# reverse
[](https://crates.io/crates/reverse)
[](https://docs.rs/reverse)

Reverse mode automatic differentiation in Rust.
To use this in your crate, add the following to `Cargo.toml`:
```rust
[dependencies]
reverse = "0.1"
```
## Examples
```rust
use reverse::*;
fn main() {
let graph = Graph::new();
let a = graph.add_var(2.5);
let b = graph.add_var(14.);
let c = (a.sin().powi(2) + b.ln() * 3.) - 5.;
let gradients = c.backward();
assert_eq!(gradients.wrt(&a), (2. * 2.5).sin());
assert_eq!(gradients.wrt(&b), 3. / 14.);
}
```
## Differentiable Functions
There is an optional `diff` feature that activates a macro to transform functions to the right type so that they are differentiable. That is, functions that act on `f64`s can be used on differentiable variables without change, and without needing to specify the (not simple) correct type.
To use this, add the following to `Cargo.toml`:
```rust
reverse = { version = "0.1", features = ["diff"] }
```
Functions must have the type `Fn(&[f64], &[&[f64]]) -> f64`, where the first argument contains the differentiable parameters and the second argument contains arbitrary arrays of data.
### Example
Here is an example of what the feature allows you to do:
```rust
use reverse::*;
fn main() {
let graph = Graph::new();
let a = graph.add_var(5.);
let b = graph.add_var(2.);
// you can track gradients through the function as usual!
let res = addmul(&[a, b], &[&[4.]]);
let grad = res.backward();
assert_eq!(grad.wrt(&a), 1.);
assert_eq!(grad.wrt(&b), 4.);
}
// function must have these argument types but can be arbitrarily complex
#[differentiable]
fn addmul(params: &[f64], data: &[&[f64]]) -> f64 {
params[0] + data[0][0] * params[1]
}
```