prim_indices.as_mut());
        let accumulated_aabbs_wrapper = UnsafeSliceWrapper::new(accumulated_bboxes.as_mut());
        let task_spawner = TaskSpawner::new();
        first_node.bounds = Aabb::union_of_list(self.aabbs);

        // Initialize the first task, this task will spawn subsequent tasks
        let root_task = SpatialSahBuildTask::new(
            &self,
            node_stack,
            references,
            &reference_count,
            prim_wrapper,
            accumulated_aabbs_wrapper,
            WorkItem {
                node: 0,
                begin: 0,
                end: prim_count,
                depth: 0,
                split_end: max_reference_count,
                is_sorted: false,
            },
            spatial_threshold,
        );

        #[cfg(feature = "wasm_support")]
        {
            let mut stack = vec![root_task];
            while let Some(task) = stack.pop() {
                if let Some(left_task, right_task) = task.run() {
                    stack.push(left);
                    stack.push(right);
                }
            }
        }

        // Launch build task
        #[cfg(not(feature = "wasm_support"))]
        task_spawner.run(root_task);

        nodes.resize(node_count.load(SeqCst), BvhNode::new());

        // Compose bvh
        Bvh {
            nodes,
            prim_indices,
            build_type: BuildType::Spatial,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::tests::Triangle;
    use crate::Bounds;

    #[test]
    fn no_primitives() {
        let (aabbs, primitives) = crate::tests::load_teapot();

        let builder = SpatialSahBuilder::new(&[], primitives.as_slice(), None);
        assert!(builder.build().nodes.is_empty());

        let builder: SpatialSahBuilder<Triangle> = SpatialSahBuilder::new(&aabbs, &[], None);
        assert!(builder.build().nodes.is_empty());

        let builder = SpatialSahBuilder::new(&aabbs, &primitives, None);
        let build = builder.build();
        assert!(!build.nodes.is_empty());
        assert!(build.nodes.len() >= aabbs.len());
        assert!(build.nodes.len() <= (2 * aabbs.len()));
    }

    #[test]
    fn test_spatial_sah_build() {
        let (aabbs, primitives) = crate::tests::load_teapot();

        let builder = SpatialSahBuilder::new(aabbs.as_slice(), primitives.as_slice(), None);
        let bvh = builder.build();

        let bounds = bvh.bounds();
        assert!(bounds.is_valid());
        assert!(bvh.validate(primitives.len()));

        for (i, t) in primitives.iter().enumerate() {
            assert!(
                bounds.contains(t.vertex0()),
                "Bvh did not contain vertex 0 of primitive {}, bvh-bounds: {}, vertex: {}",
                i,
                bounds,
                t.vertex0()
            );
            assert!(
                bounds.contains(t.vertex1()),
                "Bvh did not contain vertex 1 of primitive {}, bvh-bounds: {}, vertex: {}",
                i,
                bounds,
                t.vertex1()
            );
            assert!(
                bounds.contains(t.vertex2()),
                "Bvh did not contain vertex 2 of primitive {}, bvh-bounds: {}, vertex: {}",
                i,
                bounds,
                t.vertex2()
            );
        }
    }
}