1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/// A trait describing an immutable audio buffer.
pub trait Buf<T> {
    /// The number of channels in the buffer.
    fn channels(&self) -> usize;

    /// Test if the given channel is masked.
    fn is_masked(&self, channel: usize) -> bool;

    /// Return a handler to the buffer associated with the channel.
    ///
    /// Note that we don't access the buffer for the underlying channel directly
    /// as a linear buffer like `&[T]`, because the underlying representation
    /// might be different.
    ///
    /// We must instead make use of the various utility functions found on
    /// [BufChannel] to copy data out of the channel.
    ///
    /// # Panics
    ///
    /// Panics if the specified channel is out of bound as reported by
    /// [Buf::channels].
    fn channel(&self, channel: usize) -> BufChannel<'_, T>;
}

/// The buffer of a single channel.
///
/// This doesn't provide direct access to the underlying buffer, but rather
/// allows us to copy data usinga  number of utility functions.
#[derive(Debug, Clone, Copy)]
pub struct BufChannel<'a, T> {
    buf: &'a [T],
    kind: BufChannelKind,
}

impl<'a, T> BufChannel<'a, T> {
    /// Construct a linear buffer.
    pub fn linear(buf: &'a [T]) -> Self {
        Self {
            buf,
            kind: BufChannelKind::Linear,
        }
    }

    /// Construct an interleaved buffer.
    pub fn interleaved(buf: &'a [T], channels: usize, channel: usize) -> Self {
        Self {
            buf,
            kind: BufChannelKind::Interleaved { channels, channel },
        }
    }

    /// Access the number of frames on the current channel.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rotary::Buf;
    ///
    /// fn test(buf: &dyn Buf<f32>) {
    ///     let left = buf.channel(0);
    ///     let right = buf.channel(1);
    ///
    ///     assert_eq!(left.frames(), 16);
    ///     assert_eq!(right.frames(), 16);
    /// }
    ///
    /// test(&rotary::dynamic![[0.0; 16]; 2]);
    /// test(&rotary::sequential![[0.0; 16]; 2]);
    /// test(&rotary::interleaved![[0.0; 16]; 2]);
    /// ```
    pub fn frames(&self) -> usize {
        match self.kind {
            BufChannelKind::Linear => self.buf.len(),
            BufChannelKind::Interleaved { channels, .. } => self.buf.len() / channels,
        }
    }

    /// How many chunks of the given size can you divide buf into.
    ///
    /// This includes one extra chunk even if the chunk doesn't divide the frame
    /// length evenly.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rotary::Buf;
    ///
    /// fn test(buf: &dyn Buf<f32>) {
    ///     let left = buf.channel(0);
    ///     let right = buf.channel(1);
    ///
    ///     assert_eq!(left.chunks(4), 4);
    ///     assert_eq!(right.chunks(4), 4);
    ///
    ///     assert_eq!(left.chunks(6), 3);
    ///     assert_eq!(right.chunks(6), 3);
    /// }
    ///
    /// test(&rotary::dynamic![[0.0; 16]; 2]);
    /// test(&rotary::sequential![[0.0; 16]; 2]);
    /// test(&rotary::interleaved![[0.0; 16]; 2]);
    /// ```
    pub fn chunks(&self, chunk: usize) -> usize {
        let len = self.frames();

        if len % chunk == 0 {
            len / chunk
        } else {
            len / chunk + 1
        }
    }

    /// Copy into the given slice of output.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rotary::Buf;
    ///
    /// fn test(buf: &dyn Buf<f32>) {
    ///     let channel = buf.channel(0);
    ///
    ///     let mut buf = vec![0.0; 16];
    ///     channel.copy_into_slice(&mut buf[..]);
    ///
    ///     assert!(buf.iter().all(|f| *f == 1.0));
    /// }
    ///
    /// test(&rotary::dynamic![[1.0; 16]; 2]);
    /// test(&rotary::sequential![[1.0; 16]; 2]);
    /// test(&rotary::interleaved![[1.0; 16]; 2]);
    /// ```
    pub fn copy_into_slice(&self, out: &mut [T])
    where
        T: Copy,
    {
        match self.kind {
            BufChannelKind::Linear => {
                out.copy_from_slice(self.buf);
            }
            BufChannelKind::Interleaved { channels, channel } => {
                for (o, f) in out
                    .iter_mut()
                    .zip(self.buf[channel..].iter().step_by(channels))
                {
                    *o = *f;
                }
            }
        }
    }

    /// Copy the given chunk of a channel into a buffer.
    ///
    /// The length of the chunk to copy is determined by `len`. The offset of
    /// the chunk to copy is determined by `n`, where `n` is the number of `len`
    /// sized chunks.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rotary::Buf;
    ///
    /// fn test(buf: &dyn Buf<f32>) {
    ///     let channel = buf.channel(0);
    ///
    ///     let mut buf = vec![0.0; 4];
    ///     channel.copy_chunk(&mut buf[..], 3, 4);
    ///
    ///     assert!(buf.iter().all(|f| *f == 1.0));
    /// }
    ///
    /// test(&rotary::dynamic![[1.0; 16]; 2]);
    /// test(&rotary::sequential![[1.0; 16]; 2]);
    /// test(&rotary::interleaved![[1.0; 16]; 2]);
    /// ```
    pub fn copy_chunk(&self, out: &mut [T], n: usize, len: usize)
    where
        T: Copy,
    {
        match self.kind {
            BufChannelKind::Linear => {
                let buf = &self.buf[len * n..];
                let end = usize::min(buf.len(), len);
                let end = usize::min(end, out.len());
                out[..end].copy_from_slice(&buf[..end]);
            }
            BufChannelKind::Interleaved { channels, channel } => {
                let start = len * n;
                let it = self.buf[channel + start..]
                    .iter()
                    .step_by(channels)
                    .take(len);

                for (o, f) in out.iter_mut().zip(it) {
                    *o = *f;
                }
            }
        }
    }

    /// Copy into the given iterator.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rotary::Buf;
    ///
    /// fn test(buf: &dyn Buf<f32>) {
    ///     let channel = buf.channel(0);
    ///
    ///     let mut buf = vec![0.0; 16];
    ///
    ///     // Copy into every other position in `buf`.
    ///     channel.copy_into_iter(buf.iter_mut().step_by(2));
    ///
    ///     for (n, f) in buf.into_iter().enumerate() {
    ///         if n % 2 == 0 {
    ///             assert_eq!(f, 1.0);
    ///         } else {
    ///             assert_eq!(f, 0.0);
    ///         }
    ///     }
    /// }
    ///
    /// test(&rotary::dynamic![[1.0; 16]; 2]);
    /// test(&rotary::sequential![[1.0; 16]; 2]);
    /// test(&rotary::interleaved![[1.0; 16]; 2]);
    /// ```
    pub fn copy_into_iter<'out, I>(&self, iter: I)
    where
        I: IntoIterator<Item = &'out mut T>,
        T: 'out + Copy,
    {
        match self.kind {
            BufChannelKind::Linear => {
                for (o, f) in iter.into_iter().zip(self.buf) {
                    *o = *f;
                }
            }
            BufChannelKind::Interleaved { channels, channel } => {
                for (o, f) in iter
                    .into_iter()
                    .zip(self.buf[channel..].iter().step_by(channels))
                {
                    *o = *f;
                }
            }
        }
    }

    /// Copy into the given slice, mapping the index by the given mapping
    /// function.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use rotary::Buf;
    ///
    /// fn test(buf: &dyn Buf<f32>) {
    ///     let channel = buf.channel(0);
    ///
    ///     let mut buf = vec![0.0; channel.frames() * 2];
    ///
    ///     // Copy into every other position in `buf`.
    ///     channel.map_into_slice(&mut buf[..], |n| n * 2);
    ///
    ///     for (n, f) in buf.into_iter().enumerate() {
    ///         if n % 2 == 0 {
    ///             assert_eq!(f, 1.0);
    ///         } else {
    ///             assert_eq!(f, 0.0);
    ///         }
    ///     }
    /// }
    ///
    /// test(&rotary::dynamic![[1.0; 16]; 2]);
    /// test(&rotary::sequential![[1.0; 16]; 2]);
    /// test(&rotary::interleaved![[1.0; 16]; 2]);
    /// ```
    pub fn map_into_slice<M>(&self, out: &mut [T], m: M)
    where
        M: Fn(usize) -> usize,
        T: Copy,
    {
        match self.kind {
            BufChannelKind::Linear => {
                for (f, s) in self.buf.iter().enumerate() {
                    out[m(f)] = *s;
                }
            }
            BufChannelKind::Interleaved { channels, channel } => {
                for (f, s) in self.buf[channel..].iter().step_by(channels).enumerate() {
                    out[m(f)] = *s;
                }
            }
        }
    }
}

/// The simple vector of vectors buffer where an empty vector indicates that the
/// channel is masked.
impl<T> Buf<T> for Vec<Vec<T>> {
    fn channels(&self) -> usize {
        self.len()
    }

    fn is_masked(&self, channel: usize) -> bool {
        self[channel].is_empty()
    }

    fn channel(&self, channel: usize) -> BufChannel<'_, T> {
        BufChannel::linear(&self[channel])
    }
}

/// The simple slice of vectors buffer where an empty vector indicates that the
/// channel is masked.
impl<T> Buf<T> for [Vec<T>] {
    fn channels(&self) -> usize {
        self.as_ref().len()
    }

    fn is_masked(&self, channel: usize) -> bool {
        self.as_ref()[channel].is_empty()
    }

    fn channel(&self, channel: usize) -> BufChannel<'_, T> {
        BufChannel::linear(&self.as_ref()[channel])
    }
}

/// Used to determine how a buffer is indexed.
#[derive(Debug, Clone, Copy)]
enum BufChannelKind {
    /// Returned channel buffer is indexed in a linear manner.
    Linear,
    /// Returned channel buffer is indexed in an interleaved manner.
    Interleaved {
        /// The number of channels in the interleaved buffer.
        channels: usize,
        /// The channel that is being accessed.
        channel: usize,
    },
}