1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/*
 * Copyright (c) 2017, 2018 Frank Fischer <frank-fischer@shadow-soft.de>
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see  <http://www.gnu.org/licenses/>
 */

//! Traits for graph data structures.
//!
//! The traits for graph data structures provide an additional level
//! of information about (the edges of) the graph. There are three
//! levels:
//!
//! 1. `Graph`: an undirected graph, edges have no defined source or
//!     sink.
//! 2. `Digraph`: a directed graph, each edge has a designated source
//!     and a designated sink node. Furthermore, there is the concept
//!     of "outgoing" and "incoming" edges. A `Digraph` is also a
//!     `Graph`, which basically means ignoring the direction
//!     information of the edges.
//! 3. `Network`: a network is a directed graph, but each edge is
//!    actually a pair of edges: the normally directed edge and its
//!    reverse edge. Edge and reverse edge are considered equal for
//!    all purposes of a digraph (e.g. source and sink node are always
//!    source and sink of the forward edge), but the additional
//!    "reverse" information can be obtained by the methods of
//!    `Network`. Furthermore, if the network is an `IndexNetwork`, a
//!    `BiEdgeVec` can be used to store different values for edges and
//!    the reverse edges (in contrast, an `EdgeVec` always contains
//!    the same value for an edge and its reverse edge).

use crate::adjacencies::{InEdges, Neighbors, OutEdges};
pub use crate::vec::{IndexBiEdgeSlice, IndexEdgeSlice, IndexNodeSlice};
pub use crate::vec::{IndexBiEdgeVec, IndexEdgeVec, IndexNodeVec};

/// Base information of a graph.
pub trait GraphType<'a> {
    /// Type of a node.
    type Node: 'a + Copy + Eq;

    /// Type of an edge.
    type Edge: 'a + Copy + Eq;
}

/// A (finite) graph with a known number of nodes and edges.
///
/// Finite graphs also provide access to the list of all nodes and edges.
pub trait GraphSize<'a>: GraphType<'a> {
    /// Type of an iterator over all nodes.
    type NodeIter: 'a + Iterator<Item = Self::Node>;

    /// Type of an iterator over all edges.
    type EdgeIter: 'a + Iterator<Item = Self::Edge>;

    /// Return the number of nodes in the graph.
    fn num_nodes(&self) -> usize;
    /// Return the number of edges in the graph.
    fn num_edges(&self) -> usize;

    /// Return an iterator over all nodes.
    fn nodes(&'a self) -> Self::NodeIter;

    /// Return an iterator over all edges.
    ///
    /// This iterator traverses only the forward edges.
    fn edges(&'a self) -> Self::EdgeIter;
}

/// A graph with list access to undirected incident edges.
pub trait Undirected<'a>: GraphType<'a> {
    /// Type of an iterator over all incident edges.
    type NeighIter: 'a + Iterator<Item = (Self::Edge, Self::Node)>;

    /// Return the nodes connected by an edge.
    ///
    /// The order of the nodes is undefined.
    fn enodes(&'a self, e: Self::Edge) -> (Self::Node, Self::Node);

    /// Return an iterator over the edges adjacent to some node.
    ///
    /// This iterator traverses only the forward edges.
    fn neighs(&'a self, u: Self::Node) -> Self::NeighIter;

    /// Return access to the neighbors via an `Adjacencies` trait.
    ///
    /// This is the same as calling `Neighbors(&g)` on the graph.
    fn neighbors(&'a self) -> Neighbors<'a, Self>
    where
        Self: Sized,
    {
        Neighbors(self)
    }
}

/// A graph with list access to directed incident edges.
///
/// Note that each directed graph is also an undirected graph
/// by simply ignoring the direction of each edge. Hence, each
/// type implementing `Directed` must also implement `Undirected`.
///
/// This trait adds a few additional methods to explicitely access the
/// direction information of an edge. In particular, the direction
/// information can be used in the following ways:
///
///  - The `src` and `snk` methods return the source and sink nodes of
///    an edge.
///  - The iterators `outedges` and `inedges` iterate only over edges
///    leaving or entering a certain node, respectively.
pub trait Directed<'a>: Undirected<'a> {
    /// Type of an iterator over the forward edges leaving a node.
    type OutEdgeIter: 'a + Iterator<Item = (Self::Edge, Self::Node)>;

    /// Type of an iterator over the backward edges entering a node.
    type InEdgeIter: 'a + Iterator<Item = (Self::Edge, Self::Node)>;

    /// Return the source node of an edge.
    fn src(&'a self, e: Self::Edge) -> Self::Node;

    /// Return the sink node of an edge.
    fn snk(&'a self, e: Self::Edge) -> Self::Node;

    /// Return an iterator over the outgoing edges of a node.
    ///
    /// The iterator returns only forward edges.
    fn outedges(&'a self, u: Self::Node) -> Self::OutEdgeIter;

    /// Return an iterator over the incoming edges of a node.
    ///
    /// The iterator returns only backward edges.
    fn inedges(&'a self, u: Self::Node) -> Self::InEdgeIter;

    /// Return access to the outgoing arcs via an `Adjacencies` trait.
    ///
    /// This is the same as calling `OutEdges(&g)` on the graph.
    fn outgoing(&'a self) -> OutEdges<'a, Self>
    where
        Self: Sized,
    {
        OutEdges(self)
    }

    /// Return access to the incoming arcs via an `Adjacencies` trait.
    ///
    /// This is the same as calling `InEdges(&g)` on the graph.
    fn incoming(&'a self) -> InEdges<'a, Self>
    where
        Self: Sized,
    {
        InEdges(self)
    }
}

/// A network with list access to the incident edges.
///
/// A network is a digraph with an additional property: each edge is
/// represented by a pair of edges, the edge and its reverse edge. The
/// methods of this trait provide access to the information, if an
/// edge is a forward or backward edge: `is_reverse`, `is_forward`,
/// `is_backward`. The reverse edge can be obtained by `reverse`. Note
/// that an edge is equal to its reverse edge, i.e. `e ==
/// g.reverse(e)`, so they can only be distinguished by the above
/// methods. In particular, `src` and `snk` always refer to the source
/// and sink node of the *forward* edge. Therefore, a forward edge
/// leaves its source node whereas its reverse edge virtually enters
/// its source node. In order to get the "virtual" source and sink,
/// use `bisrc` and `bisnk` methods.
///
/// As an additional requirement, the iterators must satisfy the following rules:
///
///  - `edges` iterates over forward edges,
///  - `outedges` iterates over forward edges,
///  - `inedges` iterates over backward edges,
///  - `neighs` iterates over outgoing forward and incoming backward edges.
pub trait BiDirected<'a>: Directed<'a> {
    /// Return true if e is the reverse edge of f.
    fn is_reverse(&self, e: Self::Edge, f: Self::Edge) -> bool {
        e == f && self.is_forward(e) != self.is_forward(f)
    }

    /// Return the reverse edge of e.
    fn reverse(&'a self, e: Self::Edge) -> Self::Edge;

    /// Return true if e is a forward edge.
    fn is_forward(&self, e: Self::Edge) -> bool;

    /// Return the forward edge of e.
    ///
    /// This method returns e if e is already a forward edge,
    /// otherwise it returns the reverse edge of e.
    fn forward(&'a self, e: Self::Edge) -> Self::Edge {
        if self.is_forward(e) {
            e
        } else {
            self.reverse(e)
        }
    }

    /// Return true if e is a backward edge.
    fn is_backward(&self, e: Self::Edge) -> bool {
        !self.is_forward(e)
    }

    /// Return the backward edge of e.
    ///
    /// This method returns e if e is already a backward edge,
    /// otherwise it returns the reverse edge of e.
    fn backward(&'a self, e: Self::Edge) -> Self::Edge {
        if self.is_backward(e) {
            e
        } else {
            self.reverse(e)
        }
    }

    /// Return the source of the directed edge e.
    ///
    /// If e is a forward edge, this is the same as `src` otherwise
    /// it is `snk`.
    fn bisrc(&'a self, e: Self::Edge) -> Self::Node {
        if self.is_forward(e) {
            self.src(e)
        } else {
            self.snk(e)
        }
    }

    /// Return the sink of the directed edge e.
    ///
    /// If e is a forward edge, this is the same as `snk` otherwise
    /// it is `src`.
    fn bisnk(&'a self, e: Self::Edge) -> Self::Node {
        if self.is_forward(e) {
            self.snk(e)
        } else {
            self.src(e)
        }
    }
}

/// A trait for general undirected, sized graphs.
pub trait Graph<'a>: GraphSize<'a> + Undirected<'a> {}

impl<'a, G> Graph<'a> for G where G: GraphSize<'a> + Undirected<'a> {}

/// A trait for general directed, sized graphs.
pub trait Digraph<'a>: Graph<'a> + Directed<'a> {}

impl<'a, G> Digraph<'a> for G where G: GraphSize<'a> + Directed<'a> {}

/// A trait for general sized networks.
pub trait Network<'a>: Digraph<'a> + BiDirected<'a> {}

impl<'a, G> Network<'a> for G where G: GraphSize<'a> + BiDirected<'a> {}

/// An item that has an index.
pub trait Indexable {
    fn index(&self) -> usize;
}

/// An item that has a second bi-index.
///
/// This trait is only used for networks, which edges can have two indices.
pub trait BiIndexable {
    fn biindex(&self) -> usize;
}

/// Associates nodes and edges with unique ids.
pub trait IndexGraph<'a>: Graph<'a> {
    /// Return a unique id associated with a node.
    fn node_id(&self, u: Self::Node) -> usize;

    /// Return the node associated with the given id.
    ///
    /// The method panics if the id is invalid.
    fn id2node(&'a self, id: usize) -> Self::Node;

    /// Return a unique id associated with an edge.
    ///
    /// The returned id is the same for the edge and its reverse edge.
    fn edge_id(&self, e: Self::Edge) -> usize;

    /// Return the edge associated with the given id.
    ///
    /// The method returns the forward edge.
    ///
    /// The method panics if the id is invalid.
    fn id2edge(&'a self, id: usize) -> Self::Edge;
}

/// A `Digraph` that is also an `IndexGraph`.
pub trait IndexDigraph<'a>: IndexGraph<'a> + Digraph<'a> {}

impl<'a, T> IndexDigraph<'a> for T where T: IndexGraph<'a> + Digraph<'a> {}

/// Associates edges with unique ids for forward and backward edge.
///
/// There are no guarantees on the relation between edge and node ids.
pub trait IndexNetwork<'a>: IndexGraph<'a> + Network<'a> {
    /// Return a unique id associated with a directed edge.
    ///
    /// The returned id must be different for the edge and its reverse
    /// edge.
    fn biedge_id(&self, e: Self::Edge) -> usize;

    /// Return the edge associated with the given id.
    ///
    /// The method panics if the id is invalid.
    fn id2biedge(&'a self, id: usize) -> Self::Edge;
}

/// Marker trait for graphs with directly numbered nodes and edges.
pub trait NumberedGraph<'a>: Graph<'a>
where
    <Self as GraphType<'a>>::Node: Indexable,
    <Self as GraphType<'a>>::Edge: Indexable,
{
}

impl<'a, G> NumberedGraph<'a> for G
where
    G: Graph<'a>,
    G::Node: Indexable,
    G::Edge: Indexable,
{
}

/// Marker trait for digraphs with directly numbered nodes and edges.
pub trait NumberedDigraph<'a>: NumberedGraph<'a> + Digraph<'a>
where
    <Self as GraphType<'a>>::Node: Indexable,
    <Self as GraphType<'a>>::Edge: Indexable,
{
}

impl<'a, G> NumberedDigraph<'a> for G
where
    G: Digraph<'a> + NumberedGraph<'a>,
    G::Node: Indexable,
    G::Edge: Indexable,
{
}

/// Marker trait for networks with directly numbered nodes and edges.
pub trait NumberedNetwork<'a>: NumberedDigraph<'a> + Network<'a>
where
    <Self as GraphType<'a>>::Node: Indexable,
    <Self as GraphType<'a>>::Edge: Indexable + BiIndexable,
{
}

impl<'a, G> NumberedNetwork<'a> for G
where
    G: Network<'a> + NumberedDigraph<'a>,
    G::Node: Indexable,
    G::Edge: Indexable + BiIndexable,
{
}

impl<'a, G> GraphType<'a> for &'a G
where
    G: GraphType<'a>,
{
    type Node = G::Node;

    type Edge = G::Edge;
}

impl<'a, G> GraphSize<'a> for &'a G
where
    G: GraphSize<'a>,
{
    type NodeIter = G::NodeIter;

    type EdgeIter = G::EdgeIter;

    fn num_nodes(&self) -> usize {
        (*self).num_nodes()
    }

    fn num_edges(&self) -> usize {
        (*self).num_edges()
    }

    fn nodes(&'a self) -> Self::NodeIter {
        (*self).nodes()
    }

    fn edges(&'a self) -> Self::EdgeIter {
        (*self).edges()
    }
}

impl<'a, G> Undirected<'a> for &'a G
where
    G: Undirected<'a>,
{
    type NeighIter = G::NeighIter;

    fn enodes(&'a self, e: Self::Edge) -> (Self::Node, Self::Node) {
        (*self).enodes(e)
    }

    fn neighs(&'a self, u: Self::Node) -> Self::NeighIter {
        (*self).neighs(u)
    }
}

impl<'a, G> IndexGraph<'a> for &'a G
where
    G: IndexGraph<'a>,
{
    fn node_id(&self, u: Self::Node) -> usize {
        (*self).node_id(u)
    }

    fn id2node(&'a self, id: usize) -> Self::Node {
        (*self).id2node(id)
    }

    fn edge_id(&self, e: Self::Edge) -> usize {
        (*self).edge_id(e)
    }

    fn id2edge(&'a self, id: usize) -> Self::Edge {
        (*self).id2edge(id)
    }
}

impl<'a, G> Directed<'a> for &'a G
where
    G: Directed<'a>,
{
    type OutEdgeIter = G::OutEdgeIter;

    type InEdgeIter = G::InEdgeIter;

    fn src(&'a self, e: Self::Edge) -> Self::Node {
        (*self).src(e)
    }

    fn snk(&'a self, e: Self::Edge) -> Self::Node {
        (*self).snk(e)
    }

    fn outedges(&'a self, u: Self::Node) -> Self::OutEdgeIter {
        (*self).outedges(u)
    }

    fn inedges(&'a self, u: Self::Node) -> Self::InEdgeIter {
        (*self).inedges(u)
    }
}

impl<'a, G> BiDirected<'a> for &'a G
where
    G: BiDirected<'a>,
{
    fn is_reverse(&self, e: Self::Edge, f: Self::Edge) -> bool {
        (*self).is_reverse(e, f)
    }

    fn reverse(&'a self, e: Self::Edge) -> Self::Edge {
        (*self).reverse(e)
    }

    fn is_forward(&self, e: Self::Edge) -> bool {
        (*self).is_forward(e)
    }

    fn forward(&'a self, e: Self::Edge) -> Self::Edge {
        (*self).forward(e)
    }

    fn is_backward(&self, e: Self::Edge) -> bool {
        (*self).is_backward(e)
    }

    fn backward(&'a self, e: Self::Edge) -> Self::Edge {
        (*self).backward(e)
    }

    fn bisrc(&'a self, e: Self::Edge) -> Self::Node {
        (*self).bisnk(e)
    }

    fn bisnk(&'a self, e: Self::Edge) -> Self::Node {
        (*self).bisrc(e)
    }
}

impl<'a, G> IndexNetwork<'a> for &'a G
where
    G: IndexNetwork<'a>,
{
    fn biedge_id(&self, e: Self::Edge) -> usize {
        (*self).biedge_id(e)
    }

    fn id2biedge(&'a self, id: usize) -> Self::Edge {
        (*self).id2biedge(id)
    }
}