1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
//! # RsGenetic
//!
//! RsGenetic provides a simple framework for genetic algorithms.
//! You need to provide the definition of a Phenotype (also known as an Individual),
//! define how crossover and mutation work, present a fitness function, choose some settings
//! and this library takes care of the rest.
//!
//! # Installation
//!
//! You can use this library by adding the following lines to your `Cargo.toml` file:
//!
//! ```ignore
//! [dependencies]
//! rsgenetic = "0.8"
//! ```
//!
//! and adding `extern crate rsgenetic;` to your crate root.
//!
//! # Features
//! ## Available Simulators
//!
//! There is currently only one, sequential, simulator. This simulator will run
//! the genetic algorithm on a single thread.
//!
//! ## Available Selection Types
//!
//! There are currently four selection types available:
//!
//! * Maximize
//! * Tournament
//! * Stochastic
//! * Roulette
//!
//! There is a short explanation for each of these below. Currently, the number of parents
//! may vary depending on the chosen selection type. For more information, look at the
//! documentation
//! for the `SelectionType` enum.
//!
//! ### Maximize
//!
//! Maximize takes 1 parameter: the count. This is half the number of parents
//! that will be selected. Selection happens by taking the top `count * 2` individuals,
//! ranked by fitness. The resulting number of parents is `count * 2`.
//!
//! ### Tournament
//!
//! Tournament takes 2 parameters: the number of tournaments and the count. The count indicates how
//! many phenotypes participate in a tournament. The resulting number of parents is `num * 2`.
//!
//! ### Stochastic
//!
//! Stochastic takes 1 parameter: the count. The resulting number of parents is `count`.
//!
//! ### Roulette
//!
//! Roulette takes 1 parameter: the count. The resulting number of parents is `count`.
//!
//! ## Early Stopping
//!
//! If you wish, you can stop early if the fitness value of the best performing Phenotype
//! doesn't improve by a large amount for a number of iterations. This can be done by calling the
//! `set_early_stop(delta: f64, n_iters: u32)` function on the `SimulatorBuilder`.
//!
//! # Examples
//!
//! ## Implementing Phenotype
//!
//! ```ignore
//! // Define the structure of your Phenotype
//! struct Test {
//!     i: i32,
//! }
//!
//! // Implement the Phenotype trait.
//! impl pheno::Phenotype for Test {
//!     fn fitness(&self) -> f64 {
//!         (self.i - 0).abs() as f64
//!     }
//!
//!     fn crossover(&self, t: &Test) -> Test {
//!         Test { i: cmp::min(self.i, t.i) }
//!     }
//!
//!     fn mutate(&self) -> Self {
//!         if self.i < 0 {
//!             Test { i: self.i + 1 }
//!         } else {
//!             Test { i: self.i - 1}
//!         }
//!     }
//! }
//!
//! // Implement the Clone trait.
//! // This is required for the internal workings of the library.
//! impl Clone for Test {
//!     fn clone(&self) -> Self {
//!         Test { i: self.i }
//!     }
//! }
//! ```
//!
//! ## Running a Simulation
//!
//! ```ignore
//! // Generate a random population.
//! let mut tests: Vec<Box<Test>> = Vec::new();
//! for i in 0..100 {
//!     tests.push(Box::new(Test { i: i + 10 }));
//! }
//! // Create a simulator using a builder.
//! let mut s = *seq::Simulator::builder(tests) // Population is mandatory
//!                   .set_max_iters(1000)
//!                   .set_selection_type(sim::SelectionType::Tournament {
//!                         count: 3,
//!                         num: 5
//!                   })
//!                   .set_fitness_type(sim::FitnessType::Minimize)
//!                   .build();
//! // We can now run the simulator.
//! let result = s.run();
//! // This will fail if the result was an error:
//! let best = result.unwrap();
//! // For this simple example, we should always get 0.
//! assert!((*best).i == 0);
//! // We can also get the time spent running:
//! let time = match s.time() {
//!     Some(x) => x, // Contains the time in ns
//!     None    => -1 // Overflow occured
//! };
//! ```

extern crate rand;
extern crate time;

/// Contains the definition of a Phenotype.
pub mod pheno;
/// Contains implementations of Simulators, which can run genetic algorithms.
pub mod sim;