1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
//! This crate will help you to write simpler tests by leveraging a software testing concept called
//! [test fixtures](https://en.wikipedia.org/wiki/Test_fixture#Software). A fixture is something
//! that you can use in your tests to encapsulate a test's dependencies.
//!
//! The general idea is to have smaller tests that only describe the thing you're testing while you
//! hide the auxiliary utilities your tests make use of somewhere else.
//! For instance, if you have an application that has many tests with users, shopping baskets, and
//! products, you'd have to create a user, a shopping basket, and product every single time in
//! every test which becomes unwieldy quickly. In order to cut down on that repetition, you can
//! instead use fixtures to declare that you need those objects for your function and the fixtures
//! will take care of creating those by themselves. Focus on the important stuff in your tests!
//!
//! In `rstest` a fixture is a function that can return any kind of valid Rust type. This
//! effectively means that your fixtures are not limited by the kind of data they can return.
//! A test can consume an arbitrary number of fixtures at the same time.
//!
//! ## What
//!
//! The `rstest` crate defines the following procedural macros:
//!
//! - [`[rstest]`](rstest): Declare that a test or a group of tests that may take
//! [fixtures](attr.rstest.html#injecting-fixtures),
//! [input table](attr.rstest.html#test-parametrized-cases) or
//! [list of values](attr.rstest.html#values-lists).
//! - [`[fixture]`](fixture): To mark a function as a fixture.
//! - (*Deprecated* [`[rstest_parametrize]`](rstest_parametrize): Like `[rstest]` above but with the
//! added ability to also generate new test cases based on input tables.) Now the `rstest`'s syntax
//! include these features too.
//! - (*Deprecated* [`[rstest_matrix]`](rstest_matrix): Like `[rstest]` above but with the
//! added ability to also generate new test cases for every combination of given values.) Now the
//! `rstest`'s syntax include these features too.
//!
//! ## Why
//!
//! Very often in Rust we write tests like this
//!
//! ```
//! #[test]
//! fn should_process_two_users() {
//!     let mut repository = create_repository();
//!     repository.add("Bob", 21);
//!     repository.add("Alice", 22);
//!
//!     let processor = string_processor();
//!     processor.send_all(&repository, "Good Morning");
//!
//!     assert_eq!(2, processor.output.find("Good Morning").count());
//!     assert!(processor.output.contains("Bob"));
//!     assert!(processor.output.contains("Alice"));
//! }
//! ```
//!
//! By making use of [`[rstest]`](rstest) we can isolate the dependencies `empty_repository` and
//! `string_processor` by passing them as fixtures:
//!
//! ```
//! # use rstest::*;
//! #[rstest]
//! fn should_process_two_users(mut empty_repository: impl Repository,
//!                             string_processor: FakeProcessor) {
//!     empty_repository.add("Bob", 21);
//!     empty_repository.add("Alice", 22);
//!
//!     string_processor.send_all("Good Morning");
//!
//!     assert_eq!(2, string_processor.output.find("Good Morning").count());
//!     assert!(string_processor.output.contains("Bob"));
//!     assert!(string_processor.output.contains("Alice"));
//! }
//! ```
//!
//! ... or if you use `"Alice"` and `"Bob"` in other tests, you can isolate `alice_and_bob` fixture
//! and use it directly:
//!
//! ```
//! # use rstest::*;
//! # trait Repository { fn add(&mut self, name: &str, age: u8); }
//! # struct Rep;
//! # impl Repository for Rep { fn add(&mut self, name: &str, age: u8) {} }
//! # #[fixture]
//! # fn empty_repository() -> Rep {
//! #     Rep
//! # }
//! #[fixture]
//! fn alice_and_bob(mut empty_repository: impl Repository) -> impl Repository {
//!     empty_repository.add("Bob", 21);
//!     empty_repository.add("Alice", 22);
//!     empty_repository
//! }
//!
//! #[rstest]
//! fn should_process_two_users(alice_and_bob: impl Repository,
//!                             string_processor: FakeProcessor) {
//!     string_processor.send_all("Good Morning");
//!
//!     assert_eq!(2, string_processor.output.find("Good Morning").count());
//!     assert!(string_processor.output.contains("Bob"));
//!     assert!(string_processor.output.contains("Alice"));
//! }
//! ```
//!
//! ## Injecting fixtures as function arguments
//!
//! `rstest` functions can receive fixtures by using them as input arguments.
//! A function decorated with [`[rstest]`](attr.rstest.html#injecting-fixtures)
//! will resolve each argument name by call the fixture function.
//! Fixtures should be annotated with the [`[fixture]`](fixture) attribute.
//!
//! Fixtures will be resolved like function calls by following the standard resolution rules.
//! Therefore, an identically named fixture can be use in different context.
//!
//! ```
//! # use rstest::*;
//! # trait Repository { }
//! # #[derive(Default)]
//! # struct DataSet {}
//! # impl Repository for DataSet { }
//! mod empty_cases {
//! # use rstest::*;
//! # trait Repository { }
//! # #[derive(Default)]
//! # struct DataSet {}
//! # impl Repository for DataSet { }
//!     use super::*;
//!
//!     #[fixture]
//!     fn repository() -> impl Repository {
//!         DataSet::default()
//!     }
//!
//!     #[rstest]
//!     fn should_do_nothing(repository: impl Repository) {
//!         //.. test impl ..
//!     }
//! }
//!
//! mod non_trivial_case {
//! # use rstest::*;
//! # trait Repository { }
//! # #[derive(Default)]
//! # struct DataSet {}
//! # impl Repository for DataSet { }
//!     use super::*;
//!
//!     #[fixture]
//!     fn repository() -> impl Repository {
//!         let mut ds = DataSet::default();
//!         // Fill your dataset with interesting case
//!         ds
//!     }
//!
//!     #[rstest]
//!     fn should_notify_all_entries(repository: impl Repository) {
//!         //.. test impl ..
//!     }
//! }
//!
//! ```
//!
//! Last but not least, fixtures can be injected like we saw in `alice_and_bob` example.
//!
//! ## Creating parametrized tests
//!
//! You can use also [`[rstest]`](attr.rstest.html#test-parametrized-cases) to create
//! simple table-based tests. Let's see the classic Fibonacci example:
//!
//! ```
//! use rstest::rstest;
//!
//! #[rstest(input, expected,
//!     case(0, 0),
//!     case(1, 1),
//!     case(2, 1),
//!     case(3, 2),
//!     case(4, 3),
//!     case(5, 5),
//!     case(6, 8)
//! )]
//! fn fibonacci_test(input: u32, expected: u32) {
//!     assert_eq!(expected, fibonacci(input))
//! }
//!
//! fn fibonacci(input: u32) -> u32 {
//!     match input {
//!         0 => 0,
//!         1 => 1,
//!         n => fibonacci(n - 2) + fibonacci(n - 1)
//!     }
//! }
//! ```
//! This will generate a bunch of tests, one for every `case()`.
//!
//! ## Creating a test for each combinations of given values
//!
//! In some cases you need to test your code for each combinations of some input values. In this
//! cases [`[rstest]`](attr.rstest.html#values-lists) give you the ability to define a list
//! of values (rust expressions) to use for an arguments.
//!
//! ```
//! # use rstest::rstest;
//! # #[derive(PartialEq, Debug)]
//! # enum State { Init, Start, Processing, Terminated }
//! # #[derive(PartialEq, Debug)]
//! # enum Event { Error, Fatal }
//! # impl State { fn process(self, event: Event) -> Self { self } }
//!
//! #[rstest(
//!     state => [State::Init, State::Start, State::Processing],
//!     event => [Event::Error, Event::Fatal]
//! )]
//! fn should_terminate(state: State, event: Event) {
//!     assert_eq!(State::Terminated, state.process(event))
//! }
//! ```
//!
//! This will generate a test for each combination of `state` and `event`.
//!

#![cfg_attr(use_proc_macro_diagnostic, feature(proc_macro_diagnostic))]
extern crate proc_macro;

// Test utility module
#[cfg(test)]
pub(crate) mod test;

mod error;
mod parse;
mod refident;
mod render;
mod resolver;
mod utils;

use syn::{parse_macro_input, ItemFn};

use crate::parse::{fixture::FixtureInfo, rstest::RsTestInfo};

/// Define a fixture that you can use in all `rstest`'s test arguments. You should just mark your
/// function as `[fixture]` and then use it as a test's argument. Fixture functions can also
/// use other fixtures.
///
/// Let's see a trivial example:
///
/// ```
/// use rstest::*;
///
/// #[fixture]
/// fn twenty_one() -> i32 { 21 }
///
/// #[fixture]
/// fn two() -> i32 { 2 }
///
/// #[fixture]
/// fn injected(twenty_one: i32, two: i32) -> i32 { twenty_one * two }
///
/// #[rstest]
/// fn the_test(injected: i32) {
///     assert_eq!(42, injected)
/// }
/// ```
///
/// # Partial Injection
///
/// You can also partialy inject fixture dependency simply indicate dependency value as fixture
/// argument:
///
/// ```
/// use rstest::*;
///
/// #[fixture]
/// fn base() -> i32 { 1 }
///
/// #[fixture]
/// fn first(base: i32) -> i32 { 1 * base }
///
/// #[fixture]
/// fn second(base: i32) -> i32 { 2 * base }
///
/// #[fixture(second(-3))]
/// fn injected(first: i32, second: i32) -> i32 { first * second }
///
/// #[rstest]
/// fn the_test(injected: i32) {
///     assert_eq!(-6, injected)
/// }
/// ```
/// Note that injected value can be an arbitrary rust expression.
///
/// Sometimes the return type cannot be infered so you must define it: For the few times you may
/// need to do it, you can use the `default<type>`, `partial_n<type>` attribute syntax to define it:
///
/// ```
/// use rstest::*;
/// # use std::fmt::Debug;
///
/// #[fixture]
/// pub fn i() -> u32 {
///     42
/// }
///
/// #[fixture]
/// pub fn j() -> i32 {
///     -42
/// }
///
/// #[fixture(::default<impl Iterator<Item=(u32, i32)>>::partial_1<impl Iterator<Item=(I,i32)>>)]
/// pub fn fx<I, J>(i: I, j: J) -> impl Iterator<Item=(I, J)> {
///     std::iter::once((i, j))
/// }
///
/// #[rstest]
/// fn resolve_by_default<I: Debug + PartialEq>(mut fx: impl Iterator<Item=I>) {
///     assert_eq!((42, -42), fx.next().unwrap())
/// }
///
/// #[rstest(fx(42.0))]
/// fn resolve_partial<I: Debug + PartialEq>(mut fx: impl Iterator<Item=I>) {
///     assert_eq!((42.0, -42), fx.next().unwrap())
/// }
/// ```
/// `partial_i` is the fixture used when you inject the first `i` arguments in test call.
#[proc_macro_attribute]
pub fn fixture(
    args: proc_macro::TokenStream,
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let info: FixtureInfo = parse_macro_input!(args as FixtureInfo);
    let fixture = parse_macro_input!(input as ItemFn);

    let errors = error::fixture(&fixture, &info);
    if errors.is_empty() {
        render::fixture(fixture, info).into()
    } else {
        errors
    }
    .into()
}

/// The attribute that you should use for your tests. Your
/// annotated function's arguments can be
/// [injected](attr.rstest.html#injecting-fixtures) with
/// [`[fixture]`](fixture)s, provided by
/// [parametrized cases](attr.rstest.html#test-parametrized-cases)
/// or by [value lists](attr.rstest.html#values-lists).
///
/// ## General Syntax
///
/// `rstest` attribute can be applied to _any_ function and you can costumize its
/// parameters by the follow syntax
///
/// ```norun
/// rstest(
///     arg_1,
///     ...,
///     arg_n[,]
///     [::attribute_1[:: ... [::attribute_k]]]
/// )
/// ```
/// Where:
///
/// - `arg_i` could be one of the follow
///   - `ident` that match to one of function arguments
/// (see [parametrized cases](#test-parametrized-cases) for more details)
///   - `case[::description](v1, ..., vl)` a test case
/// (see [parametrized cases](#test-parametrized-cases) for more details)
///   - `fixture(v1, ..., vl)` where fixture is one of function arguments
/// that and `v1, ..., vl` is a partial list of fixture's arguments
/// (see [injecting fixtures](#injecting-fixtures)] for more details)
///   - `ident => [v1, ..., vl]` where `ident` is one of function arguments and
/// `v1, ..., vl` is a list of values for ident (see [value lists](#values-lists)
/// for more details)
/// - `attribute_j` a test [attribute](#attributes)
///
/// Function's arguments can be present just once as case identity, fixture or value list.
///
/// Your test function can use generics, `impl` or `dyn` and like any kind of rust tests:
///
/// - return results
/// - marked by `#[should_panic]` attribute
///
/// ## Injecting Fixtures
///
/// The simplest case is write a test that can be injected with
/// [`[fixture]`](fixture)s. You can just declare all used fixtures by passing
/// them as a function's arguments. This can help your test to be neat
/// and make your dependecy clear.
///
/// ```
/// use rstest::*;
///
/// #[fixture]
/// fn injected() -> i32 { 42 }
///
/// #[rstest]
/// fn the_test(injected: i32) {
///     assert_eq!(42, injected)
/// }
/// ```
///
/// [`[rstest]`](rstest) proc_macro will desugar it to something that isn't
/// so far from
///
/// ```
/// #[test]
/// fn the_test() {
///     let injected=injected();
///     assert_eq!(42, injected)
/// }
/// ```
///
/// Sometimes is useful to have some parametes in your fixtures but your test would
/// override the fixture's default values in some cases. Like in
/// [fixture partial injection](attr.fixture.html#partial-injection) you can indicate some
/// fixture's arguments also in `rstest`.
///
/// ```
/// # struct User(String, u8);
/// # impl User { fn name(&self) -> &str {&self.0} }
/// use rstest::*;
///
/// #[fixture]
/// fn name() -> &'static str { "Alice" }
/// #[fixture]
/// fn age() -> u8 { 22 }
///
/// #[fixture]
/// fn user(name: impl AsRef<str>, age: u8) -> User { User(name.as_ref().to_owned(), age) }
///
/// #[rstest(user("Bob"))]
/// fn check_user(user: User) {
///     assert_eq("Bob", user.name())
/// }
/// ```
///
/// ## Test Parametrized Cases
///
/// If you would execute your test for a set of input data cases
/// you can define the arguments to use and the cases list. Let see
/// the classical Fibonacci example. In this case we would give the
/// `input` value and the `expected` result for a set of cases to test.
///
/// ```
/// use rstest::rstest;
///
/// #[rstest(input, expected,
///     case(0, 0),
///     case(1, 1),
///     case(2, 1),
///     case(3, 2),
///     case(4, 3),
/// )]
/// fn fibonacci_test(input: u32, expected: u32) {
///     assert_eq!(expected, fibonacci(input))
/// }
///
/// fn fibonacci(input: u32) -> u32 {
///     match input {
///         0 => 0,
///         1 => 1,
///         n => fibonacci(n - 2) + fibonacci(n - 1)
///     }
/// }
/// ```
///
/// `rstest` will produce a 5 indipendent tests and not just one that
/// check every case. Every test can fail indipendently and `cargo test`
/// will give follow output:
///
/// ```norun
/// running 5 tests
/// test fibonacci_test::case_1 ... ok
/// test fibonacci_test::case_2 ... ok
/// test fibonacci_test::case_3 ... ok
/// test fibonacci_test::case_4 ... ok
/// test fibonacci_test::case_5 ... ok
///
/// test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
/// ```
///
/// The cases input values can be arbitrary Rust expresions that return the
/// argument type.
///
/// ```
/// use rstest::rstest;
///  
/// fn sum(a: usize, b: usize) -> usize { a + b }
///
/// #[rstest(s, len,
///     case("foo", 3),
///     case(String::from("foo"), 2 + 1),
///     case(format!("foo"), sum(2, 1)),
/// )]
/// fn test_len(s: impl AsRef<str>, len: usize) {
///     assert_eq!(s.as_ref().len(), len);
/// }
/// ```
///
/// ### Optional case description
///
/// Optionally you can give a _description_ to every case simple by follow `case`
/// with `::my_case_description` where `my_case_description` should be a a valid
/// Rust ident.
///
/// ```norun
/// #[rstest(input, expected,
///     case::zero_base_case(0, 0),
///     case::one_base_case(1, 1),
///     case(2, 1),
///     case(3, 2),
/// )]
/// ```
///
/// Outuput will be
/// ```norun
/// running 4 tests
/// test fibonacci_test::case_1_zero_base_case ... ok
/// test fibonacci_test::case_2_one_base_case ... ok
/// test fibonacci_test::case_3 ... ok
/// test fibonacci_test::case_4 ... ok
///
/// test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
/// ```
///
/// ## Values Lists
///
/// Another useful way to write a test and execute it for some values
/// is to use the values list syntax. This syntax can be usefull both
/// for a plain list and for testing all combination of input arguments.
///
/// ```
/// # use rstest::*;
/// # fn is_valid(input: &str) -> bool { true }
///
/// #[rstest(input => ["Jhon", "alice", "My_Name", "Zigy_2001"])]
/// fn should_be_valid(input: &str) {
///     assert!(is_valid(input))
/// }
/// ```
///
/// or
///
/// ```
/// # use rstest::*;
/// # fn valid_user(name: &str, age: u8) -> bool { true }
///
/// #[rstest(
///     name => ["J", "A", "A________________________________________21"],
///     age => [14, 100], // Maybe more than 100 is an error or joke
/// )]
/// fn should_accept_all_corner_cases(name: &str, age: u8) {
///     assert!(valid_user(name, age))
/// }
/// ```
/// where `cargo test` output is
///
/// ```norun
/// running 6 tests
/// test should_accept_all_corner_cases::name_1::age_1 ... ok
/// test should_accept_all_corner_cases::name_3::age_1 ... ok
/// test should_accept_all_corner_cases::name_3::age_2 ... ok
/// test should_accept_all_corner_cases::name_2::age_1 ... ok
/// test should_accept_all_corner_cases::name_2::age_2 ... ok
/// test should_accept_all_corner_cases::name_1::age_2 ... ok
///
/// test result: ok. 6 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
/// ```
///
/// ## Putting all Together
///
/// All these features can be used together: take some fixtures, define some
/// fixed cases and, for each case, tests all combinations of given values.
/// For istance you need to test that given your repository in cases of both
/// logged in or guest user should return an invalid query error.
///
/// ```rust
/// # enum User { Guest, Logged, }
/// # impl User { fn logged(_n: &str, _d: &str, _w: &str, _s: &str) -> Self { Self::Logged } }
/// # struct Item {}
/// # trait Repository { fn find_items(&self, user: &User, query: &str) -> Result<Vec<Item>, String> { Err("Invalid query error".to_owned()) } }
/// # #[derive(Default)] struct InMemoryRepository {}
/// # impl Repository for InMemoryRepository {}
///
/// use rstest::*;
///
/// #[fixture]
/// fn repository() -> InMemoryRepository {
///     let mut r = InMemoryRepository::default();
///     // fill repository by some data
///     r
/// }
///
/// #[fixture]
/// fn alice() -> User {
///     User::logged("Alice", "2001-10-04", "London", "UK")
/// }
///
/// #[rstest(user,
///     case::logged_user(alice()), // We can use `fixture` also as standard function
///     case::guest(User::Guest),   // We can give a name to every case : `guest` in this case
///     query => ["     ", "^%$#@!", "...." ]
/// )]
/// #[should_panic(expected = "Invalid query error")] // We whould test a panic
/// fn should_be_invalid_query_error(repository: impl Repository, user: User, query: &str) {
///     repository.find_items(&user, query).unwrap();
/// }
/// ```
///
/// ## Attributes
/// ### Trace Input Arguments
///
/// Sometimes can be very helpful to print all test's input arguments. To
/// do it you can use the `trace` parameter.
///
/// ```
/// use rstest::*;
///
/// #[fixture]
/// fn injected() -> i32 { 42 }
///
/// #[rstest(::trace)]
/// fn the_test(injected: i32) {
///     assert_eq!(42, injected)
/// }
/// ```
///
/// Will print an output like
///
/// ```bash
/// Testing started at 14.12 ...
/// ------------ TEST ARGUMENTS ------------
/// injected = 42
/// -------------- TEST START --------------
///
///
/// Expected :42
/// Actual   :43
/// ```
/// If you want to trace input arguments but skip some of them that don't
/// implement the `Debug` trait, you can also use the
/// `notrace(list, of, inputs)` attribute:
///
/// ```
/// # use rstest::*;
/// # struct Xyz;
/// # struct NoSense;
/// #[rstest(::trace::notrace(xzy, have_no_sense))]
/// fn the_test(injected: i32, xyz: Xyz, have_no_sense: NoSense) {
///     assert_eq!(42, injected)
/// }
/// ```
#[proc_macro_attribute]
pub fn rstest(
    args: proc_macro::TokenStream,
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let test = parse_macro_input!(input as ItemFn);
    let info = parse_macro_input!(args as RsTestInfo);

    let errors = error::rstest(&test, &info);

    if errors.is_empty() {
        if info.data.has_list_values() {
            render::matrix(test, info)
        } else if info.data.has_cases() {
            render::parametrize(test, info)
        } else {
            render::single(test, info)
        }
    } else {
        errors
    }
    .into()
}

/// Write table-based tests: you must indicate the arguments that you want use in your cases
/// and provide them for each case you want to test.
///
/// `rstest_parametrize` generates an independent test for each case.
///
/// ```
/// # use rstest::rstest_parametrize;
/// #[rstest_parametrize(input, expected,
///     case(0, 0),
///     case(1, 1),
///     case(2, 1),
///     case(3, 2),
///     case(4, 3)
/// )]
/// fn fibonacci_test(input: u32, expected: u32) {
///     assert_eq!(expected, fibonacci(input))
/// }
/// ```
///
/// Running `cargo test` in this case executes five tests:
///
/// ```bash
/// running 5 tests
/// test fibonacci_test::case_1 ... ok
/// test fibonacci_test::case_2 ... ok
/// test fibonacci_test::case_3 ... ok
/// test fibonacci_test::case_4 ... ok
/// test fibonacci_test::case_5 ... ok
///
/// test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
/// ```
///
/// Like in [`[rstest]`](rstest) you can inject fixture values and every parameter that
/// isn't mapped in `case()`s will be resolved as default `fixture`.
///
/// In general `rstest_parametrize`'s syntax is:
///
/// ```norun
/// rstest_parametrize(ident_1,..., ident_n,
///     case[::description_1](val_1_1, ..., val_n_1),
///     ...,
///     case[::description_m](val_1_m, ..., val_n_m)[,]
///     [fixture_1(...]
///     [...,]
///     [fixture_k(...)]
///     [::attribute_1[:: ... [::attribute_k]]]
/// )
/// ```
/// * `ident_x` should be a valid function argument name
/// * `val_x_y` should be a valid rust expression that can be assigned to `ident_x` function argument
/// * `description_z` when present should be a valid Rust identity
/// * `fixture_v(...)` should be a valid function argument and a [`[fixture]`](fixture) fixture function
/// * attributes now can be just `trace` or `notrace(args..)` (see [`[rstest]`](rstest)
///
/// Function's arguments can be present just once as identity or fixture.
///
/// Functions marked by `rstest_parametrize` can use generics, `impl` and `dyn` without any
/// restriction.
///
/// ```
/// # use rstest::rstest_parametrize;
/// #[rstest_parametrize(input, expected,
///     case("foo", 3),
///     case(String::from("bar"), 3),
/// )]
/// fn len<S: AsRef<str>>(input: S, expected: usize) {
///     assert_eq!(expected, input.as_ref().len())
/// }
///
/// #[rstest_parametrize(input, expected,
///     case("foo", 3),
///     case(String::from("bar"), 3),
/// )]
/// fn len_by_impl(input: impl AsRef<str>, expected: usize) {
///     assert_eq!(expected, input.as_ref().len())
/// }
/// ```
#[proc_macro_attribute]
#[cfg_attr(
    deprecate_parametrize_matrix,
    deprecated(since = "0.5.0", note = "Please use #[rstest(...)] instead")
)]
pub fn rstest_parametrize(
    args: proc_macro::TokenStream,
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    rstest(args, input)
}

/// Write matrix-based tests: you must indicate arguments and values list that you want to test and
/// `rstest_matrix` generate an indipendent test for each argument combination (the carthesian
/// product of values lists).
///
/// ```
/// # use rstest::rstest_matrix;
/// #[rstest_matrix(
///     foo => [42, 24],
///     bar => ["foo", "bar"]
/// )]
/// fn matrix_test(foo: u32, bar: &str) {
///     //... test body
/// }
/// ```
///
/// Running `cargo test` in this case executes four tests:
///
/// ```bash
/// running 4 tests
/// test matrix_test::case_1_1 ... ok
/// test matrix_test::case_1_2 ... ok
/// test matrix_test::case_2_1 ... ok
/// test matrix_test::case_2_2 ... ok
///
/// test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
///
/// ```
///
/// Like in [`[rstest]`](rstest) you can inject fixture values and every parameter that
/// isn't mapped in `case()`s will be resolved as default `fixture`.
///
/// In general `rstest_matrix`'s syntax is:
///
/// ```norun
/// rstest_matrix(
///     ident_1 => [val_1_1, ..., val_1_m1],
///     ....
///     ident_n => [val_n_1, ..., val_n_mn][,]
///     [fixture_1(...]
///     [...,]
///     [fixture_k(...)]
///     [::attribute_1[:: ... [::attribute_k]]]
/// )
/// ```
/// * `ident_x` should be a valid function argument name
/// * `val_x_y` should be a valid rust expression that can be assigned to `ident_x` function argument
/// * `fixture_v(...)` should be a valid function argument and a [`[fixture]`](fixture) fixture function
/// * attributes now can be just `trace` or `notrace(args..)` (see [`[rstest]`](rstest)
///
/// Function's arguments can be present just once as identity or fixture.
///
/// Functions marked by `rstest_matrix` can use generics, `impl` and `dyn` without any
/// restriction.
///
/// ```
/// # use rstest::rstest_matrix;
/// #[rstest_matrix(
///     foo => ["foo", String::from("foo")]
/// )]
/// fn len<S: AsRef<str>>(foo: S) {
///     assert_eq!(3, input.as_ref().len())
/// }
///
/// #[rstest_matrix(
///     foo => ["foo", String::from("foo")]
/// )]
/// fn len_by_impl(foo: impl AsRef<str>) {
///     assert_eq!(3, input.as_ref().len())
/// }
/// ```
#[proc_macro_attribute]
#[cfg_attr(
    deprecate_parametrize_matrix,
    deprecated(since = "0.5.0", note = "Please use #[rstest(...)] instead")
)]
pub fn rstest_matrix(
    args: proc_macro::TokenStream,
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    rstest(args, input)
}