rssn 0.1.19

A comprehensive scientific computing library for Rust, aiming for feature parity with NumPy, SciPy, and SymPy.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
#ifndef RSSN_H
#define RSSN_H

/* Generated with cbindgen:0.29.2 */

/* Warning, this file is autogenerated by cbindgen. Don't modify this manually. */

#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <ostream>
#include <new>

namespace rssn {

/*
 Represents the result of a convergence test.
 */
enum class rssn_ConvergenceResult {
    /*
     The series is determined to converge.
     */
    Converges,
    /*
     The series is determined to diverge.
     */
    Diverges,
    /*
     The convergence could not be determined with the available tests.
     */
    Inconclusive,
};

/*
 Defines the monomial ordering to be used in polynomial division.
 */
enum class rssn_MonomialOrder {
    Lexicographical,
    GradedLexicographical,
    GradedReverseLexicographical,
};

enum class rssn_CoordinateSystem {
    Cartesian,
    Cylindrical,
    Spherical,
};

/*
 A thread-safe cache for computation results.

 This cache stores the mapping from expressions to their computed values.
 It avoids re-computing the value of the same expression multiple times.
 */
struct rssn_ComputationResultCache;

/*
 The central enum representing a mathematical expression in the symbolic system.

 `Expr` is an Abstract Syntax Tree (AST) that can represent a wide variety of
 mathematical objects and operations. Manual implementations for `Debug`, `Clone`,
 `PartialEq`, `Eq`, and `Hash` are provided to handle variants containing types
 that do not derive these traits automatically (e.g., `f64`, `Arc<dyn Distribution>`).
 */
struct rssn_Expr;

struct rssn_FiniteFieldPolynomial;

/*
 Represents a Fredholm integral equation of the second kind.

 The equation has the form: `y(x) = f(x) + lambda * integral_a_b(K(x, t) * y(t) dt)`,
 where `y(x)` is the unknown function to be solved for.
 */
struct rssn_FredholmEquation;

/*
 Represents a multivector in a Clifford algebra.

 The basis blades are represented by a bitmask. E.g., in 3D:
 001 (1) -> e1, 010 (2) -> e2, 100 (4) -> e3
 011 (3) -> e12, 101 (5) -> e13, 110 (6) -> e23
 111 (7) -> e123 (pseudoscalar)
 */
struct rssn_Multivector;

/*
 Represents a parameterized curve C given by r(t).
 */
struct rssn_ParametricCurve;

/*
 Represents a parameterized surface S given by r(u, v).
 */
struct rssn_ParametricSurface;

/*
 A thread-safe cache for parsed expressions.

 This cache stores the mapping from input strings to parsed `Expr` objects.
 It avoids re-parsing the same string multiple times.
 */
struct rssn_ParsingCache;

/*
 Represents an element in a prime field GF(p), where p is the modulus.

 The value is stored as a `u64`, and all arithmetic operations are performed
 modulo the specified `modulus`.
 */
struct rssn_PrimeFieldElement;

/*
 Represents a rewrite rule, e.g., `lhs -> rhs`.
 */
struct rssn_RewriteRule;

/*
 Represents a sparse multivariate polynomial.

 A sparse polynomial is stored as a map from `Monomial`s to their `Expr` coefficients.
 This representation is highly efficient for polynomials with a small number of non-zero
 terms relative to the degree, such as `x^1000 + 1`.
 */
struct rssn_SparsePolynomial;

/*
 Represents the state of a computation.

 This struct holds intermediate values and other context information
 required during a computation.
 */
struct rssn_State;

struct rssn_String;

struct rssn_Tensor;

template<typename T = void>
struct rssn_Vec;

/*
 Represents a symbolic vector in 3D space.
 */
struct rssn_Vector;

/*
 Represents a Volterra integral equation of the second kind.

 The equation has the form: `y(x) = f(x) + lambda * integral_a_x(K(x, t) * y(t) dt)`.
 It is similar to the Fredholm equation, but the upper limit of integration is the variable `x`.
 */
struct rssn_VolterraEquation;

/*
 Represents a volume V for triple integration.
 Defines the integration order as dz dy dx.
 */
struct rssn_Volume;

/*
 A buffer containing binary data from bincode serialization.

 The caller is responsible for freeing this buffer using `rssn_free_bincode_buffer`.
 */
struct rssn_BincodeBuffer {
    /*
     Pointer to the binary data.
     */
    uint8_t *mData;
    /*
     Length of the binary data in bytes.
     */
    size_t mLen;
};

struct rssn_FfiPoint {
    double mX;
    double mY;
};

extern "C" {

/*
 Computes the definite integral of an `Expr` and returns a handle to the new expression.
 */
rssn_
DEPRECATED_WITH_NOTE
rssn_Expr *expr_definite_integrate(rssn_Expr *aHandle,
                                   const char *aVarPtr,
                                   rssn_Expr *aLowerHandle,
                                   rssn_Expr *aUpperHandle)
;

/*
 Differentiates an `Expr` and returns a handle to the new, derivative expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *expr_differentiate(rssn_Expr *aHandle, const char *aVarPtr) ;

/*
 Computes the indefinite integral of an `Expr` and returns a handle to the new expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *expr_integrate(rssn_Expr *aHandle, const char *aVarPtr) ;

/*
 Computes the limit of an `Expr` and returns a handle to the new expression.
 */
rssn_
DEPRECATED_WITH_NOTE
rssn_Expr *expr_limit(rssn_Expr *aHandle,
                      const char *aVarPtr,
                      rssn_Expr *aToHandle)
;

/*
 Simplifies an `Expr` and returns a handle to the new, simplified expression.

 The caller is responsible for freeing the returned handle using `expr_free`.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *expr_simplify(rssn_Expr *aHandle) ;

/*
 Solves an equation for a given variable and returns the solutions as a JSON string.
 */
rssn_ DEPRECATED_WITH_NOTE char *expr_solve(rssn_Expr *aHandle, const char *aVarPtr) ;

/*
 Substitutes a variable in an `Expr` with another `Expr` and returns a handle to the new expression.
 */
rssn_
DEPRECATED_WITH_NOTE
rssn_Expr *expr_substitute(rssn_Expr *aHandle,
                           const char *aVarPtr,
                           rssn_Expr *aReplacementHandle)
;

/*
 Converts an expression to a LaTeX string.

 The caller is responsible for freeing the returned string using `free_string`.
 */
rssn_ char *expr_to_latex(rssn_Expr *aHandle) ;

/*
 Converts an expression to a formatted, pretty-printed string.

 The caller is responsible for freeing the returned string using `free_string`.
 */
rssn_ char *expr_to_pretty_string(rssn_Expr *aHandle) ;

/*
 Returns the string representation of an `Expr` handle.

 The caller is responsible for freeing the returned string using `free_string`.
 */
rssn_ char *expr_to_string(rssn_Expr *aHandle) ;

/*
 Attempts to unify the units within an expression.

 Returns a JSON string representing a `FfiResult` which contains either the
 new `Expr` object in the `ok` field or an error message in the `err` field.
 The caller can then use `expr_from_json` to get a handle to the new expression.
 The caller is responsible for freeing the returned string using `free_string`.
 */
rssn_ char *expr_unify_expression(rssn_Expr *aHandle) ;

/*
 Frees a C string that was allocated by this library.
 */
rssn_ void free_string(char *aS) ;

/*
 Evaluates a point on a Bézier curve and returns the coordinates as a JSON string.
 */
rssn_ char *interpolate_bezier_curve(const char *aJsonPtr) ;

/*
 Computes a Lagrange interpolating polynomial and returns its coefficients as a JSON string.
 */
rssn_ char *interpolate_lagrange(const char *aJsonPtr) ;

/*
 Adds two matrices and returns a handle to the new matrix expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *matrix_add(rssn_Expr *aH1, rssn_Expr *aH2) ;

/*
 Computes the characteristic polynomial of a matrix and returns the result as a JSON string.
 */
rssn_
DEPRECATED_WITH_NOTE
char *matrix_characteristic_polynomial(rssn_Expr *aHandle,
                                       const char *aVarPtr)
;

/*
 Computes the determinant of a matrix and returns a handle to the resulting expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *matrix_determinant(rssn_Expr *aHandle) ;

/*
 Computes the eigenvalue decomposition of a matrix and returns the eigenvalues and eigenvectors as a JSON string.
 */
rssn_
DEPRECATED_WITH_NOTE
char *matrix_eigen_decomposition(rssn_Expr *aHandle)
;

/*
 Creates an identity matrix of a given size and returns a handle to it.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *matrix_identity(size_t aSize) ;

/*
 Inverts a matrix and returns a handle to the new matrix expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *matrix_inverse(rssn_Expr *aHandle) ;

/*
 Computes the LU decomposition of a matrix and returns the L and U matrices as a JSON string.
 */
rssn_ DEPRECATED_WITH_NOTE char *matrix_lu_decomposition(rssn_Expr *aHandle) ;

/*
 Multiplies two matrices and returns a handle to the new matrix expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *matrix_mul(rssn_Expr *aH1, rssn_Expr *aH2) ;

/*
 Computes the null space of a matrix and returns the result as a JSON string.
 */
rssn_ DEPRECATED_WITH_NOTE char *matrix_null_space(rssn_Expr *aHandle) ;

/*
 Computes the Reduced Row Echelon Form (RREF) of a matrix and returns the result as a JSON string.
 */
rssn_ DEPRECATED_WITH_NOTE char *matrix_rref(rssn_Expr *aHandle) ;

/*
 Multiplies a matrix by a scalar and returns a handle to the new matrix expression.
 */
rssn_
DEPRECATED_WITH_NOTE
rssn_Expr *matrix_scalar_mul(rssn_Expr *aScalarHandle,
                             rssn_Expr *aMatrixHandle)
;

/*
 Subtracts the second matrix from the first and returns a handle to the new matrix expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *matrix_sub(rssn_Expr *aH1, rssn_Expr *aH2) ;

/*
 Computes the trace of a matrix and returns the result as a JSON string.
 */
rssn_ DEPRECATED_WITH_NOTE char *matrix_trace(rssn_Expr *aHandle) ;

/*
 Transposes a matrix and returns a handle to the new matrix expression.
 */
rssn_ DEPRECATED_WITH_NOTE rssn_Expr *matrix_transpose(rssn_Expr *aHandle) ;

rssn_ DEPRECATED_WITH_NOTE char *nt_mod_inverse(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE char *nt_mod_pow(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE char *numerical_gradient(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE char *numerical_integrate(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE char *physics_solve_advection_diffusion_1d(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE int64_t poly_degree(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE rssn_Expr *poly_from_coeffs_vec(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE bool poly_is_polynomial(const char *aJsonPtr) ;

rssn_
DEPRECATED_WITH_NOTE
rssn_Expr *poly_leading_coefficient(rssn_Expr *aHandle,
                                    const char *aVarPtr)
;

rssn_ DEPRECATED_WITH_NOTE char *poly_long_division(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE char *poly_to_coeffs_vec(const char *aJsonPtr) ;

/*
 Checks if an expression contains a variable (handle-based)
 */
rssn_ bool polynomial_contains_var_handle(const rssn_Expr *aExprHandle, const char *aVar) ;

/*
 Computes the degree of a polynomial (handle-based)
 */
rssn_ int64_t polynomial_degree_handle(const rssn_Expr *aExprHandle, const char *aVar) ;

/*
 Frees an Expr handle
 */
rssn_ void polynomial_free_expr_handle(rssn_Expr *aExprHandle) ;

/*
 Checks if an expression is a polynomial in the given variable (handle-based)
 */
rssn_ bool polynomial_is_polynomial_handle(const rssn_Expr *aExprHandle, const char *aVar) ;

/*
 Finds the leading coefficient of a polynomial (handle-based)
 */
rssn_
rssn_Expr *polynomial_leading_coefficient_handle(const rssn_Expr *aExprHandle,
                                                 const char *aVar)
;

/*
 Performs polynomial long division (handle-based)
 */
rssn_
void polynomial_long_division_handle(const rssn_Expr *aDividendHandle,
                                     const rssn_Expr *aDivisorHandle,
                                     const char *aVar,
                                     rssn_Expr **aQuotientOut,
                                     rssn_Expr **aRemainderOut)
;

/*
 Computes absolute value (magnitude) of complex number (Handle)
 */
rssn_ rssn_Expr *rssn_abs_handle(const rssn_Expr *aZ) ;

rssn_
rssn_Expr *rssn_analytic_continuation_handle(const rssn_Expr *aExpr,
                                             const char *aVar,
                                             const rssn_Expr *aOrigCenter,
                                             const rssn_Expr *aNewCenter,
                                             size_t aOrder)
;

rssn_
rssn_ConvergenceResult rssn_analyze_convergence_handle(const rssn_Expr *aTerm,
                                                       const char *aVar)
;

/*
 Applies a set of rewrite rules to an expression until a normal form is reached.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer and `rules` is a valid array.
 */
rssn_
rssn_Expr *rssn_apply_rules_to_normal_form(const rssn_Expr *aExpr,
                                           const rssn_RewriteRule *const *aRules,
                                           size_t aRulesLen)
;

/*
 Applies rewrite rules to an expression (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_apply_rules_to_normal_form_bincode(rssn_BincodeBuffer aInput) ;

/*
 Applies rewrite rules to an expression (JSON).

 Input: JSON object with "expr" and "rules" fields
 Output: JSON-serialized Expr (the normal form)
 */
rssn_ char *rssn_apply_rules_to_normal_form_json(const char *aJsonStr) ;

/*
 Computes argument (angle) of complex number (Handle)
 */
rssn_ rssn_Expr *rssn_arg_handle(const rssn_Expr *aZ) ;

rssn_
rssn_Expr *rssn_asymptotic_expansion_handle(const rssn_Expr *aExpr,
                                            const char *aVar,
                                            const rssn_Expr *aPoint,
                                            size_t aOrder)
;

/*
 Computes absolute value (magnitude) of complex number (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_abs(rssn_BincodeBuffer aZBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_analytic_continuation(rssn_BincodeBuffer aExprBuf,
                                                      rssn_BincodeBuffer aVarBuf,
                                                      rssn_BincodeBuffer aOrigCenterBuf,
                                                      rssn_BincodeBuffer aNewCenterBuf,
                                                      rssn_BincodeBuffer aOrderBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_analyze_convergence(rssn_BincodeBuffer aTermBuf,
                                                    rssn_BincodeBuffer aVarBuf)
;

/*
 Computes argument (angle) of complex number (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_arg(rssn_BincodeBuffer aZBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_asymptotic_expansion(rssn_BincodeBuffer aExprBuf,
                                                     rssn_BincodeBuffer aVarBuf,
                                                     rssn_BincodeBuffer aPointBuf,
                                                     rssn_BincodeBuffer aOrderBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_buchberger(rssn_BincodeBuffer aBasisBuf,
                                           rssn_BincodeBuffer aOrderBuf)
;

/*
 Calculates residue using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_calculate_residue(rssn_BincodeBuffer aExprBuf,
                                                  const char *aVar,
                                                  rssn_BincodeBuffer aPoleBuf)
;

/*
 Checks analytic using Bincode.
 */
rssn_ bool rssn_bincode_check_analytic(rssn_BincodeBuffer aExprBuf, const char *aVar) ;

rssn_ rssn_BincodeBuffer rssn_bincode_chinese_remainder(rssn_BincodeBuffer aCongruencesBuf) ;

/*
 Classifies a PDE (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_bincode_classify_pde(rssn_BincodeBuffer aEquationBuf,
                                             const char *aFunc,
                                             rssn_BincodeBuffer aVarsBuf)
;

rssn_ rssn_BincodeBuffer rssn_bincode_coordinates_get_metric_tensor(rssn_BincodeBuffer aSystemBuf) ;

/*
 Computes definite integral using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_definite_integrate(rssn_BincodeBuffer aExprBuf,
                                                   const char *aVar,
                                                   rssn_BincodeBuffer aLowerBuf,
                                                   rssn_BincodeBuffer aUpperBuf)
;

/*
 Denests a nested square root (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_denest_sqrt(rssn_BincodeBuffer aExprBuf) ;

/*
 Differentiates an expression using Bincode.
 */
rssn_ rssn_BincodeBuffer rssn_bincode_differentiate(rssn_BincodeBuffer aExprBuf, const char *aVar) ;

/*
 Evaluates at point using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_evaluate_at_point(rssn_BincodeBuffer aExprBuf,
                                                  const char *aVar,
                                                  rssn_BincodeBuffer aValueBuf)
;

rssn_ rssn_BincodeBuffer rssn_bincode_evaluate_numerical(rssn_BincodeBuffer aExprBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_extended_gcd(rssn_BincodeBuffer aABuf,
                                             rssn_BincodeBuffer aBBuf)
;

/*
 Factors a polynomial over a finite field (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_factor_gf(rssn_BincodeBuffer aPolyBuf) ;

/*
 Finds pole order using Bincode.
 */
rssn_
size_t rssn_bincode_find_pole_order(rssn_BincodeBuffer aExprBuf,
                                    const char *aVar,
                                    rssn_BincodeBuffer aPoleBuf)
;

/*
 Finds poles using Bincode.
 */
rssn_ rssn_BincodeBuffer rssn_bincode_find_poles(rssn_BincodeBuffer aExprBuf, const char *aVar) ;

/*
 Gets the degree of a finite field polynomial (Bincode)
 */
rssn_ int64_t rssn_bincode_finite_field_polynomial_degree(rssn_BincodeBuffer aPolyBuf) ;

/*
 Performs polynomial long division (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_finite_field_polynomial_long_division(rssn_BincodeBuffer aDividendBuf,
                                                                      rssn_BincodeBuffer aDivisorBuf)
;

/*
 Creates a new finite field polynomial (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_finite_field_polynomial_new(rssn_BincodeBuffer aCoeffsBuf,
                                                            rssn_BincodeBuffer aModulusBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_fourier_series(rssn_BincodeBuffer aExprBuf,
                                               rssn_BincodeBuffer aVarBuf,
                                               rssn_BincodeBuffer aPeriodBuf,
                                               rssn_BincodeBuffer aOrderBuf)
;

/*
 Computes general multi-valued arccos (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_general_arccos(rssn_BincodeBuffer aZBuf,
                                               rssn_BincodeBuffer aKBuf,
                                               rssn_BincodeBuffer aSBuf)
;

/*
 Computes general multi-valued arcsin (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_general_arcsin(rssn_BincodeBuffer aZBuf,
                                               rssn_BincodeBuffer aKBuf)
;

/*
 Computes general multi-valued arctan (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_general_arctan(rssn_BincodeBuffer aZBuf,
                                               rssn_BincodeBuffer aKBuf)
;

/*
 Computes general multi-valued logarithm (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_general_log(rssn_BincodeBuffer aZBuf,
                                            rssn_BincodeBuffer aKBuf)
;

/*
 Computes general multi-valued n-th root (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_general_nth_root(rssn_BincodeBuffer aZBuf,
                                                 rssn_BincodeBuffer aNBuf,
                                                 rssn_BincodeBuffer aKBuf)
;

/*
 Computes general multi-valued power (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_general_power(rssn_BincodeBuffer aZBuf,
                                              rssn_BincodeBuffer aWBuf,
                                              rssn_BincodeBuffer aKBuf)
;

/*
 Computes general multi-valued square root (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_general_sqrt(rssn_BincodeBuffer aZBuf,
                                             rssn_BincodeBuffer aKBuf)
;

/*
 Gets real and imaginary parts using Bincode.
 */
rssn_ rssn_BincodeBuffer rssn_bincode_get_real_imag_parts(rssn_BincodeBuffer aExprBuf) ;

/*
 Simplifies an expression using the heuristic simplifier (Bincode input/output).
 */
rssn_ rssn_BincodeBuffer rssn_bincode_heuristic_simplify(rssn_BincodeBuffer aExprBuf) ;

/*
 Integrates an expression using Bincode.
 */
rssn_ rssn_BincodeBuffer rssn_bincode_integrate(rssn_BincodeBuffer aExprBuf, const char *aVar) ;

/*
 Integrates a rational function (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_integrate_rational_function(rssn_BincodeBuffer aExprBuf,
                                                            rssn_BincodeBuffer aXBuf)
;

rssn_ rssn_BincodeBuffer rssn_bincode_is_prime(rssn_BincodeBuffer aNBuf) ;

/*
 Checks if a logical expression is satisfiable using bincode-based FFI.

 Returns a bincode buffer containing:
 - `Some(true)` if satisfiable
 - `Some(false)` if unsatisfiable
 - `None` if the expression contains quantifiers (undecidable)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_is_satisfiable(rssn_BincodeBuffer aExprBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_laurent_series(rssn_BincodeBuffer aExprBuf,
                                               rssn_BincodeBuffer aVarBuf,
                                               rssn_BincodeBuffer aCenterBuf,
                                               rssn_BincodeBuffer aOrderBuf)
;

/*
 Computes limit using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_limit(rssn_BincodeBuffer aExprBuf,
                                      const char *aVar,
                                      rssn_BincodeBuffer aPointBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_matrix_add(rssn_BincodeBuffer aM1Buf,
                                           rssn_BincodeBuffer aM2Buf)
;

rssn_ rssn_BincodeBuffer rssn_bincode_matrix_determinant(rssn_BincodeBuffer aMatrixBuf) ;

rssn_ rssn_BincodeBuffer rssn_bincode_matrix_inverse(rssn_BincodeBuffer aMatrixBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_matrix_mul(rssn_BincodeBuffer aM1Buf,
                                           rssn_BincodeBuffer aM2Buf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_matrix_solve_linear_system(rssn_BincodeBuffer aABuf,
                                                           rssn_BincodeBuffer aBBuf)
;

rssn_ rssn_BincodeBuffer rssn_bincode_matrix_transpose(rssn_BincodeBuffer aMatrixBuf) ;

/*
 Computes geometric product (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_multivector_geometric_product(rssn_BincodeBuffer aABuf,
                                                              rssn_BincodeBuffer aBBuf)
;

/*
 Computes grade projection (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_multivector_grade_projection(rssn_BincodeBuffer aMvBuf,
                                                             uint32_t aGrade)
;

/*
 Computes inner product (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_multivector_inner_product(rssn_BincodeBuffer aABuf,
                                                          rssn_BincodeBuffer aBBuf)
;

/*
 Computes magnitude (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_multivector_magnitude(rssn_BincodeBuffer aMvBuf) ;

/*
 Computes outer product (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_multivector_outer_product(rssn_BincodeBuffer aABuf,
                                                          rssn_BincodeBuffer aBBuf)
;

/*
 Computes reverse (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_multivector_reverse(rssn_BincodeBuffer aMvBuf) ;

/*
 Creates a new scalar multivector (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_multivector_scalar(uint32_t aP,
                                                   uint32_t aQ,
                                                   uint32_t aR,
                                                   rssn_BincodeBuffer aValueBuf)
;

/*
 Computes path integral using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_path_integrate(rssn_BincodeBuffer aExprBuf,
                                               const char *aVar,
                                               rssn_BincodeBuffer aContourBuf)
;

/*
 Computes polynomial derivative over finite field (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_poly_derivative_gf(rssn_BincodeBuffer aPolyBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_poly_division_multivariate(rssn_BincodeBuffer aDividendBuf,
                                                           rssn_BincodeBuffer aDivisorsBuf,
                                                           rssn_BincodeBuffer aOrderBuf)
;

/*
 Computes polynomial GCD over finite field (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_poly_gcd_gf(rssn_BincodeBuffer aABuf,
                                            rssn_BincodeBuffer aBBuf)
;

/*
 Checks if an expression contains a variable (bincode)
 */
rssn_ bool rssn_bincode_polynomial_contains_var(rssn_BincodeBuffer aExprBuf, const char *aVar) ;

/*
 Computes the degree of a polynomial (bincode)
 */
rssn_ int64_t rssn_bincode_polynomial_degree(rssn_BincodeBuffer aExprBuf, const char *aVar) ;

/*
 Checks if an expression is a polynomial in the given variable (bincode)
 */
rssn_ bool rssn_bincode_polynomial_is_polynomial(rssn_BincodeBuffer aExprBuf, const char *aVar) ;

/*
 Finds the leading coefficient of a polynomial (bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_polynomial_leading_coefficient(rssn_BincodeBuffer aExprBuf,
                                                               const char *aVar)
;

/*
 Performs polynomial long division (bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_polynomial_long_division(rssn_BincodeBuffer aDividendBuf,
                                                         rssn_BincodeBuffer aDivisorBuf,
                                                         const char *aVar)
;

/*
 Converts polynomial to coefficient vector (bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_polynomial_to_coeffs_vec(rssn_BincodeBuffer aExprBuf,
                                                         const char *aVar)
;

/*
 Adds two prime field elements (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_prime_field_element_add(rssn_BincodeBuffer aABuf,
                                                        rssn_BincodeBuffer aBBuf)
;

/*
 Divides two prime field elements (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_prime_field_element_div(rssn_BincodeBuffer aABuf,
                                                        rssn_BincodeBuffer aBBuf)
;

/*
 Computes the inverse of a prime field element (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_prime_field_element_inverse(rssn_BincodeBuffer aElemBuf) ;

/*
 Multiplies two prime field elements (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_prime_field_element_mul(rssn_BincodeBuffer aABuf,
                                                        rssn_BincodeBuffer aBBuf)
;

/*
 Creates a new prime field element (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_prime_field_element_new(rssn_BincodeBuffer aValueBuf,
                                                        rssn_BincodeBuffer aModulusBuf)
;

/*
 Subtracts two prime field elements (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_prime_field_element_sub(rssn_BincodeBuffer aABuf,
                                                        rssn_BincodeBuffer aBBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_product(rssn_BincodeBuffer aExprBuf,
                                        rssn_BincodeBuffer aVarBuf,
                                        rssn_BincodeBuffer aLowerBuf,
                                        rssn_BincodeBuffer aUpperBuf)
;

/*
 Integrates an expression using the Risch-Norman algorithm (Bincode)
 */
rssn_
rssn_BincodeBuffer rssn_bincode_risch_norman_integrate(rssn_BincodeBuffer aExprBuf,
                                                       rssn_BincodeBuffer aXBuf)
;

/*
 Simplifies an expression using the legacy simplifier (Bincode input/output).
 */
rssn_ rssn_BincodeBuffer rssn_bincode_simplify(rssn_BincodeBuffer aExprBuf) ;

/*
 Simplifies an expression using the DAG-based simplifier (Bincode input/output).
 */
rssn_ rssn_BincodeBuffer rssn_bincode_simplify_dag(rssn_BincodeBuffer aExprBuf) ;

/*
 Simplifies a logical expression using bincode-based FFI.
 */
rssn_ rssn_BincodeBuffer rssn_bincode_simplify_logic(rssn_BincodeBuffer aExprBuf) ;

/*
 Simplifies radical expressions (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_simplify_radicals(rssn_BincodeBuffer aExprBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_solve(rssn_BincodeBuffer aExprBuf,
                                      rssn_BincodeBuffer aVarBuf)
;

/*
 Solves a Bernoulli ODE using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_bernoulli_ode(rssn_BincodeBuffer aEquationBuf,
                                                    const char *aFunc,
                                                    const char *aVar)
;

/*
 Solves by reduction of order using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_by_reduction_of_order(rssn_BincodeBuffer aEquationBuf,
                                                            const char *aFunc,
                                                            const char *aVar,
                                                            rssn_BincodeBuffer aY1Buf)
;

/*
 Solves a Cauchy-Euler ODE using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_cauchy_euler_ode(rssn_BincodeBuffer aEquationBuf,
                                                       const char *aFunc,
                                                       const char *aVar)
;

rssn_
rssn_BincodeBuffer rssn_bincode_solve_diophantine(rssn_BincodeBuffer aEquationBuf,
                                                  rssn_BincodeBuffer aVarsBuf)
;

/*
 Solves an exact ODE using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_exact_ode(rssn_BincodeBuffer aEquationBuf,
                                                const char *aFunc,
                                                const char *aVar)
;

/*
 Solves a first-order linear ODE using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_first_order_linear_ode(rssn_BincodeBuffer aEquationBuf,
                                                             const char *aFunc,
                                                             const char *aVar)
;

/*
 Solves the 1D heat equation (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_heat_equation_1d(rssn_BincodeBuffer aEquationBuf,
                                                       const char *aFunc,
                                                       rssn_BincodeBuffer aVarsBuf)
;

/*
 Solves the 2D Laplace equation (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_laplace_equation_2d(rssn_BincodeBuffer aEquationBuf,
                                                          const char *aFunc,
                                                          rssn_BincodeBuffer aVarsBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_solve_linear_system(rssn_BincodeBuffer aSystemBuf,
                                                    rssn_BincodeBuffer aVarsBuf)
;

/*
 Solves an ODE using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_ode(rssn_BincodeBuffer aOdeBuf,
                                          const char *aFunc,
                                          const char *aVar)
;

/*
 Solves a PDE using Bincode with automatic method selection.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_pde(rssn_BincodeBuffer aPdeBuf,
                                          const char *aFunc,
                                          rssn_BincodeBuffer aVarsBuf)
;

/*
 Solves a PDE using the method of characteristics (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_pde_by_characteristics(rssn_BincodeBuffer aEquationBuf,
                                                             const char *aFunc,
                                                             rssn_BincodeBuffer aVarsBuf)
;

/*
 Solves a Riccati ODE using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_riccati_ode(rssn_BincodeBuffer aEquationBuf,
                                                  const char *aFunc,
                                                  const char *aVar,
                                                  rssn_BincodeBuffer aY1Buf)
;

/*
 Solves a separable ODE using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_separable_ode(rssn_BincodeBuffer aEquationBuf,
                                                    const char *aFunc,
                                                    const char *aVar)
;

rssn_
rssn_BincodeBuffer rssn_bincode_solve_system(rssn_BincodeBuffer aEquationsBuf,
                                             rssn_BincodeBuffer aVarsBuf)
;

/*
 Solves the 1D wave equation (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_bincode_solve_wave_equation_1d(rssn_BincodeBuffer aEquationBuf,
                                                       const char *aFunc,
                                                       rssn_BincodeBuffer aVarsBuf)
;

/*
 Computes square-free factorization (Bincode)
 */
rssn_ rssn_BincodeBuffer rssn_bincode_square_free_factorization_gf(rssn_BincodeBuffer aPolyBuf) ;

/*
 Substitutes using Bincode.
 */
rssn_
rssn_BincodeBuffer rssn_bincode_substitute(rssn_BincodeBuffer aExprBuf,
                                           const char *aVar,
                                           rssn_BincodeBuffer aReplacementBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_summation(rssn_BincodeBuffer aExprBuf,
                                          rssn_BincodeBuffer aVarBuf,
                                          rssn_BincodeBuffer aLowerBuf,
                                          rssn_BincodeBuffer aUpperBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_taylor_series(rssn_BincodeBuffer aExprBuf,
                                              rssn_BincodeBuffer aVarBuf,
                                              rssn_BincodeBuffer aCenterBuf,
                                              rssn_BincodeBuffer aOrderBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_tensor_add(rssn_BincodeBuffer aT1Buf,
                                           rssn_BincodeBuffer aT2Buf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_tensor_outer_product(rssn_BincodeBuffer aT1Buf,
                                                     rssn_BincodeBuffer aT2Buf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_tensor_scalar_mul(rssn_BincodeBuffer aTBuf,
                                                  rssn_BincodeBuffer aScalarBuf)
;

/*
 Converts a logical expression to Conjunctive Normal Form (CNF) using bincode-based FFI.
 */
rssn_ rssn_BincodeBuffer rssn_bincode_to_cnf(rssn_BincodeBuffer aExprBuf) ;

/*
 Converts a logical expression to Disjunctive Normal Form (DNF) using bincode-based FFI.
 */
rssn_ rssn_BincodeBuffer rssn_bincode_to_dnf(rssn_BincodeBuffer aExprBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_transform_contravariant_vector(rssn_BincodeBuffer aCompsBuf,
                                                               rssn_BincodeBuffer aFromBuf,
                                                               rssn_BincodeBuffer aToBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_transform_covariant_vector(rssn_BincodeBuffer aCompsBuf,
                                                           rssn_BincodeBuffer aFromBuf,
                                                           rssn_BincodeBuffer aToBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_transform_curl(rssn_BincodeBuffer aCompsBuf,
                                               rssn_BincodeBuffer aFromBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_transform_divergence(rssn_BincodeBuffer aCompsBuf,
                                                     rssn_BincodeBuffer aFromBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_transform_expression(rssn_BincodeBuffer aExprBuf,
                                                     rssn_BincodeBuffer aFromBuf,
                                                     rssn_BincodeBuffer aToBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_transform_gradient(rssn_BincodeBuffer aScalarBuf,
                                                   rssn_BincodeBuffer aVarsBuf,
                                                   rssn_BincodeBuffer aFromBuf,
                                                   rssn_BincodeBuffer aToBuf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_transform_point(rssn_BincodeBuffer aPointBuf,
                                                rssn_BincodeBuffer aFromBuf,
                                                rssn_BincodeBuffer aToBuf)
;

rssn_ rssn_BincodeBuffer rssn_bincode_unify_expression(rssn_BincodeBuffer aExprBuf) ;

rssn_
rssn_BincodeBuffer rssn_bincode_vector_cross(rssn_BincodeBuffer aV1Buf,
                                             rssn_BincodeBuffer aV2Buf)
;

rssn_
rssn_BincodeBuffer rssn_bincode_vector_dot(rssn_BincodeBuffer aV1Buf,
                                           rssn_BincodeBuffer aV2Buf)
;

rssn_ rssn_BincodeBuffer rssn_bincode_vector_magnitude(rssn_BincodeBuffer aVBuf) ;

rssn_ rssn_BincodeBuffer rssn_bincode_vector_normalize(rssn_BincodeBuffer aVBuf) ;

/*
 Computes binomial coefficient C(n, k).
 */
rssn_ char *rssn_binomial_coefficient(size_t aN, size_t aK) ;

/*
 Computes binomial coefficient C(n, k) and returns as JSON string.
 */
rssn_ char *rssn_binomial_coefficient_json(size_t aN, size_t aK) ;

rssn_
rssn_Vec<rssn_SparsePolynomial> *rssn_buchberger_handle(const rssn_Vec<rssn_SparsePolynomial> *aBasis,
                                                        rssn_MonomialOrder aOrder)
;

/*
 Calculates the residue of a complex function at a given pole.
 */
rssn_
rssn_Expr *rssn_calculate_residue(const rssn_Expr *aExpr,
                                  const char *aVar,
                                  const rssn_Expr *aPole)
;

rssn_
int32_t rssn_calculus_definite_integrate(size_t aExprH,
                                         const char *aVar,
                                         size_t aLowerH,
                                         size_t aUpperH,
                                         size_t *aResultH)
;

rssn_ int32_t rssn_calculus_differentiate(size_t aExprH, const char *aVar, size_t *aResultH) ;

rssn_ int32_t rssn_calculus_integrate(size_t aExprH, const char *aVar, size_t *aResultH) ;

rssn_ int32_t rssn_calculus_limit(size_t aExprH, const char *aVar, size_t aToH, size_t *aResultH) ;

rssn_
int32_t rssn_calculus_substitute(size_t aExprH,
                                 const char *aVar,
                                 size_t aReplacementH,
                                 size_t *aResultH)
;

/*
 Expands an expression using algebraic rules.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_cas_expand(const rssn_Expr *aExpr) ;

/*
 Expands an expression using algebraic rules (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_cas_expand_bincode(rssn_BincodeBuffer aInput) ;

/*
 Expands an expression using algebraic rules (JSON).
 */
rssn_ char *rssn_cas_expand_json(const char *aJsonStr) ;

/*
 Factorizes an expression.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_cas_factorize(const rssn_Expr *aExpr) ;

/*
 Factorizes an expression (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_cas_factorize_bincode(rssn_BincodeBuffer aInput) ;

/*
 Factorizes an expression (JSON).
 */
rssn_ char *rssn_cas_factorize_json(const char *aJsonStr) ;

/*
 Normalizes an expression to a canonical form.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_cas_normalize(const rssn_Expr *aExpr) ;

/*
 Normalizes an expression to a canonical form (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_cas_normalize_bincode(rssn_BincodeBuffer aInput) ;

/*
 Normalizes an expression to a canonical form (JSON).
 */
rssn_ char *rssn_cas_normalize_json(const char *aJsonStr) ;

/*
 Simplifies an expression using a set of polynomial side-relations.

 # Arguments
 * `expr` - The expression to simplify.
 * `relations` - Array of pointers to relation expressions (e.g., `x^2 + y^2 - 1`).
 * `relations_len` - Number of relations.
 * `vars` - Array of C strings representing variable ordering.
 * `vars_len` - Number of variables.
 * `order_int` - Monomial ordering: 0=Lex, 1=GradedLex, 2=GradedReverseLex.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_cas_simplify_with_relations(const rssn_Expr *aExpr,
                                            const rssn_Expr *const *aRelations,
                                            size_t aRelationsLen,
                                            const char *const *aVars,
                                            size_t aVarsLen,
                                            int32_t aOrderInt)
;

/*
 Simplifies an expression using a set of polynomial side-relations (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_cas_simplify_with_relations_bincode(rssn_BincodeBuffer aInput) ;

/*
 Simplifies an expression using a set of polynomial side-relations (JSON).
 */
rssn_ char *rssn_cas_simplify_with_relations_json(const char *aJsonStr) ;

/*
 Checks if an expression is analytic with respect to a variable.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer and `var` is a valid C string.
 */
rssn_ bool rssn_check_analytic(const rssn_Expr *aExpr, const char *aVar) ;

/*
 Solves a system of congruences using the Chinese Remainder Theorem.

 # Safety
 `remainders` and `moduli` must be valid pointers to arrays of `Expr` pointers of length `len`.
 */
rssn_
rssn_Expr *rssn_chinese_remainder_handle(const rssn_Expr *const *aRemainders,
                                         const rssn_Expr *const *aModuli,
                                         int aLen)
;

/*
 Computes the number of combinations (nCk).
 */
rssn_ int32_t rssn_comb_combinations(uint64_t aN, uint64_t aK, double *aResult) ;

/*
 Computes the factorial of a number.
 */
rssn_ int32_t rssn_comb_factorial(uint64_t aN, double *aResult) ;

/*
 Computes the number of permutations (nPk).
 */
rssn_ int32_t rssn_comb_permutations(uint64_t aN, uint64_t aK, double *aResult) ;

/*
 Clears a ComputationResultCache.
 */
rssn_ void rssn_computation_result_cache_clear(rssn_ComputationResultCache *aCache) ;

/*
 Frees a ComputationResultCache.
 */
rssn_ void rssn_computation_result_cache_free(rssn_ComputationResultCache *aCache) ;

/*
 Retrieves a value from the ComputationResultCache.
 Returns a C string (char*) which must be freed by the caller using rssn_free_string.
 Returns null if not found.
 */
rssn_
char *rssn_computation_result_cache_get(rssn_ComputationResultCache *aCache,
                                        const rssn_Expr *aExpr)
;

/*
 Retrieves a value from the ComputationResultCache using a bincode expression key.
 */
rssn_
rssn_BincodeBuffer rssn_computation_result_cache_get_bincode(rssn_ComputationResultCache *aCache,
                                                             rssn_BincodeBuffer aExprBuffer)
;

/*
 Retrieves a value from the ComputationResultCache using a JSON expression key.
 Returns the value as a JSON string (e.g. "\"result\"").
 */
rssn_
char *rssn_computation_result_cache_get_json(rssn_ComputationResultCache *aCache,
                                             const char *aJsonExpr)
;

/*
 Creates a new ComputationResultCache.
 The caller is responsible for freeing the memory using rssn_computation_result_cache_free.
 */
rssn_ rssn_ComputationResultCache *rssn_computation_result_cache_new() ;

/*
 Stores a value in the ComputationResultCache.
 */
rssn_
void rssn_computation_result_cache_set(rssn_ComputationResultCache *aCache,
                                       const rssn_Expr *aExpr,
                                       const char *aValue)
;

/*
 Stores a value in the ComputationResultCache using bincode buffers.
 */
rssn_
void rssn_computation_result_cache_set_bincode(rssn_ComputationResultCache *aCache,
                                               rssn_BincodeBuffer aExprBuffer,
                                               rssn_BincodeBuffer aValueBuffer)
;

/*
 Stores a value in the ComputationResultCache using JSON strings.
 */
rssn_
void rssn_computation_result_cache_set_json(rssn_ComputationResultCache *aCache,
                                            const char *aJsonExpr,
                                            const char *aJsonValue)
;

rssn_ rssn_Expr *rssn_coordinates_get_metric_tensor_handle(rssn_CoordinateSystem aSystem) ;

/*
 Creates a cosine expression: cos(expr).
 */
rssn_ rssn_Expr *rssn_cos(const rssn_Expr *aExpr) ;

/*
 Creates a cosine expression from bincode: cos(expr).
 */
rssn_ rssn_BincodeBuffer rssn_cos_bincode(rssn_BincodeBuffer aExprBuffer) ;

/*
 Creates a cosine expression from JSON: cos(expr).
 */
rssn_ char *rssn_cos_json(const char *aJsonExpr) ;

/*
 Computes the definite integral of an expression.
 */
rssn_
rssn_Expr *rssn_definite_integrate(const rssn_Expr *aExpr,
                                   const char *aVar,
                                   const rssn_Expr *aLower,
                                   const rssn_Expr *aUpper)
;

/*
 Denests a nested square root (Handle)
 */
rssn_ rssn_Expr *rssn_denest_sqrt_handle(const rssn_Expr *aExpr) ;

/*
 Differentiates an expression: d/d(var) expr.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer and `var` is a valid C string.
 */
rssn_ rssn_Expr *rssn_differentiate(const rssn_Expr *aExpr, const char *aVar) ;

/*
 Returns the symbolic representation of Euler's number (e).
 */
rssn_ rssn_Expr *rssn_e() ;

/*
 Returns Euler's number (e) as bincode.
 */
rssn_ rssn_BincodeBuffer rssn_e_bincode() ;

/*
 Returns Euler's number (e) as JSON.
 */
rssn_ char *rssn_e_json() ;

/*
 Evaluates an expression at a given point.
 */
rssn_
rssn_Expr *rssn_evaluate_at_point(const rssn_Expr *aExpr,
                                  const char *aVar,
                                  const rssn_Expr *aValue)
;

rssn_ double rssn_evaluate_numerical_handle(const rssn_Expr *aExpr) ;

/*
 Creates an exponential expression: e^(expr).
 */
rssn_ rssn_Expr *rssn_exp(const rssn_Expr *aExpr) ;

/*
 Creates an exponential expression from bincode: e^(expr).
 */
rssn_ rssn_BincodeBuffer rssn_exp_bincode(rssn_BincodeBuffer aExprBuffer) ;

/*
 Creates an exponential expression from JSON: e^(expr).
 */
rssn_ char *rssn_exp_json(const char *aJsonExpr) ;

/*
 Expands a symbolic expression.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_expand(const rssn_Expr *aExpr) ;

/*
 Expands a symbolic expression from bincode.
 */
rssn_ rssn_BincodeBuffer rssn_expand_bincode(rssn_BincodeBuffer aExprBuffer) ;

/*
 Expands a symbolic expression from JSON.
 */
rssn_ char *rssn_expand_json(const char *aJsonExpr) ;

/*
 Creates an expression from a JSON string and returns a thread-safe handle.

 Returns 0 if the JSON is invalid.
 */
rssn_ size_t rssn_expr_create(const char *aJsonPtr) ;

/*
 Frees the memory associated with an expression handle.
 */
rssn_ void rssn_expr_free(size_t aHandle) ;

/*
 Simplifies an expression handle and returns a handle to the new, simplified expression.

 Returns 0 on error (e.g., invalid handle).
 */
rssn_ size_t rssn_expr_simplify(const size_t *aHandle) ;

/*
 Computes the Extended GCD of two expressions.

 # Safety
 `a` and `b` must be valid pointers to `Expr`.
 */
rssn_ rssn_Expr *rssn_extended_gcd_handle(const rssn_Expr *aA, const rssn_Expr *aB) ;

/*
 Factors a polynomial over a finite field (Handle)
 */
rssn_
rssn_Vec<rssn_FiniteFieldPolynomial> *rssn_factor_gf_handle(const rssn_FiniteFieldPolynomial *aPoly)
;

/*
 Computes the Fast Fourier Transform (FFT) of a sequence of complex numbers in-place.
 */
rssn_ int32_t rssn_fft(rssn_Complex<double> *aData, size_t aLen) ;

/*
 Finds the order of a pole.
 */
rssn_
size_t rssn_find_pole_order(const rssn_Expr *aExpr,
                            const char *aVar,
                            const rssn_Expr *aPole)
;

/*
 Finds poles of an expression.
 */
rssn_ rssn_Vec<rssn_Expr> *rssn_find_poles(const rssn_Expr *aExpr, const char *aVar) ;

rssn_
rssn_Expr *rssn_fourier_series_handle(const rssn_Expr *aExpr,
                                      const char *aVar,
                                      const rssn_Expr *aPeriod,
                                      size_t aOrder)
;

/*
 Frees a Fredholm integral equation.
 */
rssn_ void rssn_fredholm_free(rssn_FredholmEquation *aPtr) ;

/*
 Creates a new Fredholm integral equation.
 */
rssn_
rssn_FredholmEquation *rssn_fredholm_new(const rssn_Expr *aYX,
                                         const rssn_Expr *aFX,
                                         const rssn_Expr *aLambda,
                                         const rssn_Expr *aKernel,
                                         const rssn_Expr *aLowerBound,
                                         const rssn_Expr *aUpperBound,
                                         const char *aVarX,
                                         const char *aVarT)
;

/*
 Solves a Fredholm equation using the Neumann series method.
 */
rssn_ rssn_Expr *rssn_fredholm_solve_neumann(const rssn_FredholmEquation *aEq, size_t aIterations) ;

/*
 Solves a Fredholm equation using the Neumann series method (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_fredholm_solve_neumann_bincode(const uint8_t *aInputPtr,
                                                       size_t aInputLen)
;

/*
 Solves a Fredholm equation using the Neumann series method (JSON).
 */
rssn_ char *rssn_fredholm_solve_neumann_json(const char *aInputJson) ;

/*
 Solves a Fredholm equation with a separable kernel.
 */
rssn_
rssn_Expr *rssn_fredholm_solve_separable(const rssn_FredholmEquation *aEq,
                                         const rssn_Expr *const *aAFuncs,
                                         size_t aALen,
                                         const rssn_Expr *const *aBFuncs,
                                         size_t aBLen)
;

/*
 Solves a Fredholm equation with a separable kernel (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_fredholm_solve_separable_bincode(const uint8_t *aInputPtr,
                                                         size_t aInputLen)
;

/*
 Solves a Fredholm equation with a separable kernel (JSON).
 */
rssn_ char *rssn_fredholm_solve_separable_json(const char *aInputJson) ;

/*
 Frees a bincode buffer allocated by an FFI function.

 # Safety
 The buffer must have been allocated by an FFI function that returns `BincodeBuffer`.
 This function should only be called once per buffer.
 */
rssn_ void rssn_free_bincode_buffer(rssn_BincodeBuffer aBuffer) ;

/*
 Frees an Expr pointer created by this module.

 # Safety
 The caller must ensure `expr` was created by this module and hasn't been freed yet.
 */
rssn_ void rssn_free_expr(rssn_Expr *aExpr) ;

/*
 Frees a multivector (Handle)
 */
rssn_ void rssn_free_multivector_handle(rssn_Multivector *aPtr) ;

rssn_ void rssn_free_poles(rssn_Vec<rssn_Expr> *aPoles) ;

/*
 Frees a vector of polynomials (Handle)
 */
rssn_ void rssn_free_poly_vec_handle(rssn_Vec<rssn_FiniteFieldPolynomial> *aPtr) ;

/*
 Frees a string allocated by an FFI function.

 # Safety
 The string must have been allocated by an FFI function that returns `*mut c_char`.
 This function should only be called once per string.
 */
rssn_ void rssn_free_string(char *aS) ;

/*
 Computes general multi-valued arccos (Handle)
 */
rssn_
rssn_Expr *rssn_general_arccos_handle(const rssn_Expr *aZ,
                                      const rssn_Expr *aK,
                                      const rssn_Expr *aS)
;

/*
 Computes general multi-valued arcsin (Handle)
 */
rssn_ rssn_Expr *rssn_general_arcsin_handle(const rssn_Expr *aZ, const rssn_Expr *aK) ;

/*
 Computes general multi-valued arctan (Handle)
 */
rssn_ rssn_Expr *rssn_general_arctan_handle(const rssn_Expr *aZ, const rssn_Expr *aK) ;

/*
 Computes general multi-valued logarithm (Handle)
 */
rssn_ rssn_Expr *rssn_general_log_handle(const rssn_Expr *aZ, const rssn_Expr *aK) ;

/*
 Computes general multi-valued n-th root (Handle)
 */
rssn_
rssn_Expr *rssn_general_nth_root_handle(const rssn_Expr *aZ,
                                        const rssn_Expr *aN,
                                        const rssn_Expr *aK)
;

/*
 Computes general multi-valued power (Handle)
 */
rssn_
rssn_Expr *rssn_general_power_handle(const rssn_Expr *aZ,
                                     const rssn_Expr *aW,
                                     const rssn_Expr *aK)
;

/*
 Computes general multi-valued square root (Handle)
 */
rssn_ rssn_Expr *rssn_general_sqrt_handle(const rssn_Expr *aZ, const rssn_Expr *aK) ;

/*
 Returns the build date as a C string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_build_date() ;

/*
 Returns the build date as a bincode buffer.
 The caller must free the returned buffer using rssn_free_bincode_buffer.
 */
rssn_ rssn_BincodeBuffer rssn_get_build_date_bincode() ;

/*
 Returns the build date as a JSON string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_build_date_json() ;

/*
 Returns all build information as a bincode buffer.
 The caller must free the returned buffer using rssn_free_bincode_buffer.
 */
rssn_ rssn_BincodeBuffer rssn_get_build_info_bincode() ;

/*
 Returns all build information as a JSON string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_build_info_json() ;

/*
 Returns the cargo target triple as a C string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_cargo_target_triple() ;

/*
 Returns the commit SHA as a C string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_commit_sha() ;

/*
 Returns the commit SHA as a bincode buffer.
 The caller must free the returned buffer using rssn_free_bincode_buffer.
 */
rssn_ rssn_BincodeBuffer rssn_get_commit_sha_bincode() ;

/*
 Returns the commit SHA as a JSON string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_commit_sha_json() ;

/*
 Retrieves the last error message set by an FFI function on the current thread.

 The returned pointer is valid until the next call to an FFI function on the same thread.
 The caller should not free this pointer.
 */
rssn_ const char *rssn_get_last_error() ;

/*
 Gets real and imaginary parts of an expression.
 Returns a pointer to a tuple (Expr, Expr) - represented as Vec<Expr> of size 2 for simplicity?
 Or return two out pointers?
 I'll return a Vec<Expr> of size 2.
 */
rssn_ rssn_Vec<rssn_Expr> *rssn_get_real_imag_parts(const rssn_Expr *aExpr) ;

/*
 Returns the rustc version as a C string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_rustc_version() ;

/*
 Returns the system info as a C string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_get_system_info() ;

/*
 Clears all expressions from the handle manager.

 **Warning**: This invalidates all existing handles.

 # Safety
 This function is always safe to call, but will invalidate all handles.
 */
rssn_ void rssn_handle_clear() ;

/*
 Clears all handles (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_handle_clear_bincode() ;

/*
 Clears all handles (JSON).

 Output: JSON object with "cleared" boolean field
 */
rssn_ char *rssn_handle_clear_json() ;

/*
 Clones an expression handle, creating a new handle pointing to the same expression.

 Returns 0 if the source handle doesn't exist.

 # Safety
 This function is safe to call with any handle value.
 */
rssn_ size_t rssn_handle_clone(size_t aHandle) ;

/*
 Clones a handle (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_handle_clone_bincode(rssn_BincodeBuffer aInput) ;

/*
 Clones a handle (JSON).

 Input: JSON object with "handle" field
 Output: JSON object with "new_handle" field
 */
rssn_ char *rssn_handle_clone_json(const char *aJsonStr) ;

/*
 Returns the number of expressions currently managed.

 # Safety
 This function is always safe to call.
 */
rssn_ size_t rssn_handle_count() ;

/*
 Checks if a handle exists in the manager.

 # Safety
 This function is safe to call with any handle value.
 */
rssn_ bool rssn_handle_exists(size_t aHandle) ;

/*
 Checks if a handle exists (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_handle_exists_bincode(rssn_BincodeBuffer aInput) ;

/*
 Checks if a handle exists (JSON).

 Input: JSON object with "handle" field
 Output: JSON object with "exists" boolean field
 */
rssn_ char *rssn_handle_exists_json(const char *aJsonStr) ;

/*
 Frees a handle from the manager.

 Returns true if the handle was found and freed, false otherwise.

 # Safety
 This function is safe to call with any handle value.
 */
rssn_ bool rssn_handle_free(size_t aHandle) ;

/*
 Frees a handle (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_handle_free_bincode(rssn_BincodeBuffer aInput) ;

/*
 Frees a handle (JSON).

 Input: JSON object with "handle" field
 Output: JSON object with "freed" boolean field
 */
rssn_ char *rssn_handle_free_json(const char *aJsonStr) ;

/*
 Retrieves an expression from the handle manager.

 Returns a new owned Expr pointer that must be freed by the caller.

 # Safety
 The caller must ensure the returned pointer is freed using `rssn_free_expr`.
 */
rssn_ rssn_Expr *rssn_handle_get(size_t aHandle) ;

/*
 Returns a list of all active handles as a JSON array string.

 The returned string must be freed using `rssn_free_string`.

 # Safety
 The caller must free the returned string.
 */
rssn_ char *rssn_handle_get_all() ;

/*
 Returns all active handles (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_handle_get_all_bincode() ;

/*
 Retrieves an expression by handle (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_handle_get_bincode(rssn_BincodeBuffer aInput) ;

/*
 Retrieves an expression by handle (JSON).

 Input: JSON object with "handle" field
 Output: JSON-serialized Expr
 */
rssn_ char *rssn_handle_get_json(const char *aJsonStr) ;

/*
 Inserts an expression into the handle manager and returns a unique handle.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ size_t rssn_handle_insert(const rssn_Expr *aExpr) ;

/*
 Inserts an expression (Bincode) into the handle manager.
 */
rssn_ rssn_BincodeBuffer rssn_handle_insert_bincode(rssn_BincodeBuffer aInput) ;

/*
 Inserts an expression (JSON) into the handle manager.

 Input: JSON-serialized Expr
 Output: JSON object with "handle" field
 */
rssn_ char *rssn_handle_insert_json(const char *aJsonStr) ;

/*
 Returns handle manager statistics (JSON).

 Output: JSON object with "count" and "handles" fields
 */
rssn_ char *rssn_handle_stats_json() ;

/*
 Converts an expression handle to a string representation.

 The returned string must be freed using `rssn_free_string`.

 # Safety
 The caller must free the returned string.
 */
rssn_ char *rssn_handle_to_string(size_t aHandle) ;

/*
 Simplifies an expression using the heuristic simplifier.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_heuristic_simplify(const rssn_Expr *aExpr) ;

/*
 Computes the Inverse Fast Fourier Transform (IFFT) of a sequence of complex numbers in-place.
 */
rssn_ int32_t rssn_ifft(rssn_Complex<double> *aData, size_t aLen) ;

/*
 Initializes the plugin manager with a specified plugin directory.

 This function must be called before any plugin operations are performed.

 # Arguments
 * `plugin_dir_ptr` - A null-terminated UTF-8 string for the plugin directory path.

 # Returns
 0 on success, -1 on failure. On failure, an error message can be retrieved
 with `rssn_get_last_error`.
 */
rssn_ int32_t rssn_init_plugin_manager(const char *aPluginDirPtr) ;

/*
 Integrates an expression: int(expr) d(var).

 # Safety
 The caller must ensure `expr` is a valid Expr pointer and `var` is a valid C string.
 */
rssn_ rssn_Expr *rssn_integrate(const rssn_Expr *aExpr, const char *aVar) ;

/*
 Integrates a rational function (Handle)
 */
rssn_ rssn_Expr *rssn_integrate_rational_function_handle(const rssn_Expr *aExpr, const char *aX) ;

/*
 Evaluates a point on a Bezier curve defined by control points.
 */
rssn_
int32_t rssn_interp_bezier_curve(const rssn_FfiPoint *aPointsPtr,
                                 size_t aNumPoints,
                                 double aT,
                                 rssn_FfiPoint *aResultPtr)
;

/*
 Computes a Lagrange interpolating polynomial from a set of points.
 Returns a handle to the resulting polynomial expression.
 */
rssn_
int32_t rssn_interp_lagrange(const rssn_FfiPoint *aPointsPtr,
                             size_t aNumPoints,
                             size_t *aResultHandle)
;

/*
 Checks if an expression is prime.

 # Safety
 `n` must be a valid pointer to an `Expr`.
 */
rssn_ rssn_Expr *rssn_is_prime_handle(const rssn_Expr *aN) ;

/*
 Checks if a logical expression is satisfiable using handle-based FFI.

 Returns:
 - 1 if satisfiable
 - 0 if unsatisfiable
 - -1 if the expression contains quantifiers (undecidable)

 # Safety
 The caller must ensure that `expr` is a valid pointer to an `Expr`.
 */
rssn_ int32_t rssn_is_satisfiable_handle(const rssn_Expr *aExpr) ;

/*
 Computes absolute value (magnitude) of complex number (JSON)
 */
rssn_ char *rssn_json_abs(const char *aZJson) ;

rssn_
char *rssn_json_analytic_continuation(const char *aExprJson,
                                      const char *aVarJson,
                                      const char *aOrigCenterJson,
                                      const char *aNewCenterJson,
                                      const char *aOrderJson)
;

rssn_ char *rssn_json_analyze_convergence(const char *aTermJson, const char *aVarJson) ;

/*
 Computes argument (angle) of complex number (JSON)
 */
rssn_ char *rssn_json_arg(const char *aZJson) ;

rssn_
char *rssn_json_asymptotic_expansion(const char *aExprJson,
                                     const char *aVarJson,
                                     const char *aPointJson,
                                     const char *aOrderJson)
;

rssn_ char *rssn_json_buchberger(const char *aBasisJson, const char *aOrderJson) ;

/*
 Calculates residue using JSON.
 */
rssn_
char *rssn_json_calculate_residue(const char *aExprJson,
                                  const char *aVar,
                                  const char *aPoleJson)
;

/*
 Checks analytic using JSON.
 */
rssn_ bool rssn_json_check_analytic(const char *aExprJson, const char *aVar) ;

rssn_ char *rssn_json_chinese_remainder(const char *aCongruencesJson) ;

/*
 Classifies a PDE and suggests solution methods (JSON).
 */
rssn_
char *rssn_json_classify_pde(const char *aEquationJson,
                             const char *aFunc,
                             const char *aVarsJson)
;

rssn_ char *rssn_json_coordinates_get_metric_tensor(rssn_CoordinateSystem aSystem) ;

/*
 Computes definite integral using JSON.
 */
rssn_
char *rssn_json_definite_integrate(const char *aExprJson,
                                   const char *aVar,
                                   const char *aLowerJson,
                                   const char *aUpperJson)
;

/*
 Denests a nested square root (JSON)
 */
rssn_ char *rssn_json_denest_sqrt(const char *aExprJson) ;

/*
 Differentiates an expression using JSON.
 */
rssn_ char *rssn_json_differentiate(const char *aExprJson, const char *aVar) ;

/*
 Evaluates at point using JSON.
 */
rssn_
char *rssn_json_evaluate_at_point(const char *aExprJson,
                                  const char *aVar,
                                  const char *aValueJson)
;

rssn_ char *rssn_json_evaluate_numerical(const char *aExprJson) ;

rssn_ char *rssn_json_extended_gcd(const char *aAJson, const char *aBJson) ;

/*
 Factors a polynomial over a finite field (JSON)
 */
rssn_ char *rssn_json_factor_gf(const char *aPolyJson) ;

/*
 Finds pole order using JSON.
 */
rssn_
size_t rssn_json_find_pole_order(const char *aExprJson,
                                 const char *aVar,
                                 const char *aPoleJson)
;

/*
 Finds poles using JSON.
 */
rssn_ char *rssn_json_find_poles(const char *aExprJson, const char *aVar) ;

/*
 Gets the degree of a finite field polynomial (JSON)
 */
rssn_ int64_t rssn_json_finite_field_polynomial_degree(const char *aPolyJson) ;

/*
 Performs polynomial long division (JSON)
 */
rssn_
char *rssn_json_finite_field_polynomial_long_division(const char *aDividendJson,
                                                      const char *aDivisorJson)
;

/*
 Creates a new finite field polynomial (JSON)
 */
rssn_
char *rssn_json_finite_field_polynomial_new(const char *aCoeffsJson,
                                            const char *aModulusJson)
;

rssn_
char *rssn_json_fourier_series(const char *aExprJson,
                               const char *aVarJson,
                               const char *aPeriodJson,
                               const char *aOrderJson)
;

/*
 Computes general multi-valued arccos (JSON)
 */
rssn_ char *rssn_json_general_arccos(const char *aZJson, const char *aKJson, const char *aSJson) ;

/*
 Computes general multi-valued arcsin (JSON)
 */
rssn_ char *rssn_json_general_arcsin(const char *aZJson, const char *aKJson) ;

/*
 Computes general multi-valued arctan (JSON)
 */
rssn_ char *rssn_json_general_arctan(const char *aZJson, const char *aKJson) ;

/*
 Computes general multi-valued logarithm (JSON)
 */
rssn_ char *rssn_json_general_log(const char *aZJson, const char *aKJson) ;

/*
 Computes general multi-valued n-th root (JSON)
 */
rssn_ char *rssn_json_general_nth_root(const char *aZJson, const char *aNJson, const char *aKJson) ;

/*
 Computes general multi-valued power (JSON)
 */
rssn_ char *rssn_json_general_power(const char *aZJson, const char *aWJson, const char *aKJson) ;

/*
 Computes general multi-valued square root (JSON)
 */
rssn_ char *rssn_json_general_sqrt(const char *aZJson, const char *aKJson) ;

/*
 Gets real and imaginary parts using JSON.
 */
rssn_ char *rssn_json_get_real_imag_parts(const char *aExprJson) ;

/*
 Simplifies an expression using the heuristic simplifier (JSON input/output).
 */
rssn_ char *rssn_json_heuristic_simplify(const char *aExprJson) ;

/*
 Integrates an expression using JSON.
 */
rssn_ char *rssn_json_integrate(const char *aExprJson, const char *aVar) ;

/*
 Integrates a rational function (JSON)
 */
rssn_ char *rssn_json_integrate_rational_function(const char *aExprJson, const char *aXJson) ;

rssn_ char *rssn_json_is_prime(const char *aNJson) ;

/*
 Checks if a logical expression is satisfiable using JSON-based FFI.

 Returns a JSON string containing:
 - `{"result": "satisfiable"}` if satisfiable
 - `{"result": "unsatisfiable"}` if unsatisfiable
 - `{"result": "undecidable"}` if the expression contains quantifiers
 */
rssn_ char *rssn_json_is_satisfiable(const char *aExprJson) ;

rssn_
char *rssn_json_laurent_series(const char *aExprJson,
                               const char *aVarJson,
                               const char *aCenterJson,
                               const char *aOrderJson)
;

/*
 Computes limit using JSON.
 */
rssn_ char *rssn_json_limit(const char *aExprJson, const char *aVar, const char *aPointJson) ;

rssn_ char *rssn_json_matrix_add(const char *aM1Json, const char *aM2Json) ;

rssn_ char *rssn_json_matrix_determinant(const char *aMatrixJson) ;

rssn_ char *rssn_json_matrix_inverse(const char *aMatrixJson) ;

rssn_ char *rssn_json_matrix_mul(const char *aM1Json, const char *aM2Json) ;

rssn_ char *rssn_json_matrix_solve_linear_system(const char *aAJson, const char *aBJson) ;

rssn_ char *rssn_json_matrix_transpose(const char *aMatrixJson) ;

/*
 Computes geometric product (JSON)
 */
rssn_ char *rssn_json_multivector_geometric_product(const char *aAJson, const char *aBJson) ;

/*
 Computes grade projection (JSON)
 */
rssn_ char *rssn_json_multivector_grade_projection(const char *aMvJson, uint32_t aGrade) ;

/*
 Computes inner product (JSON)
 */
rssn_ char *rssn_json_multivector_inner_product(const char *aAJson, const char *aBJson) ;

/*
 Computes magnitude (JSON)
 */
rssn_ char *rssn_json_multivector_magnitude(const char *aMvJson) ;

/*
 Computes outer product (JSON)
 */
rssn_ char *rssn_json_multivector_outer_product(const char *aAJson, const char *aBJson) ;

/*
 Computes reverse (JSON)
 */
rssn_ char *rssn_json_multivector_reverse(const char *aMvJson) ;

/*
 Creates a new scalar multivector (JSON)
 */
rssn_
char *rssn_json_multivector_scalar(uint32_t aP,
                                   uint32_t aQ,
                                   uint32_t aR,
                                   const char *aValueJson)
;

/*
 Computes path integral using JSON.
 */
rssn_
char *rssn_json_path_integrate(const char *aExprJson,
                               const char *aVar,
                               const char *aContourJson)
;

/*
 Computes polynomial derivative over finite field (JSON)
 */
rssn_ char *rssn_json_poly_derivative_gf(const char *aPolyJson) ;

rssn_
char *rssn_json_poly_division_multivariate(const char *aDividendJson,
                                           const char *aDivisorsJson,
                                           const char *aOrderJson)
;

/*
 Computes polynomial GCD over finite field (JSON)
 */
rssn_ char *rssn_json_poly_gcd_gf(const char *aAJson, const char *aBJson) ;

/*
 Checks if an expression contains a variable (JSON)
 */
rssn_ bool rssn_json_polynomial_contains_var(const char *aExprJson, const char *aVar) ;

/*
 Computes the degree of a polynomial (JSON)
 */
rssn_ int64_t rssn_json_polynomial_degree(const char *aExprJson, const char *aVar) ;

/*
 Checks if an expression is a polynomial in the given variable (JSON)
 */
rssn_ bool rssn_json_polynomial_is_polynomial(const char *aExprJson, const char *aVar) ;

/*
 Finds the leading coefficient of a polynomial (JSON)
 */
rssn_ char *rssn_json_polynomial_leading_coefficient(const char *aExprJson, const char *aVar) ;

/*
 Performs polynomial long division (JSON)
 */
rssn_
char *rssn_json_polynomial_long_division(const char *aDividendJson,
                                         const char *aDivisorJson,
                                         const char *aVar)
;

/*
 Converts polynomial to coefficient vector (JSON)
 */
rssn_ char *rssn_json_polynomial_to_coeffs_vec(const char *aExprJson, const char *aVar) ;

/*
 Adds two prime field elements (JSON)
 */
rssn_ char *rssn_json_prime_field_element_add(const char *aAJson, const char *aBJson) ;

/*
 Divides two prime field elements (JSON)
 */
rssn_ char *rssn_json_prime_field_element_div(const char *aAJson, const char *aBJson) ;

/*
 Computes the inverse of a prime field element (JSON)
 */
rssn_ char *rssn_json_prime_field_element_inverse(const char *aElemJson) ;

/*
 Multiplies two prime field elements (JSON)
 */
rssn_ char *rssn_json_prime_field_element_mul(const char *aAJson, const char *aBJson) ;

/*
 Creates a new prime field element (JSON)
 */
rssn_ char *rssn_json_prime_field_element_new(const char *aValueJson, const char *aModulusJson) ;

/*
 Subtracts two prime field elements (JSON)
 */
rssn_ char *rssn_json_prime_field_element_sub(const char *aAJson, const char *aBJson) ;

rssn_
char *rssn_json_product(const char *aExprJson,
                        const char *aVarJson,
                        const char *aLowerJson,
                        const char *aUpperJson)
;

/*
 Integrates an expression using the Risch-Norman algorithm (JSON)
 */
rssn_ char *rssn_json_risch_norman_integrate(const char *aExprJson, const char *aXJson) ;

/*
 Simplifies an expression using the legacy simplifier (JSON input/output).
 */
rssn_ char *rssn_json_simplify(const char *aExprJson) ;

/*
 Simplifies an expression using the DAG-based simplifier (JSON input/output).
 */
rssn_ char *rssn_json_simplify_dag(const char *aExprJson) ;

/*
 Simplifies a logical expression using JSON-based FFI.
 */
rssn_ char *rssn_json_simplify_logic(const char *aExprJson) ;

/*
 Simplifies radical expressions (JSON)
 */
rssn_ char *rssn_json_simplify_radicals(const char *aExprJson) ;

rssn_ char *rssn_json_solve(const char *aExprJson, const char *aVarJson) ;

/*
 Solves a Bernoulli ODE using JSON.
 */
rssn_
char *rssn_json_solve_bernoulli_ode(const char *aEquationJson,
                                    const char *aFunc,
                                    const char *aVar)
;

/*
 Solves by reduction of order using JSON.
 */
rssn_
char *rssn_json_solve_by_reduction_of_order(const char *aEquationJson,
                                            const char *aFunc,
                                            const char *aVar,
                                            const char *aY1Json)
;

/*
 Solves a Cauchy-Euler ODE using JSON.
 */
rssn_
char *rssn_json_solve_cauchy_euler_ode(const char *aEquationJson,
                                       const char *aFunc,
                                       const char *aVar)
;

rssn_ char *rssn_json_solve_diophantine(const char *aEquationJson, const char *aVarsJson) ;

/*
 Solves an exact ODE using JSON.
 */
rssn_
char *rssn_json_solve_exact_ode(const char *aEquationJson,
                                const char *aFunc,
                                const char *aVar)
;

/*
 Solves a first-order linear ODE using JSON.
 */
rssn_
char *rssn_json_solve_first_order_linear_ode(const char *aEquationJson,
                                             const char *aFunc,
                                             const char *aVar)
;

/*
 Solves the 1D heat equation (JSON).
 */
rssn_
char *rssn_json_solve_heat_equation_1d(const char *aEquationJson,
                                       const char *aFunc,
                                       const char *aVarsJson)
;

/*
 Solves the 2D Laplace equation (JSON).
 */
rssn_
char *rssn_json_solve_laplace_equation_2d(const char *aEquationJson,
                                          const char *aFunc,
                                          const char *aVarsJson)
;

rssn_ char *rssn_json_solve_linear_system(const char *aSystemJson, const char *aVarsJson) ;

/*
 Solves an ODE using JSON.
 */
rssn_ char *rssn_json_solve_ode(const char *aOdeJson, const char *aFunc, const char *aVar) ;

/*
 Solves a PDE using JSON with automatic method selection.
 */
rssn_ char *rssn_json_solve_pde(const char *aPdeJson, const char *aFunc, const char *aVarsJson) ;

/*
 Solves a PDE using the method of characteristics (JSON).
 */
rssn_
char *rssn_json_solve_pde_by_characteristics(const char *aEquationJson,
                                             const char *aFunc,
                                             const char *aVarsJson)
;

/*
 Solves the 2D Poisson equation (JSON).
 */
rssn_
char *rssn_json_solve_poisson_equation_2d(const char *aEquationJson,
                                          const char *aFunc,
                                          const char *aVarsJson)
;

/*
 Solves a Riccati ODE using JSON.
 */
rssn_
char *rssn_json_solve_riccati_ode(const char *aEquationJson,
                                  const char *aFunc,
                                  const char *aVar,
                                  const char *aY1Json)
;

/*
 Solves a separable ODE using JSON.
 */
rssn_
char *rssn_json_solve_separable_ode(const char *aEquationJson,
                                    const char *aFunc,
                                    const char *aVar)
;

rssn_ char *rssn_json_solve_system(const char *aEquationsJson, const char *aVarsJson) ;

/*
 Solves the 1D wave equation using D'Alembert's formula (JSON).
 */
rssn_
char *rssn_json_solve_wave_equation_1d(const char *aEquationJson,
                                       const char *aFunc,
                                       const char *aVarsJson)
;

/*
 Computes square-free factorization (JSON)
 */
rssn_ char *rssn_json_square_free_factorization_gf(const char *aPolyJson) ;

/*
 Substitutes using JSON.
 */
rssn_
char *rssn_json_substitute(const char *aExprJson,
                           const char *aVar,
                           const char *aReplacementJson)
;

rssn_
char *rssn_json_summation(const char *aExprJson,
                          const char *aVarJson,
                          const char *aLowerJson,
                          const char *aUpperJson)
;

rssn_
char *rssn_json_taylor_series(const char *aExprJson,
                              const char *aVarJson,
                              const char *aCenterJson,
                              const char *aOrderJson)
;

rssn_ char *rssn_json_tensor_add(const char *aT1Json, const char *aT2Json) ;

rssn_ char *rssn_json_tensor_contract(const char *aTJson, size_t aAxis1, size_t aAxis2) ;

rssn_ char *rssn_json_tensor_outer_product(const char *aT1Json, const char *aT2Json) ;

rssn_ char *rssn_json_tensor_scalar_mul(const char *aTJson, const char *aScalarJson) ;

/*
 Converts a logical expression to Conjunctive Normal Form (CNF) using JSON-based FFI.
 */
rssn_ char *rssn_json_to_cnf(const char *aExprJson) ;

/*
 Converts a logical expression to Disjunctive Normal Form (DNF) using JSON-based FFI.
 */
rssn_ char *rssn_json_to_dnf(const char *aExprJson) ;

rssn_
char *rssn_json_transform_contravariant_vector(const char *aCompsJson,
                                               rssn_CoordinateSystem aFrom,
                                               rssn_CoordinateSystem aTo)
;

rssn_
char *rssn_json_transform_covariant_vector(const char *aCompsJson,
                                           rssn_CoordinateSystem aFrom,
                                           rssn_CoordinateSystem aTo)
;

rssn_ char *rssn_json_transform_curl(const char *aCompsJson, rssn_CoordinateSystem aFrom) ;

rssn_ char *rssn_json_transform_divergence(const char *aCompsJson, rssn_CoordinateSystem aFrom) ;

rssn_
char *rssn_json_transform_expression(const char *aExprJson,
                                     rssn_CoordinateSystem aFrom,
                                     rssn_CoordinateSystem aTo)
;

rssn_
char *rssn_json_transform_gradient(const char *aScalarJson,
                                   const char *aVarsJson,
                                   rssn_CoordinateSystem aFrom,
                                   rssn_CoordinateSystem aTo)
;

rssn_
char *rssn_json_transform_point(const char *aPointJson,
                                rssn_CoordinateSystem aFrom,
                                rssn_CoordinateSystem aTo)
;

rssn_ char *rssn_json_unify_expression(const char *aExprJson) ;

rssn_ char *rssn_json_vector_cross(const char *aV1Json, const char *aV2Json) ;

rssn_
char *rssn_json_vector_curl(const char *aVJson,
                            const char *aXVar,
                            const char *aYVar,
                            const char *aZVar)
;

rssn_
char *rssn_json_vector_divergence(const char *aVJson,
                                  const char *aXVar,
                                  const char *aYVar,
                                  const char *aZVar)
;

rssn_ char *rssn_json_vector_dot(const char *aV1Json, const char *aV2Json) ;

rssn_
char *rssn_json_vector_gradient(const char *aScalarFieldJson,
                                const char *aXVar,
                                const char *aYVar,
                                const char *aZVar)
;

rssn_ char *rssn_json_vector_magnitude(const char *aVJson) ;

rssn_ char *rssn_json_vector_normalize(const char *aVJson) ;

/*
 Applies the Knuth-Bendix completion algorithm to a set of equations.

 Returns a pointer to a Vec<RewriteRule> on success, or null on failure.

 # Safety
 The caller must ensure `equations` is a valid array of Expr pointers.
 */
rssn_
rssn_Vec<rssn_RewriteRule> *rssn_knuth_bendix(const rssn_Expr *const *aEquations,
                                              size_t aEquationsLen)
;

/*
 Applies the Knuth-Bendix completion algorithm (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_knuth_bendix_bincode(rssn_BincodeBuffer aInput) ;

/*
 Applies the Knuth-Bendix completion algorithm (JSON).

 Input: JSON array of equations (Expr::Eq)
 Output: JSON array of RewriteRule objects
 */
rssn_ char *rssn_knuth_bendix_json(const char *aJsonStr) ;

rssn_
rssn_Expr *rssn_laurent_series_handle(const rssn_Expr *aExpr,
                                      const char *aVar,
                                      const rssn_Expr *aCenter,
                                      size_t aOrder)
;

/*
 Computes the limit of an expression: limit(expr, var -> point).

 # Safety
 The caller must ensure `expr` and `point` are valid Expr pointers and `var` is a valid C string.
 */
rssn_ rssn_Expr *rssn_limit(const rssn_Expr *aExpr, const char *aVar, const rssn_Expr *aPoint) ;

/*
 Computes the line integral of a scalar field along a curve.
 */
rssn_
char *rssn_line_integral_scalar(const char *aScalarField,
                                const rssn_ParametricCurve *aCurve)
;

/*
 Computes the line integral of a scalar field (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_line_integral_scalar_bincode(const uint8_t *aInputPtr,
                                                     size_t aInputLen)
;

/*
 Computes the line integral of a scalar field (JSON).
 */
rssn_ char *rssn_line_integral_scalar_json(const char *aInputJson) ;

/*
 Computes the line integral of a vector field along a curve.
 */
rssn_
char *rssn_line_integral_vector(const char *aFieldX,
                                const char *aFieldY,
                                const char *aFieldZ,
                                const rssn_ParametricCurve *aCurve)
;

/*
 Computes the line integral of a vector field (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_line_integral_vector_bincode(const uint8_t *aInputPtr,
                                                     size_t aInputLen)
;

/*
 Computes the line integral of a vector field (JSON).
 */
rssn_ char *rssn_line_integral_vector_json(const char *aInputJson) ;

/*
 Creates a natural logarithm expression: ln(expr).
 */
rssn_ rssn_Expr *rssn_ln(const rssn_Expr *aExpr) ;

/*
 Creates a natural logarithm expression from bincode: ln(expr).
 */
rssn_ rssn_BincodeBuffer rssn_ln_bincode(rssn_BincodeBuffer aExprBuffer) ;

/*
 Creates a natural logarithm expression from JSON: ln(expr).
 */
rssn_ char *rssn_ln_json(const char *aJsonExpr) ;

rssn_ int32_t rssn_matrix_add(size_t aH1, size_t aH2, size_t *aResultH) ;

rssn_ rssn_Expr *rssn_matrix_add_handle(const rssn_Expr *aM1, const rssn_Expr *aM2) ;

rssn_ int32_t rssn_matrix_determinant(size_t aH, size_t *aResultH) ;

rssn_ rssn_Expr *rssn_matrix_determinant_handle(const rssn_Expr *aMatrix) ;

rssn_ int32_t rssn_matrix_identity(size_t aSize, size_t *aResultH) ;

rssn_ int32_t rssn_matrix_inverse(size_t aH, size_t *aResultH) ;

rssn_ rssn_Expr *rssn_matrix_inverse_handle(const rssn_Expr *aMatrix) ;

rssn_ int32_t rssn_matrix_mul(size_t aH1, size_t aH2, size_t *aResultH) ;

rssn_ rssn_Expr *rssn_matrix_mul_handle(const rssn_Expr *aM1, const rssn_Expr *aM2) ;

rssn_ int32_t rssn_matrix_scalar_mul(size_t aScalarH, size_t aMatrixH, size_t *aResultH) ;

rssn_ rssn_Expr *rssn_matrix_solve_linear_system_handle(const rssn_Expr *aA, const rssn_Expr *aB) ;

rssn_ int32_t rssn_matrix_sub(size_t aH1, size_t aH2, size_t *aResultH) ;

rssn_ int32_t rssn_matrix_transpose(size_t aH, size_t *aResultH) ;

rssn_ rssn_Expr *rssn_matrix_transpose_handle(const rssn_Expr *aMatrix) ;

/*
 Computes geometric product (Handle)
 */
rssn_
rssn_Multivector *rssn_multivector_geometric_product_handle(const rssn_Multivector *aA,
                                                            const rssn_Multivector *aB)
;

/*
 Computes grade projection (Handle)
 */
rssn_
rssn_Multivector *rssn_multivector_grade_projection_handle(const rssn_Multivector *aMv,
                                                           uint32_t aGrade)
;

/*
 Computes inner product (Handle)
 */
rssn_
rssn_Multivector *rssn_multivector_inner_product_handle(const rssn_Multivector *aA,
                                                        const rssn_Multivector *aB)
;

/*
 Computes magnitude (Handle)
 */
rssn_ rssn_Expr *rssn_multivector_magnitude_handle(const rssn_Multivector *aMv) ;

/*
 Computes outer product (Handle)
 */
rssn_
rssn_Multivector *rssn_multivector_outer_product_handle(const rssn_Multivector *aA,
                                                        const rssn_Multivector *aB)
;

/*
 Computes reverse (Handle)
 */
rssn_ rssn_Multivector *rssn_multivector_reverse_handle(const rssn_Multivector *aMv) ;

/*
 Creates a new scalar multivector (Handle)
 */
rssn_
rssn_Multivector *rssn_multivector_scalar_handle(uint32_t aP,
                                                 uint32_t aQ,
                                                 uint32_t aR,
                                                 const rssn_Expr *aValue)
;

/*
 Computes the greatest common divisor (GCD) of two numbers.

 Returns 0 on success, -1 on error.
 On error, call `rssn_get_last_error` to get the error message.
 */
rssn_ int32_t rssn_nt_gcd(uint64_t aA, uint64_t aB, uint64_t *aResult) ;

/*
 Checks if a number is prime using the Miller-Rabin test.

 Returns 0 on success, -1 on error.
 On error, call `rssn_get_last_error` to get the error message.
 */
rssn_ int32_t rssn_nt_is_prime(uint64_t aN, bool *aResult) ;

/*
 Computes the modular multiplicative inverse.

 Returns 0 on success, -1 on error (e.g., if no inverse exists).
 On error, call `rssn_get_last_error` to get the error message.
 */
rssn_ int32_t rssn_nt_mod_inverse(int64_t aA, int64_t aB, int64_t *aResult) ;

/*
 Computes modular exponentiation (base^exp % modulus).

 Returns 0 on success, -1 on error.
 On error, call `rssn_get_last_error` to get the error message.
 */
rssn_ int32_t rssn_nt_mod_pow(uint64_t aBase, uint64_t aExp, uint64_t aModulus, uint64_t *aResult) ;

rssn_
int32_t rssn_numerical_gradient(size_t aExprH,
                                const char *const *aVars,
                                size_t aNumVars,
                                const double *aPoint,
                                size_t aPointLen,
                                double *aResultVec)
;

rssn_
int32_t rssn_numerical_integrate(size_t aExprH,
                                 const char *aVar,
                                 double aStart,
                                 double aEnd,
                                 size_t aNSteps,
                                 uint32_t aMethod,
                                 double *aResult)
;

/*
 Frees a ParametricCurve handle.
 */
rssn_ void rssn_parametric_curve_free(rssn_ParametricCurve *aCurve) ;

/*
 Creates a new ParametricCurve.
 */
rssn_
rssn_ParametricCurve *rssn_parametric_curve_new(const char *aRX,
                                                const char *aRY,
                                                const char *aRZ,
                                                const char *aTVar,
                                                const char *aTLower,
                                                const char *aTUpper)
;

/*
 Frees a ParametricSurface handle.
 */
rssn_ void rssn_parametric_surface_free(rssn_ParametricSurface *aSurface) ;

/*
 Creates a new ParametricSurface.
 */
rssn_
rssn_ParametricSurface *rssn_parametric_surface_new(const char *aRX,
                                                    const char *aRY,
                                                    const char *aRZ,
                                                    const char *aUVar,
                                                    const char *aULower,
                                                    const char *aUUpper,
                                                    const char *aVVar,
                                                    const char *aVLower,
                                                    const char *aVUpper)
;

/*
 Clears a ParsingCache.
 */
rssn_ void rssn_parsing_cache_clear(rssn_ParsingCache *aCache) ;

/*
 Frees a ParsingCache.
 */
rssn_ void rssn_parsing_cache_free(rssn_ParsingCache *aCache) ;

/*
 Retrieves an expression from the ParsingCache.
 Returns a pointer to the Expr (Arc<Expr> with incremented refcount), or null if not found.
 The caller is responsible for freeing the returned Expr (using the appropriate Expr free function).
 */
rssn_ rssn_Expr *rssn_parsing_cache_get(rssn_ParsingCache *aCache, const char *aInput) ;

/*
 Retrieves an expression from the ParsingCache as a bincode buffer.
 */
rssn_
rssn_BincodeBuffer rssn_parsing_cache_get_bincode(rssn_ParsingCache *aCache,
                                                  const char *aInput)
;

/*
 Retrieves an expression from the ParsingCache as a JSON string.
 Returns null if not found or error.
 */
rssn_ char *rssn_parsing_cache_get_json(rssn_ParsingCache *aCache, const char *aInput) ;

/*
 Creates a new ParsingCache.
 The caller is responsible for freeing the memory using rssn_parsing_cache_free.
 */
rssn_ rssn_ParsingCache *rssn_parsing_cache_new() ;

/*
 Stores an expression in the ParsingCache.
 The expr pointer is cloned (deep copy of the structure, but DAG nodes are shared).
 */
rssn_
void rssn_parsing_cache_set(rssn_ParsingCache *aCache,
                            const char *aInput,
                            const rssn_Expr *aExpr)
;

/*
 Stores an expression in the ParsingCache from a bincode buffer.
 */
rssn_
void rssn_parsing_cache_set_bincode(rssn_ParsingCache *aCache,
                                    const char *aInput,
                                    rssn_BincodeBuffer aBuffer)
;

/*
 Stores an expression in the ParsingCache from a JSON string.
 */
rssn_
void rssn_parsing_cache_set_json(rssn_ParsingCache *aCache,
                                 const char *aInput,
                                 const char *aJsonExpr)
;

/*
 Computes a path integral.
 */
rssn_
rssn_Expr *rssn_path_integrate(const rssn_Expr *aExpr,
                               const char *aVar,
                               const rssn_Expr *aContour)
;

rssn_
int32_t rssn_physics_advection_diffusion_1d(const double *aInitialCond,
                                            size_t aLen,
                                            double aDx,
                                            double aC,
                                            double aD,
                                            double aDt,
                                            size_t aSteps,
                                            double *aResultPtr)
;

/*
 Returns the symbolic representation of Pi.
 */
rssn_ rssn_Expr *rssn_pi() ;

/*
 Returns Pi as bincode.
 */
rssn_ rssn_BincodeBuffer rssn_pi_bincode() ;

/*
 Returns Pi as JSON.
 */
rssn_ char *rssn_pi_json() ;

/*
 Executes a command on a loaded plugin.

 # Arguments
 * `plugin_name_ptr` - A null-terminated UTF-8 string representing the plugin's name.
 * `command_ptr` - A null-terminated UTF-8 string for the command to execute.
 * `args_handle` - A handle to the `Expr` object to be passed as an argument.

 # Returns
 A handle to the resulting `Expr` object on success, or 0 on failure.
 On failure, an error message can be retrieved with `rssn_get_last_error`.
 */
rssn_
size_t rssn_plugin_execute(const char *aPluginNamePtr,
                           const char *aCommandPtr,
                           size_t aArgsHandle)
;

rssn_ rssn_Expr *rssn_poles_get(const rssn_Vec<rssn_Expr> *aPoles, size_t aIndex) ;

rssn_ size_t rssn_poles_len(const rssn_Vec<rssn_Expr> *aPoles) ;

rssn_ int32_t rssn_poly_degree(size_t aExprHandle, const char *aVarPtr, int64_t *aResult) ;

/*
 Computes polynomial derivative over finite field (Handle)
 */
rssn_
rssn_FiniteFieldPolynomial *rssn_poly_derivative_gf_handle(const rssn_FiniteFieldPolynomial *aPoly)
;

/*
 Computes polynomial GCD over finite field (Handle)
 */
rssn_
rssn_FiniteFieldPolynomial *rssn_poly_gcd_gf_handle(const rssn_FiniteFieldPolynomial *aA,
                                                    const rssn_FiniteFieldPolynomial *aB)
;

rssn_ int32_t rssn_poly_is_polynomial(size_t aExprHandle, const char *aVarPtr, bool *aResult) ;

rssn_
int32_t rssn_poly_long_division(size_t aNHandle,
                                size_t aDHandle,
                                const char *aVarPtr,
                                size_t *aQHandle,
                                size_t *aRHandle)
;

/*
 Creates a power expression: base^exp.
 */
rssn_ rssn_Expr *rssn_pow(const rssn_Expr *aBase, const rssn_Expr *aExp) ;

/*
 Creates a power expression from bincode: base^exp.

 # Arguments
 * `base_buffer` - Bincode-serialized base Expr
 * `exp_buffer` - Bincode-serialized exponent Expr
 */
rssn_
rssn_BincodeBuffer rssn_pow_bincode(rssn_BincodeBuffer aBaseBuffer,
                                    rssn_BincodeBuffer aExpBuffer)
;

/*
 Creates a power expression from JSON: base^exp.

 # Arguments
 * `json_base` - JSON-serialized base Expr
 * `json_exp` - JSON-serialized exponent Expr
 */
rssn_ char *rssn_pow_json(const char *aJsonBase, const char *aJsonExp) ;

/*
 Adds two prime field elements (Handle)
 */
rssn_
rssn_PrimeFieldElement *rssn_prime_field_element_add_handle(const rssn_PrimeFieldElement *aA,
                                                            const rssn_PrimeFieldElement *aB)
;

/*
 Frees a prime field element (Handle)
 */
rssn_ void rssn_prime_field_element_free_handle(rssn_PrimeFieldElement *aElem) ;

/*
 Computes the inverse of a prime field element (Handle)
 */
rssn_
rssn_PrimeFieldElement *rssn_prime_field_element_inverse_handle(const rssn_PrimeFieldElement *aElem)
;

/*
 Multiplies two prime field elements (Handle)
 */
rssn_
rssn_PrimeFieldElement *rssn_prime_field_element_mul_handle(const rssn_PrimeFieldElement *aA,
                                                            const rssn_PrimeFieldElement *aB)
;

/*
 Creates a new prime field element (Handle)
 Returns a boxed pointer to the element
 */
rssn_
rssn_PrimeFieldElement *rssn_prime_field_element_new_handle(const rssn_BigInt *aValue,
                                                            const rssn_BigInt *aModulus)
;

rssn_
rssn_Expr *rssn_product_handle(const rssn_Expr *aExpr,
                               const char *aVar,
                               const rssn_Expr *aLower,
                               const rssn_Expr *aUpper)
;

/*
 Frees a rewrite rule.

 # Safety
 The caller must ensure `rule` was created by this module and hasn't been freed yet.
 */
rssn_ void rssn_rewrite_rule_free(rssn_RewriteRule *aRule) ;

/*
 Gets the LHS of a rewrite rule.

 Returns a new owned Expr pointer that must be freed by the caller.

 # Safety
 The caller must ensure `rule` is a valid RewriteRule pointer.
 */
rssn_ rssn_Expr *rssn_rewrite_rule_get_lhs(const rssn_RewriteRule *aRule) ;

/*
 Gets the RHS of a rewrite rule.

 Returns a new owned Expr pointer that must be freed by the caller.

 # Safety
 The caller must ensure `rule` is a valid RewriteRule pointer.
 */
rssn_ rssn_Expr *rssn_rewrite_rule_get_rhs(const rssn_RewriteRule *aRule) ;

/*
 Creates a new rewrite rule from lhs and rhs expressions.

 # Safety
 The caller must ensure `lhs` and `rhs` are valid Expr pointers.
 */
rssn_ rssn_RewriteRule *rssn_rewrite_rule_new(const rssn_Expr *aLhs, const rssn_Expr *aRhs) ;

/*
 Creates a rewrite rule from Bincode.
 */
rssn_ rssn_BincodeBuffer rssn_rewrite_rule_new_bincode(rssn_BincodeBuffer aInput) ;

/*
 Creates a rewrite rule from JSON.

 Input: JSON object with "lhs" and "rhs" fields (both Expr)
 Output: JSON-serialized RewriteRule
 */
rssn_ char *rssn_rewrite_rule_new_json(const char *aJsonStr) ;

/*
 Converts a rewrite rule to a string representation.

 The returned string must be freed using `rssn_free_string`.

 # Safety
 The caller must free the returned string.
 */
rssn_ char *rssn_rewrite_rule_to_string(const rssn_RewriteRule *aRule) ;

/*
 Converts a rewrite rule to a human-readable string (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_rewrite_rule_to_string_bincode(rssn_BincodeBuffer aInput) ;

/*
 Converts a rewrite rule to a human-readable string (JSON).

 Input: JSON-serialized RewriteRule
 Output: JSON object with "string" field
 */
rssn_ char *rssn_rewrite_rule_to_string_json(const char *aJsonStr) ;

/*
 Integrates an expression using the Risch-Norman algorithm (Handle)
 */
rssn_ rssn_Expr *rssn_risch_norman_integrate_handle(const rssn_Expr *aExpr, const char *aX) ;

/*
 Frees a rules vector.

 # Safety
 The caller must ensure `rules` was created by this module and hasn't been freed yet.
 */
rssn_ void rssn_rules_vec_free(rssn_Vec<rssn_RewriteRule> *aRules) ;

/*
 Gets a rule from a rules vector by index.

 Returns a new owned RewriteRule pointer that must be freed by the caller.

 # Safety
 The caller must ensure `rules` is a valid Vec<RewriteRule> pointer.
 */
rssn_
rssn_RewriteRule *rssn_rules_vec_get(const rssn_Vec<rssn_RewriteRule> *aRules,
                                     size_t aIndex)
;

/*
 Gets the length of a rules vector.

 # Safety
 The caller must ensure `rules` is a valid Vec<RewriteRule> pointer.
 */
rssn_ size_t rssn_rules_vec_len(const rssn_Vec<rssn_RewriteRule> *aRules) ;

rssn_
rssn_ConvergenceResult *rssn_series_analyze_convergence_handle(const rssn_Expr *aSeries,
                                                               const char *aVar)
;

rssn_
rssn_BincodeBuffer rssn_series_bincode_analyze_convergence(rssn_BincodeBuffer aSeriesBuf,
                                                           rssn_BincodeBuffer aVarBuf)
;

rssn_ char *rssn_series_json_analyze_convergence(const char *aSeriesJson, const char *aVarJson) ;

/*
 Simplifies an expression using the legacy simplifier.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_simplify(const rssn_Expr *aExpr) ;

/*
 Simplifies an expression using the DAG-based simplifier.

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_simplify_dag(const rssn_Expr *aExpr) ;

/*
 Simplifies a logical expression using handle-based FFI.

 # Safety
 The caller must ensure that `expr` is a valid pointer to an `Expr`.
 */
rssn_ rssn_Expr *rssn_simplify_logic_handle(const rssn_Expr *aExpr) ;

/*
 Simplifies radical expressions (Handle)
 */
rssn_ rssn_Expr *rssn_simplify_radicals_handle(const rssn_Expr *aExpr) ;

/*
 Creates a sine expression: sin(expr).

 # Safety
 The caller must ensure `expr` is a valid Expr pointer.
 */
rssn_ rssn_Expr *rssn_sin(const rssn_Expr *aExpr) ;

/*
 Creates a sine expression from bincode: sin(expr).

 # Arguments
 * `expr_buffer` - Bincode-serialized Expr

 # Returns
 Bincode-serialized Expr
 */
rssn_ rssn_BincodeBuffer rssn_sin_bincode(rssn_BincodeBuffer aExprBuffer) ;

/*
 Creates a sine expression from JSON: sin(expr).

 # Arguments
 * `json_expr` - JSON-serialized Expr

 # Returns
 JSON-serialized Expr or null on error
 */
rssn_ char *rssn_sin_json(const char *aJsonExpr) ;

rssn_ int32_t rssn_solve(size_t aExprH, const char *aVar, size_t *aResultH) ;

/*
 Solves the airfoil singular integral equation.
 */
rssn_
rssn_Expr *rssn_solve_airfoil_equation(const rssn_Expr *aFX,
                                       const char *aVarX,
                                       const char *aVarT)
;

/*
 Solves the airfoil singular integral equation (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_solve_airfoil_equation_bincode(const uint8_t *aInputPtr,
                                                       size_t aInputLen)
;

/*
 Solves the airfoil singular integral equation (JSON).
 */
rssn_ char *rssn_solve_airfoil_equation_json(const char *aInputJson) ;

/*
 Solves a Bernoulli ODE.

 # Safety
 The caller must ensure `equation` is a valid Expr pointer, and `func` and `var` are valid C strings.
 */
rssn_
rssn_Expr *rssn_solve_bernoulli_ode(const rssn_Expr *aEquation,
                                    const char *aFunc,
                                    const char *aVar)
;

/*
 Solves a second-order ODE by reduction of order with a known solution.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_by_reduction_of_order(const rssn_Expr *aEquation,
                                            const char *aFunc,
                                            const char *aVar,
                                            const rssn_Expr *aY1)
;

/*
 Solves a Cauchy-Euler ODE.

 # Safety
 The caller must ensure `equation` is a valid Expr pointer, and `func` and `var` are valid C strings.
 */
rssn_
rssn_Expr *rssn_solve_cauchy_euler_ode(const rssn_Expr *aEquation,
                                       const char *aFunc,
                                       const char *aVar)
;

/*
 Solves a Diophantine equation.

 # Safety
 `equation` must be a valid pointer to an `Expr`.
 `vars_ptr` must be a valid pointer to an array of C strings of length `vars_len`.
 */
rssn_
rssn_Expr *rssn_solve_diophantine_handle(const rssn_Expr *aEquation,
                                         const char *const *aVarsPtr,
                                         int aVarsLen)
;

/*
 Solves an exact ODE.

 # Safety
 The caller must ensure `equation` is a valid Expr pointer, and `func` and `var` are valid C strings.
 */
rssn_
rssn_Expr *rssn_solve_exact_ode(const rssn_Expr *aEquation,
                                const char *aFunc,
                                const char *aVar)
;

/*
 Solves a first-order linear ODE.

 # Safety
 The caller must ensure `equation` is a valid Expr pointer, and `func` and `var` are valid C strings.
 */
rssn_
rssn_Expr *rssn_solve_first_order_linear_ode(const rssn_Expr *aEquation,
                                             const char *aFunc,
                                             const char *aVar)
;

rssn_ rssn_Vec<rssn_Expr> *rssn_solve_handle(const rssn_Expr *aExpr, const char *aVar) ;

/*
 Solves the 1D heat equation.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_heat_equation_1d(const rssn_Expr *aEquation,
                                       const char *aFunc,
                                       const char *const *aVars,
                                       size_t aVarsLen)
;

/*
 Solves the Helmholtz equation.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_helmholtz_equation(const rssn_Expr *aEquation,
                                         const char *aFunc,
                                         const char *const *aVars,
                                         size_t aVarsLen)
;

/*
 Solves the Klein-Gordon equation.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_klein_gordon_equation(const rssn_Expr *aEquation,
                                            const char *aFunc,
                                            const char *const *aVars,
                                            size_t aVarsLen)
;

/*
 Solves the 2D Laplace equation.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_laplace_equation_2d(const rssn_Expr *aEquation,
                                          const char *aFunc,
                                          const char *const *aVars,
                                          size_t aVarsLen)
;

rssn_
rssn_Vec<rssn_Expr> *rssn_solve_linear_system_handle(const rssn_Expr *aSystem,
                                                     const rssn_Vec<rssn_String> *aVars)
;

/*
 Solves an ordinary differential equation.

 # Safety
 The caller must ensure `ode_expr` is a valid Expr pointer, and `func` and `var` are valid C strings.
 */
rssn_
rssn_Expr *rssn_solve_ode(const rssn_Expr *aOdeExpr,
                          const char *aFunc,
                          const char *aVar)
;

/*
 Solves a partial differential equation using automatic method selection.

 # Safety
 The caller must ensure `pde_expr` is a valid Expr pointer, `func` and `vars` are valid C strings,
 and `vars_len` accurately represents the number of variables.
 */
rssn_
rssn_Expr *rssn_solve_pde(const rssn_Expr *aPdeExpr,
                          const char *aFunc,
                          const char *const *aVars,
                          size_t aVarsLen)
;

/*
 Solves a PDE using the method of characteristics.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_pde_by_characteristics(const rssn_Expr *aEquation,
                                             const char *aFunc,
                                             const char *const *aVars,
                                             size_t aVarsLen)
;

/*
 Solves the 2D Poisson equation.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_poisson_equation_2d(const rssn_Expr *aEquation,
                                          const char *aFunc,
                                          const char *const *aVars,
                                          size_t aVarsLen)
;

/*
 Solves a Riccati ODE with a known particular solution.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_riccati_ode(const rssn_Expr *aEquation,
                                  const char *aFunc,
                                  const char *aVar,
                                  const rssn_Expr *aY1)
;

/*
 Solves the Schrödinger equation.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_schrodinger_equation(const rssn_Expr *aEquation,
                                           const char *aFunc,
                                           const char *const *aVars,
                                           size_t aVarsLen)
;

/*
 Solves a separable ODE.

 # Safety
 The caller must ensure `equation` is a valid Expr pointer, and `func` and `var` are valid C strings.
 */
rssn_
rssn_Expr *rssn_solve_separable_ode(const rssn_Expr *aEquation,
                                    const char *aFunc,
                                    const char *aVar)
;

/*
 Solves the 1D wave equation using D'Alembert's formula.

 # Safety
 The caller must ensure all pointers are valid.
 */
rssn_
rssn_Expr *rssn_solve_wave_equation_1d_dalembert(const rssn_Expr *aEquation,
                                                 const char *aFunc,
                                                 const char *const *aVars,
                                                 size_t aVarsLen)
;

/*
 Creates a square root expression: sqrt(expr).
 */
rssn_ rssn_Expr *rssn_sqrt(const rssn_Expr *aExpr) ;

/*
 Creates a square root expression from bincode: sqrt(expr).
 */
rssn_ rssn_BincodeBuffer rssn_sqrt_bincode(rssn_BincodeBuffer aExprBuffer) ;

/*
 Creates a square root expression from JSON: sqrt(expr).
 */
rssn_ char *rssn_sqrt_json(const char *aJsonExpr) ;

/*
 Frees a State.
 */
rssn_ void rssn_state_free(rssn_State *aState) ;

/*
 Gets the intermediate value from the state.
 The returned string must be freed by the caller using rssn_free_string.
 */
rssn_ char *rssn_state_get_intermediate_value(const rssn_State *aState) ;

/*
 Gets the intermediate value from a bincode state buffer.
 Returns the value as a bincode buffer containing a String.
 The caller must free the returned buffer using rssn_free_bincode_buffer.
 */
rssn_
rssn_BincodeBuffer rssn_state_get_intermediate_value_bincode(rssn_BincodeBuffer aStateBuffer)
;

/*
 Gets the intermediate value from a JSON state string.
 Returns the value as a plain string (not JSON-encoded).
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_state_get_intermediate_value_json(const char *aJsonState) ;

/*
 Creates a new State.
 The caller is responsible for freeing the memory using rssn_state_free.
 */
rssn_ rssn_State *rssn_state_new() ;

/*
 Creates a new State and returns it as a bincode buffer.
 The caller must free the returned buffer using rssn_free_bincode_buffer.
 */
rssn_ rssn_BincodeBuffer rssn_state_new_bincode() ;

/*
 Creates a new State and returns it as a JSON string.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_state_new_json() ;

/*
 Sets the intermediate value in the state.
 */
rssn_ void rssn_state_set_intermediate_value(rssn_State *aState, const char *aValue) ;

/*
 Sets the intermediate value in a bincode state buffer and returns the updated buffer.
 The caller must free the returned buffer using rssn_free_bincode_buffer.
 */
rssn_
rssn_BincodeBuffer rssn_state_set_intermediate_value_bincode(rssn_BincodeBuffer aStateBuffer,
                                                             rssn_BincodeBuffer aValueBuffer)
;

/*
 Sets the intermediate value in a JSON state string and returns the updated JSON.
 The caller must free the returned string using rssn_free_string.
 */
rssn_ char *rssn_state_set_intermediate_value_json(const char *aJsonState, const char *aValue) ;

rssn_
int32_t rssn_stats_covariance(const double *aD1,
                              const double *aD2,
                              size_t aLen,
                              double *aResult)
;

rssn_ int32_t rssn_stats_mean(const double *aData, size_t aLen, double *aResult) ;

rssn_ int32_t rssn_stats_std_dev(const double *aData, size_t aLen, double *aResult) ;

rssn_ int32_t rssn_stats_variance(const double *aData, size_t aLen, double *aResult) ;

/*
 Substitutes a variable with an expression.
 */
rssn_
rssn_Expr *rssn_substitute(const rssn_Expr *aExpr,
                           const char *aVar,
                           const rssn_Expr *aReplacement)
;

rssn_
rssn_Expr *rssn_summation_handle(const rssn_Expr *aExpr,
                                 const char *aVar,
                                 const rssn_Expr *aLower,
                                 const rssn_Expr *aUpper)
;

/*
 Computes the surface integral (flux) of a vector field.
 */
rssn_
char *rssn_surface_integral(const char *aFieldX,
                            const char *aFieldY,
                            const char *aFieldZ,
                            const rssn_ParametricSurface *aSurface)
;

/*
 Computes the surface integral (flux) of a vector field (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_surface_integral_bincode(const uint8_t *aInputPtr, size_t aInputLen) ;

/*
 Computes the surface integral (flux) of a vector field (JSON).
 */
rssn_ char *rssn_surface_integral_json(const char *aInputJson) ;

/*
 Creates a tangent expression: tan(expr).
 */
rssn_ rssn_Expr *rssn_tan(const rssn_Expr *aExpr) ;

/*
 Creates a tangent expression from bincode: tan(expr).
 */
rssn_ rssn_BincodeBuffer rssn_tan_bincode(rssn_BincodeBuffer aExprBuffer) ;

/*
 Creates a tangent expression from JSON: tan(expr).
 */
rssn_ char *rssn_tan_json(const char *aJsonExpr) ;

rssn_
rssn_Expr *rssn_taylor_series_handle(const rssn_Expr *aExpr,
                                     const char *aVar,
                                     const rssn_Expr *aCenter,
                                     size_t aOrder)
;

rssn_ rssn_Tensor *rssn_tensor_add_handle(const rssn_Tensor *aT1, const rssn_Tensor *aT2) ;

rssn_
rssn_Tensor *rssn_tensor_contract_handle(const rssn_Tensor *aT,
                                         size_t aAxis1,
                                         size_t aAxis2)
;

rssn_
rssn_Tensor *rssn_tensor_outer_product_handle(const rssn_Tensor *aT1,
                                              const rssn_Tensor *aT2)
;

rssn_ rssn_Tensor *rssn_tensor_scalar_mul_handle(const rssn_Tensor *aT, const rssn_Expr *aScalar) ;

/*
 Allocates and returns a test string ("pong") to the caller.

 This function serves as a more advanced health check for the FFI interface.
 It allows the client to verify two things:
 1. That the FFI function can be called successfully.
 2. That memory allocated in Rust can be safely passed to and then freed by the client
    by calling `free_string` on the returned pointer.

 Returns a pointer to a null-terminated C string. The caller is responsible for freeing this string.
 */
rssn_ char *rssn_test_string_passing() ;

/*
 Converts a logical expression to Conjunctive Normal Form (CNF) using handle-based FFI.

 # Safety
 The caller must ensure that `expr` is a valid pointer to an `Expr`.
 */
rssn_ rssn_Expr *rssn_to_cnf_handle(const rssn_Expr *aExpr) ;

/*
 Converts a logical expression to Disjunctive Normal Form (DNF) using handle-based FFI.

 # Safety
 The caller must ensure that `expr` is a valid pointer to an `Expr`.
 */
rssn_ rssn_Expr *rssn_to_dnf_handle(const rssn_Expr *aExpr) ;

rssn_
rssn_Vec<rssn_Expr> *rssn_transform_contravariant_vector_handle(const rssn_Vec<rssn_Expr> *aComps,
                                                                rssn_CoordinateSystem aFrom,
                                                                rssn_CoordinateSystem aTo)
;

rssn_
rssn_Vec<rssn_Expr> *rssn_transform_covariant_vector_handle(const rssn_Vec<rssn_Expr> *aComps,
                                                            rssn_CoordinateSystem aFrom,
                                                            rssn_CoordinateSystem aTo)
;

rssn_
rssn_Vec<rssn_Expr> *rssn_transform_curl_handle(const rssn_Vec<rssn_Expr> *aComps,
                                                rssn_CoordinateSystem aFrom)
;

rssn_
rssn_Expr *rssn_transform_divergence_handle(const rssn_Vec<rssn_Expr> *aComps,
                                            rssn_CoordinateSystem aFrom)
;

rssn_
rssn_Expr *rssn_transform_expression_handle(const rssn_Expr *aExpr,
                                            rssn_CoordinateSystem aFrom,
                                            rssn_CoordinateSystem aTo)
;

rssn_
rssn_Vec<rssn_Expr> *rssn_transform_gradient_handle(const rssn_Expr *aScalar,
                                                    const rssn_Vec<rssn_String> *aVars,
                                                    rssn_CoordinateSystem aFrom,
                                                    rssn_CoordinateSystem aTo)
;

rssn_
rssn_Vec<rssn_Expr> *rssn_transform_point_handle(const rssn_Vec<rssn_Expr> *aPoint,
                                                 rssn_CoordinateSystem aFrom,
                                                 rssn_CoordinateSystem aTo)
;

rssn_ rssn_Expr *rssn_unify_expression_handle(const rssn_Expr *aExpr) ;

/*
 Computes the dot product of two vectors.
 */
rssn_
int32_t rssn_vec_dot_product(const double *aD1,
                             size_t aL1,
                             const double *aD2,
                             size_t aL2,
                             double *aResult)
;

/*
 Computes the L2 norm of a vector.
 */
rssn_ int32_t rssn_vec_norm(const double *aData, size_t aLen, double *aResult) ;

rssn_ rssn_Vector *rssn_vector_cross_handle(const rssn_Vector *aV1, const rssn_Vector *aV2) ;

rssn_ rssn_Expr *rssn_vector_dot_handle(const rssn_Vector *aV1, const rssn_Vector *aV2) ;

rssn_ rssn_Expr *rssn_vector_magnitude_handle(const rssn_Vector *aV) ;

rssn_ rssn_Vector *rssn_vector_normalize_handle(const rssn_Vector *aV) ;

/*
 Frees a Volterra integral equation.
 */
rssn_ void rssn_volterra_free(rssn_VolterraEquation *aPtr) ;

/*
 Creates a new Volterra integral equation.
 */
rssn_
rssn_VolterraEquation *rssn_volterra_new(const rssn_Expr *aYX,
                                         const rssn_Expr *aFX,
                                         const rssn_Expr *aLambda,
                                         const rssn_Expr *aKernel,
                                         const rssn_Expr *aLowerBound,
                                         const char *aVarX,
                                         const char *aVarT)
;

/*
 Solves a Volterra equation by differentiation.
 */
rssn_ rssn_Expr *rssn_volterra_solve_by_differentiation(const rssn_VolterraEquation *aEq) ;

/*
 Solves a Volterra equation by differentiation (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_volterra_solve_by_differentiation_bincode(const uint8_t *aInputPtr,
                                                                  size_t aInputLen)
;

/*
 Solves a Volterra equation by differentiation (JSON).
 */
rssn_ char *rssn_volterra_solve_by_differentiation_json(const char *aInputJson) ;

/*
 Solves a Volterra equation using successive approximations.
 */
rssn_
rssn_Expr *rssn_volterra_solve_successive(const rssn_VolterraEquation *aEq,
                                          size_t aIterations)
;

/*
 Solves a Volterra equation using successive approximations (Bincode).
 */
rssn_
rssn_BincodeBuffer rssn_volterra_solve_successive_bincode(const uint8_t *aInputPtr,
                                                          size_t aInputLen)
;

/*
 Solves a Volterra equation using successive approximations (JSON).
 */
rssn_ char *rssn_volterra_solve_successive_json(const char *aInputJson) ;

/*
 Frees a Volume handle.
 */
rssn_ void rssn_volume_free(rssn_Volume *aVolume) ;

/*
 Computes the volume integral of a scalar field.
 */
rssn_ char *rssn_volume_integral(const char *aScalarField, const rssn_Volume *aVolume) ;

/*
 Computes the volume integral of a scalar field (Bincode).
 */
rssn_ rssn_BincodeBuffer rssn_volume_integral_bincode(const uint8_t *aInputPtr, size_t aInputLen) ;

/*
 Computes the volume integral of a scalar field (JSON).
 */
rssn_ char *rssn_volume_integral_json(const char *aInputJson) ;

/*
 Creates a new Volume.
 */
rssn_
rssn_Volume *rssn_volume_new(const char *aZLower,
                             const char *aZUpper,
                             const char *aYLower,
                             const char *aYUpper,
                             const char *aXLower,
                             const char *aXUpper,
                             const char *aXVar,
                             const char *aYVar,
                             const char *aZVar)
;

rssn_ DEPRECATED_WITH_NOTE char *stats_percentile(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE char *stats_simple_linear_regression(const char *aJsonPtr) ;

/*
 Computes the Fast Fourier Transform (FFT) of a sequence of complex numbers.
 */
rssn_ DEPRECATED_WITH_NOTE char *transforms_fft(const char *aJsonPtr) ;

/*
 Computes the Inverse Fast Fourier Transform (IFFT) of a sequence of complex numbers.
 */
rssn_ DEPRECATED_WITH_NOTE char *transforms_ifft(const char *aJsonPtr) ;

rssn_ DEPRECATED_WITH_NOTE char *vector_scalar_mul(const char *aJsonPtr) ;

}  // extern "C"

}  // namespace rssn

#endif  // RSSN_H