
Rstats
Data Analysis with Rust

Presented at Brisbane Rust Group meeting on 28th July 2022

Libor Spacek

July 14, 2022



Overview

My Crates

Usage

Introduction

Implementation

Documentation

Reflections on Rust in Science



My Crates



Usage

Into Cargo.toml file:
[dependencies]
rstats = "^1"

Sructs:

use rstats::{Mstats};
use indxvec::{MinMax};
use medians::Med;

Traits:

use rstats::{Stats,Vecg,Vecu8,MutVecg,VecVec,VecVecg};



Testing and Benchmarking

It is recommended to read and run tests/tests.rs, with
examples of usage.

To run all the tests, use single thread in order to produce the results
in the right order:
cargo test --release -- --test-threads=1 --nocapture
--color always

Timing of gmedians uses dev dependency:
devtimer = "^4"



Introduction

Rstats is primarily about characterising multidimensional sets of
points (vectors), with applications to Machine Learning and Data
Analysis.

Basic statistical measures and vector algebra provide self-contained
tools for the multidimensional algorithms but can also be used in
their own right. Non analytical statistics is used, whereby
the ‘random variables’ are replaced by vectors of real data.
Probabilities densities and other parameters are always obtained
from the data, not from some assumed distributions.

Our treatment of multidimensional sets of points is constructed
from the first principles. Some original concepts, not found
elsewhere, are introduced and implemented here:



New Concepts
I median correlation- in one dimension (1d), our

mediancorr method is to replace Pearson’s correlation. We
define median correlation as cosine of an angle between two
zero median vectors (instead of Pearson’s zero mean vectors).

I gmedian - fast multidimensional geometric median (gm)
algorithm.

I madgm - generalisation of robust data spread estimator known
as ‘MAD’ (median of absolute deviations from median), from
1d to nd.

I contribution - of a point to an nd set. Defined as gm
displacement when the point is added/removed. Related to the
point’s radius but not the same, as it depends on all the points.

I comediance - instead of covariance (matrix). It is obtained by
supplying covar with the geometric median instead of the
usual centroid. Thus zero median vectors are replacing zero
mean vectors in covariance calculations.



Contribution

Key question of Machine Learning (ML) is how to quantify the
contribution that an example point (typically a member of some
large nd set) makes to the recognition concept, or outcome class,
represented by that set.

In answer to this, we define contribution of a point as the change
to gm caused by adding/deleting that point. Generally, more
outlying points make greater contributions. However, gm is far less
affected by outliers than centroid.

Contribution is computed efficiently from an existing gm.



Impacts of Geometric Median

Zero median vectors are generally preferable to the commonly used
zero mean vectors.

In n dimensions (nd), many authors ‘cheat’ by using quasi medians
(1-d medians along each axis). Quasi medians are a poor start to
stable characterisation of multidimensional data. In a highly
dimensional space, they are not even any faster to compute.

Specifically, all such 1d measures are sensitive to the choice of axis
and thus are affected by rotation.

In contrast, analyses based on the true geometric median (gm) are
axis (rotation) independent. Also, they are more stable, as medians
have a 50% breakdown point (the maximum possible). They are
computed here by methods gmedian and its weighted version
wgmedian, in traits vecvec and vecvecg respectively.



Implementation

The main constituent parts of Rstats are its generic traits. All data
are Vecs of arbitrary length d (dimensionality). Vecs give fast
random access. The different traits are determined simply by how
many Vecs their methods handle: 1,2, or n.

Statisticians call them ’samples of random variables X,Y,..’. Vector
algebraists call them vectors a,b,... Set theoreticians call them sets
S,T,.. etc. All of these are just the same lists of numbers!
Based on this important abstraction, Rstats is able to combine
numerous methods from all three branches of mathematics, plus
information theory, in one relatively small and conceptually
consistent crate.



The Rstats Traits

I Stats: a single vector (of numbers)
I Vecg: methods of vector algebra and information theory

operating on two vectors, e.g. scalar product
I MutVecg: some of the above methods, mutating self
I Vecu8: a few methods implemented more efficiently for u8
I VecVec: methods operating on n vectors in d dimensions
I VecVecg: as VecVec but take another generic argument, such

as a vector of weights.



End Types

Vecs as arguments to most methods are defined over generic type
parameter T. Thus the Vec items containing the actual data can be
of any primitive numeric type.

Everything will work on user defined types as well, as long as
PartialOrd, Copy and conversions to/from f64 are implemented for
them.

End type f64 is most commonly used for the results, for reasons of
maintaining accuracy.



Documentation

For more detailed comments, plus some examples, see the source.
You may have to unclick the ‘implementations on foreign types’
somewhere near the bottom of the page in the rust docs to get to it.
Since these traits are implemented over the pre-existing Rust Vec
type.



Reflections on Rust in Science

I + Speed and Parallelism
I + Practically no runtime errors
I - Invariance of difficulty: now lots of compiler errors
I - Unable to print any Vecs. Had to implement it myself in

indxvec::Printing. This is not something that beginners should
have to do. It is non-trivial for generic Vecs

I - Generic types: surprisingly hard battle against the grain just
to use more than one standard numeric end type in Vecs

I - Turbofish needed in unpredictable ways (type inference bug?),
I - e.g. when gm is of concrete type &[f64], instead of the

expected &[T], we have to annotate: s.vsub::<f64>(gm).


	My Crates
	Usage
	Introduction
	Implementation
	Documentation
	Reflections on Rust in Science

