1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
//! Reusable slice of references.
//!
//! # Motivation
//!
//! The [`Slice`] data structure from this crate can be used to solve a very specific problem:
//!
//! ---
//!
//! * We want to create a slice of references (a.k.a. `&[&T]` or `&mut [&mut T]`)
//!   with a length not known at compile time.
//!
//! *AND*
//!
//! * Multiple invocations should be able to use incompatible lifetimes
//!   (all references within each single invocation must of course have a common lifetime).
//!
//! *AND*
//!
//! * The allocated memory should be reusable for multiple invocations.
//!
//! ---
//!
//! The hard part is fulfilling all three requirements at the same time.
//! If we allow either one of them to be broken,
//! this problem can be solved easily with built-in tools:
//!
//! * If the number of references is known at compile time, the built-in array type
//!   (a.k.a. `[&T; N]` or `[&mut T; N]`) can (and should!) be used.
//!   No dynamic memory at all has to be allocated.
//!
//! * If all used lifetimes are compatible, a single [`Vec<&T>`](Vec) can be used and reused.
//!
//! * If the lifetimes are not compatible, but we don't care about allocating
//!   at each invocation, a fresh [`Vec<&T>`](Vec) can be used each time,
//!   allowing for different (and incompatible) lifetimes.
//!
//! The following example shows the problem with incompatible lifetimes.
//! The number of references in this example is known at compile time,
//! but let's just pretend it's not.
//!
//! ```compile_fail
//! fn print_slice(slice: &[&str]) { for s in slice { print!("<{}>", s); } println!(); }
//!
//! let mut vec = Vec::<&str>::with_capacity(2);
//!
//! {
//!     let one = String::from("one");
//!     let two = String::from("two");
//!     vec.push(&one);
//!     vec.push(&two);
//!     print_slice(&vec);
//!     vec.clear();
//! }
//!
//! let three = String::from("three");
//! vec.push(&three);
//! print_slice(&vec);
//! ```
//!
//! This example cannot be compiled, the compiler complains:
//!
//! ```text
//! error[E0597]: `one` does not live long enough
//!    |
//! 8  |     vec.push(&one);
//!    |              ^^^^ borrowed value does not live long enough
//! ...
//! 12 | }
//!    | - `one` dropped here while still borrowed
//! ...
//! 15 | vec.push(&three);
//!    | --- borrow later used here
//!
//! For more information about this error, try `rustc --explain E0597`.
//! ```
//!
//! Even though the `Vec<&str>` is emptied at the end of the inner scope,
//! it still "remembers" the lifetime of its previous inhabitants
//! and doesn't allow future references to have incompatible lifetimes.
//!
//! The problem can be solved with the [`Slice`] type from this crate:
//!
//! ```
//! use rsor::Slice;
//! # fn print_slice(slice: &[&str]) { for s in slice { print!("<{}>", s); } println!(); }
//!
//! let mut myslice = Slice::<str>::with_capacity(2);
//!
//! {
//!     let one = String::from("one");
//!     let two = String::from("two");
//!
//!     let strings = myslice.fill(|mut v| {
//!         v.push(&one);
//!         v.push(&two);
//!         v
//!     });
//!     print_slice(strings);
//! }
//!
//! let three = String::from("three");
//!
//! let strings = myslice.fill(|mut v| {
//!     v.push(&three);
//!     v
//! });
//! print_slice(strings);
//! assert_eq!(myslice.capacity(), 2);
//! ```
//!
//! This example compiles successfully and produces the expected output:
//!
//! ```text
//! <one><two>
//! <three>
//! ```
//!
//! Note that the capacity has not changed from the initial value,
//! i.e. no additional memory has been allocated.
//!
//! # Common Use Cases
//!
//! The previous example was quite artificial, in order
//! to illustrate the problem with incompatible lifetimes.
//!
//! The following, a bit more realistic example is using a [`Slice<[T]>`](Slice)
//! to create a (mutable) *slice of slices* (a.k.a. `&mut [&mut [T]]`)
//! from a (mutable) flat slice (a.k.a. `&mut [T]`):
//!
//! ```
//! use rsor::Slice;
//!
//! fn sos_from_flat_slice<'a, 'b>(
//!     reusable_slice: &'a mut Slice<[f32]>,
//!     flat_slice: &'b mut [f32],
//!     subslice_length: usize,
//! ) -> &'a mut [&'b mut [f32]] {
//!     reusable_slice.from_iter_mut(flat_slice.chunks_mut(subslice_length))
//! }
//! ```
//!
//! In some cases, two separate named lifetimes are not necessary;
//! just try combining them into a single one and see if it still works.
//!
//! The same thing can of course also be done for immutable slices
//! by removing all instances of `mut` except on the first argument
//! (but including changing
//! [`.from_iter_mut()`](Slice::from_iter_mut) to
//! [`.from_iter()`](Slice::from_iter) and
//! `.chunks_mut()` to `.chunks()`).
//!
//! If a pointer/length pair is given, it can be turned into a slice with
//! [`std::slice::from_raw_parts_mut()`] or [`std::slice::from_raw_parts()`].
//!
//! In C APIs it is common to have a "pointer to pointers",
//! where one pointer points to a contiguous piece of memory
//! containing further pointers, each pointing to yet another piece of memory.
//!
//! To turn these nested pointers into nested slices, we can use something like this:
//!
//! ```
//! # use rsor::Slice;
//! unsafe fn sos_from_nested_pointers<'a, 'b>(
//!     reusable_slice: &'a mut Slice<[f32]>,
//!     ptr: *const *mut f32,
//!     subslices: usize,
//!     subslice_length: usize,
//! ) -> &'a mut [&'b mut [f32]] {
//!     let slice_of_ptrs = std::slice::from_raw_parts(ptr, subslices);
//!     reusable_slice.from_iter_mut(
//!         slice_of_ptrs
//!             .iter()
//!             .map(|&ptr| std::slice::from_raw_parts_mut(ptr, subslice_length)),
//!     )
//! }
//! ```
//!
//! Note that `ptr` is supposed to be valid for the lifetime `'a` and
//! all other pointers are supposed to be valid for the lifetime `'b`.
//! The caller has to make sure that this is actually the case.
//! This is one of the many reasons why this function is marked as `unsafe`!

#![warn(rust_2018_idioms)]
#![warn(single_use_lifetimes)]
#![deny(missing_docs)]

use std::mem;

/// Reusable slice of references.
///
/// *See also the [crate-level documentation](crate).*
pub struct Slice<T: 'static + ?Sized> {
    /// Pointer and capacity of a `Vec`.
    ///
    /// The `'static` lifetime is just a placeholder,
    /// more appropriate lifetimes are applied later.
    ///
    /// NB: `length` is ignored, see `Drop` implementation.
    vec_data: Option<(*mut &'static T, usize)>,
}

impl<T: 'static + ?Sized> Slice<T> {
    /// Creates a new reusable slice with capacity `0`.
    pub fn new() -> Slice<T> {
        Slice::with_capacity(0)
    }

    /// Creates a new reusable slice with the given capacity.
    pub fn with_capacity(capacity: usize) -> Slice<T> {
        let mut v = mem::ManuallyDrop::new(Vec::<&T>::with_capacity(capacity));
        let ptr: *mut &T = v.as_mut_ptr();
        Slice {
            vec_data: Some((ptr, v.capacity())),
        }
    }

    /// Returns a slice of references that has been filled by the given function.
    ///
    /// The function `f()` receives an *empty* [`Vec`] and is supposed to fill it
    /// with the desired number of references and return the modified `Vec`
    /// (or an entirely different one if desired!).
    /// The references in the returned `Vec` are then returned in a slice of references.
    ///
    /// The capacity of the argument passed to `f()` can be obtained with
    /// [`Slice::capacity()`] beforehand, or with [`Vec::capacity()`]
    /// within the function.
    ///
    /// # Examples
    ///
    /// Note that the lifetime `'b` used to fill the `Vec` in `f()`
    /// is the same as the lifetime of the returned references.
    /// This means that even though the lifetimes between invocations
    /// are allowed to be incompatible, the lifetimes used within one invocation
    /// are still checked by the compiler with all of its dreaded rigor.
    ///
    /// For example, the following code does not compile because the lifetime of one of the
    /// references used in `f()` is too short:
    ///
    /// ```compile_fail
    /// use rsor::Slice;
    ///
    /// let mut myslice = Slice::<str>::new();
    /// let strings = {
    ///     let inner_scope = String::from("inner scope is too short-lived");
    ///     let static_str = "&'static str is OK";
    ///     myslice.fill(|mut v| {
    ///         v.push(&inner_scope);
    ///         v.push(static_str);
    ///         v
    ///     })
    /// };
    /// ```
    ///
    /// This is how the compiler phrases it:
    ///
    /// ```text
    /// error[E0597]: `inner_scope` does not live long enough
    ///    |
    /// 4  | let strings = {
    ///    |     ------- borrow later stored here
    /// ...
    /// 7  |     myslice.fill(|mut v| {
    ///    |                  ------- value captured here
    /// 8  |         v.push(&inner_scope);
    ///    |                 ^^^^^^^^^^^ borrowed value does not live long enough
    /// ...
    /// 12 | };
    ///    | - `inner_scope` dropped here while still borrowed
    ///
    /// For more information about this error, try `rustc --explain E0597`.
    /// ```
    ///
    /// To avoid this error, we have to use a longer lifetime, for example like this:
    ///
    /// ```
    /// # use rsor::Slice;
    /// let mut myslice = Slice::<str>::new();
    /// let same_scope = String::from("same scope is OK");
    /// let strings = {
    ///     let static_str = "static &str is OK";
    ///     myslice.fill(|mut v| {
    ///         v.push(&same_scope);
    ///         v.push(static_str);
    ///         v
    ///     })
    /// };
    /// assert_eq!(strings, ["same scope is OK", "static &str is OK"]);
    /// ```
    pub fn fill<'a, 'b, F>(&'a mut self, f: F) -> &'a [&'b T]
    where
        F: FnOnce(Vec<&'b T>) -> Vec<&'b T>,
    {
        let (ptr, capacity) = self.vec_data.take().unwrap();
        let mut v = unsafe { Vec::from_raw_parts(ptr as *mut &T, 0, capacity) };
        v = f(v); // NB: Re-allocation is possible, this might even return a different Vec!
        let v = mem::ManuallyDrop::new(v);
        let (ptr, length, capacity) = (v.as_ptr(), v.len(), v.capacity());
        let result = unsafe { std::slice::from_raw_parts(ptr, length) };
        self.vec_data = Some((ptr as *mut &T, capacity));
        result
    }

    /// Returns a slice of mutable references that has been filled by the given function.
    ///
    /// Same as [`fill()`](Slice::fill), but for mutable references.
    pub fn fill_mut<'a, 'b, F>(&'a mut self, f: F) -> &'a mut [&'b mut T]
    where
        F: FnOnce(Vec<&'b mut T>) -> Vec<&'b mut T>,
    {
        let (ptr, capacity) = self.vec_data.take().unwrap();
        let mut v = unsafe { Vec::from_raw_parts(ptr as *mut &mut T, 0, capacity) };
        v = f(v); // NB: Re-allocation is possible, this might even return a different Vec!
        let mut v = mem::ManuallyDrop::new(v);
        let (ptr, length, capacity) = (v.as_mut_ptr(), v.len(), v.capacity());
        let result = unsafe { std::slice::from_raw_parts_mut(ptr, length) };
        self.vec_data = Some((ptr as *mut &T, capacity));
        result
    }

    /// Returns a slice of references that has been filled by draining an iterator.
    pub fn from_iter<'a, 'b, I>(&'a mut self, iter: I) -> &'a [&'b T]
    where
        I: IntoIterator<Item = &'b T>,
    {
        self.fill(|mut v| {
            v.extend(iter.into_iter());
            v
        })
    }

    /// Returns a slice of mutable references that has been filled by draining an iterator.
    pub fn from_iter_mut<'a, 'b, I>(&'a mut self, iter: I) -> &'a mut [&'b mut T]
    where
        I: IntoIterator<Item = &'b mut T>,
    {
        self.fill_mut(|mut v| {
            v.extend(iter.into_iter());
            v
        })
    }

    /// Returns the number of references that can be used without reallocating.
    pub fn capacity(&self) -> usize {
        // NB: vec_data can only be None during `fill[_mut]()`, which has exclusive access.
        self.vec_data.unwrap().1
    }
}

impl<T: 'static + ?Sized> Default for Slice<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: 'static + ?Sized> Drop for Slice<T> {
    fn drop(&mut self) {
        if let Some((ptr, capacity)) = self.vec_data {
            unsafe {
                // Length is assumed to be zero, there are no destructors to be run for references.
                Vec::from_raw_parts(ptr, 0, capacity);
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn local_variable() {
        let mut myslice = Slice::new();
        let mut number = 24;
        let slice = myslice.fill_mut(|mut v| {
            v.push(&mut number);
            v
        });
        *slice[0] = 42;
        assert_eq!(number, 42);
    }

    #[test]
    fn different_lifetimes() {
        let mut myslice = Slice::new();

        {
            let mut number = 7;
            let slice = myslice.fill_mut(|mut v| {
                v.push(&mut number);
                v
            });
            *slice[0] = 9;
            assert_eq!(number, 9);
        }

        {
            let mut number = Box::new(5);
            let slice = myslice.fill_mut(|mut v| {
                v.push(&mut *number);
                v
            });
            *slice[0] = 6;
            assert_eq!(*number, 6);
        }

        {
            let number = 4;
            let slice = myslice.fill(|mut v| {
                v.push(&number);
                v
            });
            assert_eq!(*slice[0], 4);
        }
    }

    #[test]
    fn fill() {
        let mut myslice = Slice::new();
        let data = vec![1, 2, 3, 4, 5, 6];
        let sos = myslice.fill(|mut v| {
            v.push(&data[0..2]);
            v.push(&data[2..4]);
            v.push(&data[4..6]);
            v
        });
        assert_eq!(sos, [[1, 2], [3, 4], [5, 6]]);
    }

    #[test]
    fn fill_mut() {
        let mut myslice = Slice::new();
        let mut data = vec![1, 2, 3, 4, 5, 6];
        let sos = myslice.fill_mut(|mut v| {
            let (first, second) = data.split_at_mut(2);
            v.push(first);
            let (first, second) = second.split_at_mut(2);
            v.push(first);
            v.push(second);
            v
        });
        assert_eq!(sos, [[1, 2], [3, 4], [5, 6]]);
    }

    #[test]
    fn from_nested_ptr() {
        let mut myslice = Slice::with_capacity(3);
        let v = vec![1, 2, 3, 4, 5, 6];

        // Assuming we have a slice of pointers with a known length:
        let ptrs = [v[0..2].as_ptr(), v[2..4].as_ptr(), v[4..6].as_ptr()];
        let length = 2;

        let sos = myslice.from_iter(
            ptrs.iter()
                .map(|&ptr| unsafe { std::slice::from_raw_parts(ptr, length) }),
        );
        assert_eq!(sos, [[1, 2], [3, 4], [5, 6]]);
    }

    #[test]
    fn from_nested_ptr_mut() {
        let mut myslice = Slice::new();
        let mut v = vec![1, 2, 3, 4, 5, 6];

        // Assuming we have a slice of pointers with a known length:
        let ptrs = [
            v[0..2].as_mut_ptr(),
            v[2..4].as_mut_ptr(),
            v[4..6].as_mut_ptr(),
        ];
        let length = 2;

        let sos = myslice.from_iter_mut(
            ptrs.iter()
                .map(|&ptr| unsafe { std::slice::from_raw_parts_mut(ptr, length) }),
        );
        assert_eq!(sos, [[1, 2], [3, 4], [5, 6]]);
        sos[1][0] = 30;
        sos[1][1] = 40;
        assert_eq!(sos, [[1, 2], [30, 40], [5, 6]]);
        assert_eq!(v[2..4], [30, 40]);
    }
}