1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
// Copyright 2024 RISC Zero, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

extern crate alloc;

use alloc::{collections::BTreeMap, vec, vec::Vec};

use anyhow::{ensure, Result};
use risc0_zkp::core::{
    digest::Digest,
    hash::sha::{Impl, Sha256, BLOCK_BYTES, SHA256_INIT},
};
use risc0_zkvm_platform::{
    memory::{GUEST_MAX_MEM, MEM_SIZE, PAGE_TABLE},
    syscall::DIGEST_BYTES,
};
use serde::{Deserialize, Serialize};

use crate::{elf::Program, Digestible, SystemState};

/// An image of a zkVM guest's memory
///
/// This is an image of the full memory state of the zkVM, including the data,
/// text, inputs, page table, and system memory. In addition to the memory image
/// proper, this includes some metadata about the page table.
#[derive(Clone, Serialize, Deserialize)]
pub struct MemoryImage {
    /// Sparse memory image as a map from page index to page.
    pub pages: BTreeMap<u32, Vec<u8>>,

    /// Metadata about the structure of the page table
    pub info: PageTableInfo,

    /// Program Counter from [Program] entry point
    pub pc: u32,
}

#[derive(Clone, Serialize, Deserialize)]
struct PersistentPageTableInfo {
    page_size: u32,
    page_table_addr: u32,
}

/// Structure representing the page table for zkVM memory.
///
/// The notion of pages is borrowed from common operating system memory management, and the zkVM
/// organizes memory into a series of memory pages similarly. In the zkVM, the "page table" is
/// backed by a Merkle tree that verifies memory that is loaded into memory, or stored between
/// segments.
#[derive(Clone, Serialize, Deserialize)]
#[serde(try_from = "PersistentPageTableInfo", into = "PersistentPageTableInfo")]
pub struct PageTableInfo {
    /// Size of each page, in bytes.
    pub page_size: u32,
    page_size_po2: u32,
    /// Starting address for the page table in the memory space.
    pub page_table_addr: u32,
    _page_table_size: u32,
    /// Address of the root page, which is the top layer of the Merkle tree.
    pub root_addr: u32,
    /// Page index of the root page.
    pub root_idx: u32,
    root_page_addr: u32,
    /// Total number of pages covered by this page table.
    pub num_pages: u32,
    /// Number of entries in the root page. The root page may not be full, if the memory space is
    /// smaller than what the full number of entries could cover.
    pub num_root_entries: u32,
    _layers: Vec<u32>,
    /// Hash of an uninitialized page containing all zeros.
    zero_page_hash: Digest,
}

impl TryFrom<PersistentPageTableInfo> for PageTableInfo {
    type Error = anyhow::Error;

    fn try_from(value: PersistentPageTableInfo) -> Result<Self, Self::Error> {
        PageTableInfo::new(value.page_table_addr, value.page_size)
    }
}

impl From<PageTableInfo> for PersistentPageTableInfo {
    fn from(value: PageTableInfo) -> Self {
        Self {
            page_size: value.page_size,
            page_table_addr: value.page_table_addr,
        }
    }
}

/// Compute and return the ImageID of the given `(merkle_root, pc)` pair.
fn compute_image_id(merkle_root: &Digest, pc: u32) -> Digest {
    SystemState {
        merkle_root: *merkle_root,
        pc,
    }
    .digest::<Impl>()
}

/// Compute `ceil(a / b)` via truncated integer division.
const fn div_ceil(a: u32, b: u32) -> u32 {
    (a + b - 1) / b
}

/// Round `a` up to the nearest multiple of `b`.
const fn round_up(a: u32, b: u32) -> u32 {
    div_ceil(a, b) * b
}

impl PageTableInfo {
    /// Crate a new page table info struct with the given address and page size.
    pub fn new(page_table_addr: u32, page_size: u32) -> Result<Self> {
        let max_mem = page_table_addr;
        ensure!(max_mem >= page_size, "Max memory must be at least one page");
        ensure!(
            page_size > 0 && (page_size & (page_size - 1)) == 0,
            "Page size must be a power of 2"
        );

        let mut layers = Vec::new();
        let mut page_table_size = 0u32;
        let mut remain = max_mem;
        while remain >= page_size {
            let num_pages = remain / page_size;
            remain = num_pages * DIGEST_BYTES as u32;
            layers.push(remain);
            page_table_size += remain;
        }
        let max_mem = max_mem + page_table_size;
        let num_pages = max_mem / page_size;
        let page_table_size = round_up(page_table_size, BLOCK_BYTES as u32);
        let root_addr = page_table_addr + page_table_size;
        let root_idx = root_addr / page_size;
        let root_page_addr = root_idx * page_size;
        let num_root_entries = (root_addr - root_page_addr) / DIGEST_BYTES as u32;
        ensure!(root_idx == num_pages, "Invalid root index");
        let zero_page_hash = hash_page_bytes(&vec![0_u8; page_size as usize]);

        tracing::debug!("root_page_addr: 0x{root_page_addr:08x}, root_addr: 0x{root_addr:08x}");

        Ok(Self {
            page_size,
            page_size_po2: page_size.ilog2(),
            page_table_addr,
            _page_table_size: page_table_size,
            root_addr,
            root_idx,
            root_page_addr,
            num_pages,
            num_root_entries,
            _layers: layers,
            zero_page_hash,
        })
    }

    /// Calculate the page address given its index.
    pub fn get_page_addr(&self, page_idx: u32) -> u32 {
        page_idx * self.page_size
    }

    /// Calculate the index given its address.
    pub fn get_page_index(&self, addr: u32) -> u32 {
        addr >> self.page_size_po2
    }

    /// Calculate the index of the page that contains the hash of this page.
    pub fn get_page_entry_addr(&self, page_idx: u32) -> u32 {
        self.page_table_addr + page_idx * DIGEST_BYTES as u32
    }
}

impl MemoryImage {
    /// Construct the initial memory image for `program`
    ///
    /// The result is a MemoryImage with the ELF of `program` loaded (but
    /// execution not yet begun), and with the page table Merkle tree
    /// constructed.
    pub fn new(program: &Program, page_size: u32) -> Result<Self> {
        // Compute the page table hashes except for the very last root hash.
        let info = PageTableInfo::new(PAGE_TABLE.start() as u32, page_size)?;
        let mut img = Self {
            pages: BTreeMap::new(),
            info,
            pc: program.entry,
        };

        // Load the ELF into the memory image.
        for (&addr, &data) in program.image.iter() {
            if addr as usize >= GUEST_MAX_MEM {
                anyhow::bail!("Invalid Elf Program, address outside GUEST_MAX_MEM");
            }
            img.store_region_in_page(addr, &data.to_le_bytes());
        }

        img.hash_pages();
        Ok(img)
    }

    /// Load a page specified by page_idx. If no page is found, a zero page is
    /// returned.
    pub fn load_page(&self, page_idx: u32) -> Vec<u8> {
        self.pages
            .get(&page_idx)
            .cloned()
            .unwrap_or_else(|| vec![0; self.info.page_size as usize])
    }

    /// Writes the given byte array in this memory image at the given
    /// address.  The caller is responsible for ensuring the bytes do
    /// not overlap a page boundary.
    pub fn store_region_in_page(&mut self, addr: u32, bytes: &[u8]) {
        let page_idx = self.info.get_page_index(addr);
        let page = self.pages.entry(page_idx).or_insert_with(|| {
            if addr as usize >= MEM_SIZE {
                panic!("address {addr:08X} outside MEM_SIZE")
            }
            vec![0_u8; self.info.page_size as usize]
        });
        let page_start = self.info.get_page_addr(page_idx);
        page[(addr - page_start) as usize..(addr - page_start) as usize + bytes.len()]
            .clone_from_slice(bytes);
    }

    /// Reads the given byte array in this memory image at the given
    /// address  The caller is responsible for ensuring the bytes do
    /// not overlap a page boundary.
    pub fn load_region_in_page(&self, addr: u32, bytes: &mut [u8]) -> Result<()> {
        let page_idx = self.info.get_page_index(addr);
        let page_start = self.info.get_page_addr(page_idx);

        if let Some(page) = self.pages.get(&page_idx) {
            bytes.clone_from_slice(
                &page[(addr - page_start) as usize..(addr - page_start) as usize + bytes.len()],
            );
        } else {
            ensure!(
                addr as usize <= MEM_SIZE,
                "address {addr:08X} outside MEM_SIZE ({MEM_SIZE:08X})"
            );
            bytes.fill(0);
        }

        Ok(())
    }

    /// Calculate and update the image merkle tree within this image.
    pub fn hash_pages(&mut self) {
        self.hash_pages_iter(0..self.info.num_pages)
    }

    /// Calculate and update the image merkle tree within this image based on
    /// the supplied page indices.
    pub fn hash_pages_iter<I: Iterator<Item = u32>>(&mut self, iter: I) {
        for page_idx in iter {
            self.update_page(page_idx);
        }
    }

    /// Calculate and update the image merkle tree within this image based on
    /// the supplied page index.
    pub fn update_page(&mut self, page_idx: u32) {
        let digest = self.hash_page(page_idx);
        let entry_addr = self.info.get_page_entry_addr(page_idx);
        self.store_region_in_page(entry_addr, digest.as_bytes());
    }

    fn hash_page(&self, page_idx: u32) -> Digest {
        if let Some(page) = self.pages.get(&page_idx) {
            hash_page_bytes(page)
        } else {
            self.info.zero_page_hash
        }
    }

    /// Verify the integrity of the MemoryImage.
    ///
    /// Confirms that the page table is a valid Merkle tree with the expected
    /// root and that the data from each page hashes to the expected page table
    /// entry.
    #[cfg(test)]
    fn check(&self, addr: u32) -> Result<()> {
        let mut page_idx = self.info.get_page_index(addr);
        while page_idx < self.info.root_idx {
            let page_addr = self.info.get_page_addr(page_idx);
            let expected = self.hash_page(page_idx);
            let entry_addr = self.info.get_page_entry_addr(page_idx);
            let mut entry = [0_u8; DIGEST_BYTES];
            self.load_region_in_page(entry_addr, &mut entry)?;
            let actual = Digest::try_from(entry)?;
            tracing::debug!(
                "page_idx: {page_idx}, page_addr: 0x{page_addr:08x} entry_addr: 0x{entry_addr:08x}"
            );
            if expected != actual {
                anyhow::bail!("Invalid page table entry: {} != {}", expected, actual);
            }
            page_idx = self.info.get_page_index(entry_addr);
        }

        let root_page_addr = self.info.root_page_addr;
        let root_page_bytes = self.info.num_root_entries * DIGEST_BYTES as u32;
        let mut root_page = vec![0_u8; root_page_bytes as usize];
        self.load_region_in_page(root_page_addr, &mut root_page)?;
        let expected = hash_page_bytes(&root_page);
        let root = self.compute_root_hash();
        if expected != root {
            anyhow::bail!("Invalid root hash: {} != {}", expected, root);
        }

        Ok(())
    }

    /// Compute and return the root merkle entry of this image.
    pub fn compute_root_hash(&self) -> Digest {
        let root_page = self
            .pages
            .get(&self.info.root_idx)
            .expect("Missing root page?");
        hash_page_bytes(&root_page[..(self.info.root_addr - self.info.root_page_addr) as usize])
    }

    /// Compute and return the ImageID of this image.
    pub fn compute_id(&self) -> Digest {
        compute_image_id(&self.compute_root_hash(), self.pc)
    }

    /// Return the [SystemState] for this image.
    pub fn get_system_state(&self) -> SystemState {
        SystemState {
            merkle_root: self.compute_root_hash(),
            pc: self.pc,
        }
    }
}

fn hash_page_bytes(page: &[u8]) -> Digest {
    let mut state = SHA256_INIT;
    assert!(page.len() % BLOCK_BYTES == 0);
    for block in page.chunks_exact(BLOCK_BYTES) {
        let block1 = Digest::try_from(&block[0..DIGEST_BYTES]).unwrap();
        let block2 = Digest::try_from(&block[DIGEST_BYTES..BLOCK_BYTES]).unwrap();
        state = *Impl::compress(&state, &block1, &block2);
    }
    state
}

#[cfg(test)]
mod tests {
    use risc0_zkvm_methods::MULTI_TEST_ELF;
    use risc0_zkvm_platform::{
        memory::{GUEST_MAX_MEM, PAGE_TABLE, STACK_TOP, SYSTEM, TEXT_START},
        syscall::DIGEST_BYTES,
    };
    use test_log::test;

    use crate::{elf::Program, image::PageTableInfo, MemoryImage};

    fn page_table_size(max_mem: u32, page_size: u32) -> u32 {
        PageTableInfo::new(max_mem, page_size)
            .unwrap()
            ._page_table_size
    }

    #[test]
    fn check_integrity() {
        const PAGE_SIZE: u32 = 1024;
        let program = Program::load_elf(MULTI_TEST_ELF, GUEST_MAX_MEM as u32).unwrap();
        let prog_pc = program.entry;
        let image = MemoryImage::new(&program, PAGE_SIZE).unwrap();
        assert_eq!(image.pc, prog_pc);

        // This is useful in case one needs to manually inspect the memory image.
        // std::fs::write("/tmp/test.img", &image.image).unwrap();
        image.check(TEXT_START).unwrap();
        image.check(STACK_TOP).unwrap();
        image.check(TEXT_START + 5000).unwrap();
        image.check(SYSTEM.start() as u32).unwrap();
        image.check(image.info.root_page_addr).unwrap();
    }

    #[test]
    fn page_table_info() {
        const PAGE_SIZE_1K: u32 = 1024;
        let info = PageTableInfo::new(PAGE_TABLE.start() as u32, PAGE_SIZE_1K).unwrap();
        assert_eq!(info._page_table_size, 7035584);
        assert_eq!(info._page_table_size / PAGE_SIZE_1K, 6870);
        assert_eq!(info._page_table_size / PAGE_SIZE_1K * PAGE_SIZE_1K, 7034880);
        assert_eq!(info._layers, vec![6815744, 212992, 6656, 192]);
        assert_eq!(info.root_addr, 0xd6b5ac0);
        assert_eq!(info.root_page_addr, 0xd6b5800);
        assert_eq!(info.num_root_entries, 22);
        assert_eq!(info.root_idx, 219862);
    }

    #[test]
    fn page_size_1k() {
        const PAGE_SIZE_1K: u32 = 1024;
        assert_eq!(
            page_table_size(PAGE_SIZE_1K, PAGE_SIZE_1K),
            DIGEST_BYTES as u32 * 2
        );
        assert_eq!(
            page_table_size(PAGE_SIZE_1K * 2, PAGE_SIZE_1K),
            DIGEST_BYTES as u32 * 2
        );
        assert_eq!(
            page_table_size(PAGE_SIZE_1K * 256, PAGE_SIZE_1K),
            DIGEST_BYTES as u32 * 256 + 256
        );
        // max_mem: 256M, page: 1K bytes
        // Layer 1: 256M / 1K = 256K pages => 256K * 32 =   8M
        // Layer 2:   8M / 1K =   8K pages =>   8K * 32 = 256K
        // Layer 3: 256K / 1K =  256 pages =>  256 * 32 =   8K
        // Layer 4:   8K / 1K =    8 pages =>    8 * 32 =  256
        let info = PageTableInfo::new(256 * 1024 * 1024, PAGE_SIZE_1K).unwrap();
        assert_eq!(
            info._layers,
            vec![8 * 1024 * 1024, 256 * 1024, 8 * 1024, 256]
        );
        assert_eq!(
            info._page_table_size,
            8 * 1024 * 1024 + 256 * 1024 + 8 * 1024 + 256
        );
    }

    #[test]
    fn page_size_4k() {
        const PAGE_SIZE_4K: u32 = 4 * 1024;
        assert_eq!(
            page_table_size(PAGE_SIZE_4K, PAGE_SIZE_4K),
            DIGEST_BYTES as u32 * 2
        );
        assert_eq!(
            page_table_size(PAGE_SIZE_4K * 2, PAGE_SIZE_4K),
            DIGEST_BYTES as u32 * 2
        );
        assert_eq!(
            page_table_size(2 * 1024 * 1024, PAGE_SIZE_4K),
            16 * 1024 + 128
        );
        // max_mem: 256M, page: 4K bytes
        // Layer 1: 256M / 4K =  64K pages =>  64K * 32 =   2M
        // Layer 2:   2M / 4K =  512 pages =>  512 * 32 =  16K
        // Layer 3:  16K / 4K =    4 pages =>    4 * 32 =  128
        let info = PageTableInfo::new(256 * 1024 * 1024, PAGE_SIZE_4K).unwrap();
        assert_eq!(info._layers, vec![2 * 1024 * 1024, 16 * 1024, 128]);
        assert_eq!(info._page_table_size, 2 * 1024 * 1024 + 16 * 1024 + 128);
    }

    #[test]
    fn page_size_1k_fractional() {
        const PAGE_SIZE_1K: u32 = 1024;

        // max_mem: 6656, page: 1K bytes
        // Layer 1: 6656 / 1K = 6 pages => 6 * 32 = 192

        // 0x0000..0x0400 -> P0
        // 0x0400..0x0800 -> P1
        // 0x0800..0x0C00 -> P2
        // 0x0C00..0x1000 -> P3
        // 0x1000..0x1400 -> P4
        // 0x1400..0x1800 -> P5
        // 0x1800..0x1AC0 -> P6 (fractional)

        // 0x1A00: P0
        // 0x1A20: P1
        // 0x1A40: P2
        // 0x1A60: P3
        // 0x1A80: P4
        // 0x1AA0: P5
        // 0x1AC0: Root

        let info = PageTableInfo::new(0x1A00, PAGE_SIZE_1K).unwrap();
        assert_eq!(info._layers, vec![192]);
        assert_eq!(info._page_table_size, 192);
        assert_eq!(info.root_addr, 0x1AC0);
        assert_eq!(info.root_page_addr, 0x1800);
        assert_eq!(
            info.num_root_entries,
            (0x1A00 - 0x1800) / DIGEST_BYTES as u32 + 6
        );
    }

    #[test]
    #[should_panic(expected = "exceeds maximum address for guest programs")]
    fn test_fuzzing_oob_idx_bug() {
        let data = b"\x7f\x45\x4c\x46\x01\x01\x01\x01\x01\x01\xff\xff\x00\x00\x00\x00\x02\x00\xf3\x00\x00\x00\x00\x00\x00\x00\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x20\x00\x08\x00\x00\x00\x96\x96\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\xff\x00\x00\x94\x00\x00\x00\xff\xf6\x12\xa9\x00\x00\x00\x00\x00\x00\xfe\x00\x00\x00\x00\x00\x0a\x9a\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x4c\x46\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x0a\x9d\xd8\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x40\x1e\x00\x00\x46\x4c\x00\x00\x00\x00\x00\x02\x00\x40\x00\x01\x01\x01\x00\x04\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x05\x00\x00\x07\x78\xc1\x0a\x00\x00\xba\x00\x00\x00\x00\xe3\x04\x00\x00\x31\x35\x32\x37\x38\x31\x46\x01\x01\x01\x01\x01\x01\xff\xff\x00\x00\x00\x00\x02\x00\xe5\x00\x00\x00\x00\x96\x96\x00\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x2e\xac\x00\x00\x00\x00\x00\x00\x0a\xce\x58\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x40\x1e\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x40\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x05\x00\x00\x07\x00\xba\xe8\xad\x0a\x00\xe3\x04\x00\x00\x00\x00\x12\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x05\x00\x00\x00\x01\x01\x01\x50\xcf\x0a\x00\x01\x01\x01\x01\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x04\x01\x01\x01\x01\x01\x01\x01\x00\x00\x31\x35\x31\x35\x32\x37\x38\x31\x30\x34\x02\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x05\x00\x00\x00\x01\x01\x01\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\xff\xff\xff\xff\x00\x00\x00\x00\xff\x04\x92\x01\x01\x01\x01\x01\x01\xa2\xf8\x00\x20\x00\x00\x00\x00\xff\x00\x40\x00\x04\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x02\x00\x0a\x40\x40\x00\x1a\x00\x19\x00";
        const PAGE_SIZE: u32 = 1024;
        let prog = Program::load_elf(data, GUEST_MAX_MEM as u32).unwrap();
        MemoryImage::new(&prog, PAGE_SIZE).unwrap();
    }
}