1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
extern crate serial;
use serial::prelude::*;

extern crate crc16;
#[macro_use]
extern crate bitflags;

bitflags! {
    pub struct ConfigFlags: u16 {
    const RC_MODE = 0x0000;
    const ANALOG_MODE = 0x0001;
    const SIMPLE_SERIAL_MODE = 0x0002;
    const PACKET_SERIAL_MODE = 0x0003;
    const BATTERY_MODE_OFF = 0x0000;
    const BATTERY_MODE_AUTO = 0x0004;
    const BATTERY_MODE_2_CELL = 0x0008;
    const BATTERY_MODE_3_CELL = 0x000C;
    const BATTERY_MODE_4_CELL = 0x0010;
    const BATTERY_MODE_5_CELL = 0x0014;
    const BATTERY_MODE_6_CELL = 0x0018;
    const BATTERY_MODE_7_CELL = 0x001C;
    const MIXING = 0x0020;
    const EXPONENTIAL = 0x0040;
    const MCU = 0x0080;
    const BAUDRATE_2400 = 0x0000;
    const BAUDRATE_9600 = 0x0020;
    const BAUDRATE_19200 = 0x0040;
    const BAUDRATE_38400 = 0x0060;
    const BAUDRATE_57600 = 0x0080;
    const BAUDRATE_115200 = 0x00A0;
    const BAUDRATE_230400 = 0x00C0;
    const BAUDRATE_460800 = 0x00E0;
    const FLIPSWITCH = 0x0100;
    const PACKET_ADDRESS_0x80 = 0x0000;
    const PACKET_ADDRESS_0x81 = 0x0100;
    const PACKET_ADDRESS_0x82 = 0x0200;
    const PACKET_ADDRESS_0x83 = 0x0300;
    const PACKET_ADDRESS_0x84 = 0x0400;
    const PACKET_ADDRESS_0x85 = 0x0500;
    const PACKET_ADDRESS_0x86 = 0x0600;
    const PACKET_ADDRESS_0x87 = 0x0700;
    const SLAVE_MODE = 0x0800;
    const RELAY_MODE = 0x1000;
    const SWAP_ENCODERS = 0x2000;
    const SWAP_BUTTONS = 0x4000;
    const MULTI_UNIT_MODE = 0x8000;
    }
}

bitflags! {
    pub struct StatusFlags: u16 {
    const NORMAL = 0x0000;
    const M1_OVERCURRENT_WARNING = 0x0001;
    const M2_OVERCURRENT_WARNING = 0x0002;
    const E_STOP = 0x0004;
    const TEMPERATURE_ERROR = 0x0008;
    const TEMPERATURE2_ERROR = 0x0010;
    const MAIN_BATTERY_HIGH_ERROR = 0x0020;
    const LOGIC_BATTERY_HIGH_ERROR = 0x0040;
    const LOGIC_BATTERY_LOW_ERROR = 0x0080;
    const M1_DRIVER_FAULT = 0x0100;
    const M2_DRIVER_FAULT = 0x0200;
    const MAIN_BATTERY_HIGH_WARNING = 0x0400;
    const MAIN_BATTERY_LOW_WARNING = 0x0800;
    const TERMPERATURE_WARNING = 0x1000;
    const TEMPERATURE2_WARNING = 0x2000;
    const M1_HOME = 0x4000;
    const M2_HOME = 0x8000;
    }
}

const ADDRESS: u8 = 0x80;

#[repr(u8)]
enum Command {
    M1FORWARD = 0,
    M1BACKWARD = 1,
    SETMINMB = 2,
    SETMAXMB = 3,
    M2FORWARD = 4,
    M2BACKWARD = 5,
    M17BIT = 6,
    M27BIT = 7,
    MIXEDFORWARD = 8,
    MIXEDBACKWARD = 9,
    MIXEDRIGHT = 10,
    MIXEDLEFT = 11,
    MIXEDFB = 12,
    MIXEDLR = 13,
    GETM1ENC = 16,
    GETM2ENC = 17,
    GETM1SPEED = 18,
    GETM2SPEED = 19,
    RESETENC = 20,
    GETVERSION = 21,
    SETM1ENCCOUNT = 22,
    SETM2ENCCOUNT = 23,
    GETMBATT = 24,
    GETLBATT = 25,
    SETMINLB = 26,
    SETMAXLB = 27,
    SETM1PID = 28,
    SETM2PID = 29,
    GETM1ISPEED = 30,
    GETM2ISPEED = 31,
    M1DUTY = 32,
    M2DUTY = 33,
    MIXEDDUTY = 34,
    M1SPEED = 35,
    M2SPEED = 36,
    MIXEDSPEED = 37,
    M1SPEEDACCEL = 38,
    M2SPEEDACCEL = 39,
    MIXEDSPEEDACCEL = 40,
    M1SPEEDDIST = 41,
    M2SPEEDDIST = 42,
    MIXEDSPEEDDIST = 43,
    M1SPEEDACCELDIST = 44,
    M2SPEEDACCELDIST = 45,
    MIXEDSPEEDACCELDIST = 46,
    GETBUFFERS = 47,
    GETPWMS = 48,
    GETCURRENTS = 49,
    MIXEDSPEED2ACCEL = 50,
    MIXEDSPEED2ACCELDIST = 51,
    M1DUTYACCEL = 52,
    M2DUTYACCEL = 53,
    MIXEDDUTYACCEL = 54,
    READM1PID = 55,
    READM2PID = 56,
    SETMAINVOLTAGES = 57,
    SETLOGICVOLTAGES = 58,
    GETMINMAXMAINVOLTAGES = 59,
    GETMINMAXLOGICVOLTAGES = 60,
    SETM1POSPID = 61,
    SETM2POSPID = 62,
    READM1POSPID = 63,
    READM2POSPID = 64,
    M1SPEEDACCELDECCELPOS = 65,
    M2SPEEDACCELDECCELPOS = 66,
    MIXEDSPEEDACCELDECCELPOS = 67,
    SETM1DEFAULTACCEL = 68,
    SETM2DEFAULTACCEL = 69,
    SETPINFUNCTIONS = 74,
    GETPINFUNCTIONS = 75,
    SETDEADBAND = 76,
    GETDEADBAND = 77,
    GETENCODERS = 78,
    GETISPEEDS = 79,
    RESTOREDEFAULTS = 80,
    GETTEMP = 82,
    GETTEMP2 = 83, //Only valid on some models
    GETERROR = 90,
    GETENCODERMODE = 91,
    SETM1ENCODERMODE = 92,
    SETM2ENCODERMODE = 93,
    WRITENVM = 94,
    READNVM = 95, //Reloads values from Flash into Ram
    SETCONFIG = 98,
    GETCONFIG = 99,
    SETM1MAXCURRENT = 133,
    SETM2MAXCURRENT = 134,
    GETM1MAXCURRENT = 135,
    GETM2MAXCURRENT = 136,
    SETPWMMODE = 148,
    GETPWMMODE = 149,
    FLAGBOOTLOADER = 255, //Only available via USB communications
}

fn split_u16_u8(x: u16) -> [u8; 2] {
    [(x >> 8) as u8, x as u8]
}

fn split_i16_u8(x: i16) -> [u8; 2] {
    [(x >> 8) as u8, x as u8]
}

fn split_u32_u8(x: u32) -> [u8; 4] {
    [(x >> 24) as u8, (x >> 16) as u8, (x >> 8) as u8, x as u8]
}

fn split_i32_u8(x: i32) -> [u8; 4] {
    [(x >> 24) as u8, (x >> 16) as u8, (x >> 8) as u8, x as u8]
}

fn join_u8(high: u8, low: u8) -> u16 {
    ((high as u16) << 8) | low as u16
}

fn join_u8_u32(byte0: u8, byte1: u8, byte2: u8, byte3: u8) -> u32 {
    ((byte0 as u32) << 24) | ((byte1 as u32) << 16) | ((byte2 as u32) << 8) | (byte3 as u32)
}

fn crc(buf: &Vec<u8>) -> Vec<u8> {
    let crc = crc16::State::<crc16::XMODEM>::calculate(&buf);
    split_u16_u8(crc).to_vec()
}

pub struct Roboclaw<'a> {
    port: &'a mut SerialPort,
}

impl<'a> Roboclaw<'a> {
    pub fn new<T: SerialPort>(port: &'a mut T) -> Self {
        Roboclaw { port: port }
    }

    fn read_command(&mut self, command_code: u8, num_bytes: usize) -> std::io::Result<Vec<u8>> {
        const CRC_SIZE: usize = 2;
        let command = vec![ADDRESS, command_code];
        self.port.write(&command[..])?;
        let mut buf = vec![0; num_bytes + CRC_SIZE];
        self.port.read(&mut buf)?;
        let crc = buf.split_off(num_bytes);
        let crc_read = join_u8(crc[0], crc[1]);
        let crc_calc = crc16::State::<crc16::XMODEM>::calculate(&[&command[..], &buf].concat());
        if crc_read == crc_calc {
            Ok(buf)
        } else {
            Err(std::io::Error::new(std::io::ErrorKind::Other, "crc error"))
        }
    }

    fn write_simple_command(&mut self, command_code: u8) -> std::io::Result<()> {
        let command = vec![ADDRESS, command_code];
        let crc = crc(&command);
        let command_bytes = [&[ADDRESS], &command[..], &crc[..]].concat();
        self.port.write(&command_bytes)?;
        let mut buf = vec![0; 1];
        self.port.read(&mut buf)?;
        if buf[0] == 0xFF {
            Ok(())
        } else {
            Err(std::io::Error::new(
                std::io::ErrorKind::Other,
                "return value error",
            ))
        }
    }

    fn write_command(&mut self, command_code: u8, data: &Vec<u8>) -> std::io::Result<()> {
        let mut command = vec![ADDRESS, command_code];
        let mut data_copy = data.clone();
        command.append(&mut data_copy);
        let crc = crc(&command);
        let command_bytes = [&[ADDRESS], &command[..], &crc[..]].concat();
        self.port.write(&command_bytes)?;
        let mut buf = vec![0; 1];
        self.port.read(&mut buf)?;
        if buf[0] == 0xFF {
            Ok(())
        } else {
            Err(std::io::Error::new(
                std::io::ErrorKind::Other,
                "return value error",
            ))
        }
    }

    pub fn forward_m1(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::M1FORWARD as u8, &vec![speed])
    }

    pub fn backward_m1(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::M1BACKWARD as u8, &vec![speed])
    }

    pub fn set_min_voltage_main_battery(voltage: u8) {
        unimplemented!()
    }

    pub fn set_max_voltage_main_battery(voltage: u8) {
        unimplemented!()
    }

    pub fn forward_m2(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::M2FORWARD as u8, &vec![speed])
    }

    pub fn backward_m2(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::M2BACKWARD as u8, &vec![speed])
    }

    pub fn forward_backward_m1(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::M17BIT as u8, &vec![speed])
    }

    pub fn forward_backward_m2(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::M27BIT as u8, &vec![speed])
    }

    pub fn forward_mixed(&mut self, speed: u8) -> Result<(), std::io::Error> {
        self.write_command(Command::MIXEDFORWARD as u8, &vec![speed])
    }

    pub fn backward_mixed(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::MIXEDBACKWARD as u8, &vec![speed])
    }

    pub fn turn_right_mixed(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::MIXEDRIGHT as u8, &vec![speed])
    }

    pub fn turn_left_mixed(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::MIXEDLEFT as u8, &vec![speed])
    }

    pub fn forward_backward_mixed(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::MIXEDFB as u8, &vec![speed])
    }

    pub fn left_right_mixed(&mut self, speed: u8) -> std::io::Result<()> {
        self.write_command(Command::MIXEDLR as u8, &vec![speed])
    }

    //uint32_t ReadEncM1(uint8_t address, uint8_t *status=NULL,bool *valid=NULL);
    pub fn read_enc_m1(&mut self) -> Result<u32, &str> {
        unimplemented!()
    }

    //uint32_t ReadEncM2(uint8_t address, uint8_t *status=NULL,bool *valid=NULL);
    pub fn read_enc_m2(&mut self) -> Result<u32, &str> {
        unimplemented!()
    }

    //bool SetEncM1(uint8_t address, int32_t val);
    pub fn set_enc_m1(&mut self, value: i32) -> Result<(), &str> {
        unimplemented!()
    }

    //bool SetEncM2(uint8_t address, int32_t val);
    pub fn set_enc_m2(&mut self, value: i32) -> Result<(), &str> {
        unimplemented!()
    }

    /*
    uint32_t ReadSpeedM1(uint8_t address, uint8_t *status=NULL,bool *valid=NULL);
    uint32_t ReadSpeedM2(uint8_t address, uint8_t *status=NULL,bool *valid=NULL);
    */
    //bool ResetEncoders(uint8_t address);
    pub fn reset_encoders(&mut self) -> Result<(), std::io::Error> {
        self.write_simple_command(Command::RESETENC as u8)
    }

    /*
    bool ReadVersion(uint8_t address,char *version);
    */

    //uint16_t ReadMainBatteryVoltage(uint8_t address,bool *valid=NULL);
    pub fn read_main_battery_voltage(&mut self) -> Result<f32, std::io::Error> {
        self.read_command(Command::GETMBATT as u8, 2)
            .map(|data| (join_u8(data[0], data[1]) as f32) / 10.0)
    }

    //uint16_t ReadLogicBatteryVoltage(uint8_t address,bool *valid=NULL);
    pub fn read_logic_battery_voltage(&mut self) -> Result<f32, std::io::Error> {
        self.read_command(Command::GETLBATT as u8, 2)
            .map(|data| (join_u8(data[0], data[1]) as f32) / 10.0)
    }

    /*
    bool SetMinVoltageLogicBattery(uint8_t address, uint8_t voltage);
    bool SetMaxVoltageLogicBattery(uint8_t address, uint8_t voltage);
    bool SetM1VelocityPID(uint8_t address, float Kp, float Ki, float Kd, uint32_t qpps);
    bool SetM2VelocityPID(uint8_t address, float Kp, float Ki, float Kd, uint32_t qpps);
    uint32_t ReadISpeedM1(uint8_t address,uint8_t *status=NULL,bool *valid=NULL);
    uint32_t ReadISpeedM2(uint8_t address,uint8_t *status=NULL,bool *valid=NULL);
    */

    //bool DutyM1(uint8_t address, uint16_t duty);
    pub fn duty_m1(&mut self, duty: i16) -> std::io::Result<()> {
        self.write_command(Command::M1DUTY as u8, &split_i16_u8(duty).to_vec())
    }

    //bool DutyM2(uint8_t address, uint16_t duty);
    pub fn duty_m2(&mut self, duty: i16) -> std::io::Result<()> {
        self.write_command(Command::M2DUTY as u8, &split_i16_u8(duty).to_vec())
    }

    //bool DutyM1M2(uint8_t address, uint16_t duty1, uint16_t duty2);
    pub fn duty_m1_m2(&mut self, duty1: i16, duty2: i16) -> std::io::Result<()> {
        self.write_command(
            Command::MIXEDDUTY as u8,
            &[&split_i16_u8(duty1)[..], &split_i16_u8(duty2)[..]].concat(),
        )
    }

    /*


    bool SpeedM1(uint8_t address, uint32_t speed);
    bool SpeedM2(uint8_t address, uint32_t speed);
    bool SpeedM1M2(uint8_t address, uint32_t speed1, uint32_t speed2);
    bool SpeedAccelM1(uint8_t address, uint32_t accel, uint32_t speed);
    bool SpeedAccelM2(uint8_t address, uint32_t accel, uint32_t speed);
    bool SpeedAccelM1M2(uint8_t address, uint32_t accel, uint32_t speed1, uint32_t speed2);
    */
    //bool SpeedDistanceM1(uint8_t address, uint32_t speed, uint32_t distance, uint8_t flag=0);
    pub fn speed_distance_m1(&mut self, speed: i32, distance: u32) -> Result<(), std::io::Error> {
        let speed_bytes = split_i32_u8(speed);
        let distance_bytes = split_u32_u8(distance);
        let data = [&speed_bytes[..], &distance_bytes[..], &vec![1u8]].concat();
        self.write_command(Command::M1SPEEDDIST as u8, &data)
    }

    /*
    bool SpeedDistanceM2(uint8_t address, uint32_t speed, uint32_t distance, uint8_t flag=0);
    bool SpeedDistanceM1M2(uint8_t address, uint32_t speed1, uint32_t distance1, uint32_t speed2, uint32_t distance2, uint8_t flag=0);
    bool SpeedAccelDistanceM1(uint8_t address, uint32_t accel, uint32_t speed, uint32_t distance, uint8_t flag=0);
    bool SpeedAccelDistanceM2(uint8_t address, uint32_t accel, uint32_t speed, uint32_t distance, uint8_t flag=0);
    bool SpeedAccelDistanceM1M2(uint8_t address, uint32_t accel, uint32_t speed1, uint32_t distance1, uint32_t speed2, uint32_t distance2, uint8_t flag=0);
    bool ReadBuffers(uint8_t address, uint8_t &depth1, uint8_t &depth2);
    bool ReadPWMs(uint8_t address, int16_t &pwm1, int16_t &pwm2);
    bool ReadCurrents(uint8_t address, int16_t &current1, int16_t &current2);
    bool SpeedAccelM1M2_2(uint8_t address, uint32_t accel1, uint32_t speed1, uint32_t accel2, uint32_t speed2);
    bool SpeedAccelDistanceM1M2_2(uint8_t address, uint32_t accel1, uint32_t speed1, uint32_t distance1, uint32_t accel2, uint32_t speed2, uint32_t distance2, uint8_t flag=0);
    bool DutyAccelM1(uint8_t address, uint16_t duty, uint32_t accel);
    bool DutyAccelM2(uint8_t address, uint16_t duty, uint32_t accel);
    bool DutyAccelM1M2(uint8_t address, uint16_t duty1, uint32_t accel1, uint16_t duty2, uint32_t accel2);
    bool ReadM1VelocityPID(uint8_t address,float &Kp_fp,float &Ki_fp,float &Kd_fp,uint32_t &qpps);
    bool ReadM2VelocityPID(uint8_t address,float &Kp_fp,float &Ki_fp,float &Kd_fp,uint32_t &qpps);
    bool SetMainVoltages(uint8_t address,uint16_t min,uint16_t max);
    bool SetLogicVoltages(uint8_t address,uint16_t min,uint16_t max);
    */

    //bool ReadMinMaxMainVoltages(uint8_t address,uint16_t &min,uint16_t &max);

    pub fn read_min_max_main_voltages(&mut self) -> Result<(f32, f32), std::io::Error> {
        self.read_command(Command::GETMINMAXMAINVOLTAGES as u8, 4)
            .map(|data| {
                (
                    join_u8(data[0], data[1]) as f32 / 10.0,
                    join_u8(data[2], data[3]) as f32 / 10.0,
                )
            })
    }

    /*
    bool ReadMinMaxLogicVoltages(uint8_t address,uint16_t &min,uint16_t &max);
    bool SetM1PositionPID(uint8_t address,float kp,float ki,float kd,uint32_t kiMax,uint32_t deadzone,uint32_t min,uint32_t max);
    bool SetM2PositionPID(uint8_t address,float kp,float ki,float kd,uint32_t kiMax,uint32_t deadzone,uint32_t min,uint32_t max);
    bool ReadM1PositionPID(uint8_t address,float &Kp,float &Ki,float &Kd,uint32_t &KiMax,uint32_t &DeadZone,uint32_t &Min,uint32_t &Max);
    bool ReadM2PositionPID(uint8_t address,float &Kp,float &Ki,float &Kd,uint32_t &KiMax,uint32_t &DeadZone,uint32_t &Min,uint32_t &Max);
    bool SpeedAccelDeccelPositionM1(uint8_t address,uint32_t accel,uint32_t speed,uint32_t deccel,uint32_t position,uint8_t flag);
    bool SpeedAccelDeccelPositionM2(uint8_t address,uint32_t accel,uint32_t speed,uint32_t deccel,uint32_t position,uint8_t flag);
    bool SpeedAccelDeccelPositionM1M2(uint8_t address,uint32_t accel1,uint32_t speed1,uint32_t deccel1,uint32_t position1,uint32_t accel2,uint32_t speed2,uint32_t deccel2,uint32_t position2,uint8_t flag);
    bool SetM1DefaultAccel(uint8_t address, uint32_t accel);
    bool SetM2DefaultAccel(uint8_t address, uint32_t accel);
    bool SetPinFunctions(uint8_t address, uint8_t S3mode, uint8_t S4mode, uint8_t S5mode);
    bool GetPinFunctions(uint8_t address, uint8_t &S3mode, uint8_t &S4mode, uint8_t &S5mode);
    bool SetDeadBand(uint8_t address, uint8_t Min, uint8_t Max);
    bool GetDeadBand(uint8_t address, uint8_t &Min, uint8_t &Max);
    */
    //bool ReadEncoders(uint8_t address,uint32_t &enc1,uint32_t &enc2);
    pub fn read_encoders(&mut self) -> Result<(u32, u32), std::io::Error> {
        self.read_command(Command::GETENCODERS as u8, 8)
            .map(|data| {
                (
                    join_u8_u32(data[0], data[1], data[2], data[3]),
                    join_u8_u32(data[4], data[5], data[6], data[7]),
                )
            })
    }

    /*
    bool ReadISpeeds(uint8_t address,uint32_t &ispeed1,uint32_t &ispeed2);
    bool RestoreDefaults(uint8_t address);
    bool ReadTemp(uint8_t address, uint16_t &temp);
    bool ReadTemp2(uint8_t address, uint16_t &temp);
    */

    //uint16_t ReadError(uint8_t address,bool *valid=NULL);
    pub fn read_error(&mut self) -> Result<StatusFlags, std::io::Error> {
        self.read_command(Command::GETERROR as u8, 2)
            .map(|data| StatusFlags::from_bits(join_u8(data[0], data[1])).unwrap())
    }

    /*
    bool ReadEncoderModes(uint8_t address, uint8_t &M1mode, uint8_t &M2mode);
    bool SetM1EncoderMode(uint8_t address,uint8_t mode);
    bool SetM2EncoderMode(uint8_t address,uint8_t mode);
    bool WriteNVM(uint8_t address);
    bool ReadNVM(uint8_t address);
    bool SetConfig(uint8_t address, uint16_t config);
    */
    //bool GetConfig(uint8_t address, uint16_t &config);
    pub fn get_config(&mut self) -> Result<ConfigFlags, std::io::Error> {
        self.read_command(Command::GETCONFIG as u8, 2)
            .map(|data| ConfigFlags::from_bits(join_u8(data[0], data[1])).unwrap())
    }

    /*
    bool SetM1MaxCurrent(uint8_t address,uint32_t max);
    bool SetM2MaxCurrent(uint8_t address,uint32_t max);
    bool ReadM1MaxCurrent(uint8_t address,uint32_t &max);
    bool ReadM2MaxCurrent(uint8_t address,uint32_t &max);
    bool SetPWMMode(uint8_t address, uint8_t mode);
    bool GetPWMMode(uint8_t address, uint8_t &mode);
    */
}