1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
//! A restricted n-tuple from m sets here refers to a sequence of n
//! elements from the given m sets, where, unlike a normal tuple, there
//! is required to be at least one element from each set.
//!
//! A restricted n-tuple counting function is a function which takes
//! n and returns the number of possible restricted n-tuples for the
//! given m sets.

extern crate integral_exponential_polynomial;
extern crate num_bigint;
extern crate num_integer;
#[cfg(test)]
extern crate num_iter;
extern crate num_traits;

use integral_exponential_polynomial::Polynomial;
use num_bigint::{BigUint, BigInt};
use num_integer::Integer;
use num_traits::{One, ToPrimitive};
use std::collections::HashMap;
use std::fmt;

type CountingFunctionCacheInternal = HashMap<Vec<usize>, Polynomial>;

/// Cache holding the counting functions for sets calculated
#[derive(Clone)]
pub struct CountingFunctionCache {
    internal: CountingFunctionCacheInternal
}

impl CountingFunctionCache {
    pub fn new() -> CountingFunctionCache {
        CountingFunctionCache {
            internal: CountingFunctionCacheInternal::new()
        }
    }
}

impl fmt::Debug for CountingFunctionCache {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for (k, v) in self.internal.iter() {
            try!(writeln!(f, "{:?}: {}", k, v));
        }
        Ok(())
    }
}

fn get_normal_tuple_counting_function(sets: &Vec<usize>) -> Polynomial {
    let sum = sets.iter().fold(0, |sum, s| sum + s);
    Polynomial::one_term(BigInt::one(), BigUint::from(sum))
}

fn generate_counting_function(cache: &mut CountingFunctionCacheInternal,
                              sets: &Vec<usize>, mask: usize) -> Polynomial {
    let sets = sets.iter().enumerate().filter_map(|(index, &item)| {
        if mask & 1 << index != 0 {
            Some(item.clone())
        } else {
            None
        }
    }).collect::<Vec<usize>>();

    if let Some(result) = cache.get(&sets) {
        return result.clone();
    }
    let mask_all = (1 << sets.len()) - 1;
    let mut result = get_normal_tuple_counting_function(&sets);
    // Note that zero and mask_all are excluded intentionally. Zero is
    // excluded because it would always yield zero, which is useless,
    // while mask_all is excluded because that mask presents the cases
    // we actually want for this function.
    for mask in 1..mask_all {
        result -= generate_counting_function(cache, &sets, mask);
    }
    cache.insert(sets, result.clone());
    result
}

/// Counter for calculating number of restricted tuples
#[derive(Clone)]
pub struct Counter {
    polynomials: Vec<Polynomial>,
}

impl Counter {
    /// Creates a counter.
    pub fn new(cache: &mut CountingFunctionCache,
               sets: &Vec<usize>) -> Counter {
        let mask_num = 1 << sets.len();
        let mask_all = mask_num - 1;
        let result_base = get_normal_tuple_counting_function(&sets);
        let polynomials = (0..mask_num).map(|mask| {
            let mut result = result_base.clone();
            // Note that zero and mask_all are excluded intentionally
            // since mask_all would always be dropped by the condition
            // inside, while zero would always yield zero as a result.
            for submask in 1..mask_all {
                if submask | mask != mask_all {
                    result -= generate_counting_function(&mut cache.internal,
                                                         &sets, submask);
                }
            }
            result
        }).collect::<Vec<_>>();
        Counter { polynomials: polynomials }
    }

    fn count(&self, present_mask: usize, length: usize) -> BigUint {
        let result = self.polynomials[present_mask].apply(length);
        let result = result.to_biguint().unwrap();
        result
    }

    /// Returns the total number of restrict tuples given the sets and
    /// the length.
    pub fn count_total(&self, length: usize) -> BigUint {
        self.count(0, length)
    }
}

/// Generator for yielding restricted tuple
#[derive(Clone)]
pub struct Generator<'a, T: 'a + Clone> {
    sets: &'a Vec<Vec<T>>,
    counter: Counter,
}

impl<'a, T: 'a + Clone> Generator<'a, T> {
    /// Creates a generator.
    ///
    /// # Example
    ///
    /// ```
    /// # use restricted_tuple::*;
    /// let sets: Vec<Vec<u32>> = vec![vec![10, 20], vec![30, 40]];
    /// let mut cache = CountingFunctionCache::new();
    /// let generator = Generator::new(&mut cache, &sets);
    /// ```
    pub fn new(cache: &mut CountingFunctionCache,
               sets: &'a Vec<Vec<T>>) -> Generator<'a, T> {
        let num_sets = sets.iter().map(|s| s.len()).collect();
        let counter = Counter::new(cache, &num_sets);
        Generator {
            sets: sets,
            counter: counter,
        }
    }

    fn generate_internal<CountFn>(&self, length: usize, value: BigUint,
                                  count_fn: &mut CountFn) -> Vec<T>
            where CountFn: FnMut(usize, usize) -> BigUint {
        let mut result = Vec::with_capacity(length);
        let mut present_mask = 0;
        let mut value = value % count_fn(0, length);
        for i in 0..length {
            let left_length = length - i - 1;
            for (j, set) in self.sets.iter().enumerate() {
                let next_mask = present_mask | 1 << j;
                let item_span = count_fn(next_mask, left_length);
                let total_span = item_span.clone() * BigUint::from(set.len());
                if value >= total_span {
                    value = value - total_span;
                    continue;
                }
                let (quo, rem) = value.div_rem(&item_span);
                value = rem;
                present_mask = next_mask;
                result.push(set[quo.to_usize().unwrap()].clone());
                break;
            }
        }
        result
    }

    /// Generates a restricted tuple with given length and value.
    ///
    /// # Panics
    ///
    /// Panics when no restricted tuple can be generated. This could
    /// happen if the length is smaller than the number of sets, or if
    /// there is any empty set in the provided sets, or the provided
    /// sets itself is empty.
    pub fn generate(&self, length: usize, value: BigUint) -> Vec<T> {
        self.generate_internal(length, value, &mut |mask, len| {
            self.counter.count(mask, len)
        })
    }
}

/// Experimental generator with cache
///
/// This should have the identical behavior as Generator, but could be
/// faster, as it caches counting result inside. The drawback is that
/// it requires a mutable reference to call generate method.
#[derive(Clone)]
pub struct GeneratorWithCache<'a, T: 'a + Clone> {
    generator: &'a Generator<'a, T>,
    cache: Vec<Vec<Option<BigUint>>>,
}

impl<'a, T: 'a + Clone> GeneratorWithCache<'a, T> {
    pub fn from_generator(generator: &'a Generator<'a, T>)
        -> GeneratorWithCache<'a, T> {
        let mask_num = 1 << generator.sets.len();
        GeneratorWithCache {
            generator: generator,
            cache: vec![vec![]; mask_num],
        }
    }

    pub fn generate(&mut self, length: usize, value: BigUint) -> Vec<T> {
        self.generator.generate_internal(length, value, &mut |mask, len| {
            let mut cache_line = &mut self.cache[mask];
            if cache_line.len() <= len {
                let fillup_len = len - cache_line.len() + 1;
                cache_line.append(&mut vec![None; fillup_len]);
            } else if let Some(result) = cache_line[length].as_ref() {
                return result.clone();
            }
            let result = self.generator.counter.count(mask, len);
            cache_line[length] = Some(result.clone());
            result
        })
    }
}

#[derive(Clone, Copy, Debug)]
struct ItemState {
    set: usize,
    index: usize,
    present_mask: usize,
}

/// Iterator yielding all possible restricted tuples for given sets and
/// a given length.
#[derive(Clone)]
pub struct Enumerator<'a, T: 'a + Clone> {
    length: usize,
    sets: &'a Vec<Vec<T>>,
    next_state: Vec<ItemState>,
}

impl<'a, T: 'a + Clone> Enumerator<'a, T> {
    pub fn new(sets: &'a Vec<Vec<T>>, length: usize) -> Enumerator<'a, T> {
        let mut initial_state = vec![ItemState {
            set: 0, index: 0, present_mask: 1
        }; length];
        let mut mask = 1;
        for i in 1..sets.len() {
            mask |= 1 << i;
            initial_state[length - sets.len() + i] = ItemState {
                set: i, index: 0, present_mask: mask
            };
        }
        if !sets.iter().all(|set| !set.is_empty()) {
            // If any set is empty, or there is no set at all, no
            // restricted tuple would exist. The remaining algorithm
            // relies on the assertion that there is at least one set,
            // and each set has at least one element. Stop everything
            // here if that is not true, otherwise it would panic.
            initial_state[0].set = sets.len();
        }
        Enumerator {
            length: length,
            sets: sets,
            next_state: initial_state
        }
    }

    fn find_next(&mut self) {
        let mask_all = (1 << self.sets.len()) - 1;
        loop {
            let mut cur = self.length - 1;
            // Climb from the last to find the next normal tuple
            loop {
                let mut item = &mut self.next_state[cur];
                item.index += 1;
                if item.index == self.sets[item.set].len() {
                    // No more element in this set, try next set
                    item.index = 0;
                    item.set += 1;
                    if item.set == self.sets.len() {
                        if cur > 0 {
                            // No more set, try previous slot
                            item.set = 0;
                            cur -= 1;
                            continue;
                        } else {
                            // All done
                            return;
                        }
                    }
                }
                break;
            }
            // Update present mask of all affected items
            if cur == 0 {
                let mut item = &mut self.next_state[0];
                item.present_mask = 1 << item.set;
                cur += 1;
            }
            for i in cur..self.length {
                let prev_mask = self.next_state[i - 1].present_mask;
                let mut item = &mut self.next_state[i];
                item.present_mask = prev_mask | 1 << item.set;
            }
            // Check if the new tuple satisfy the restriction
            if self.next_state.last().unwrap().present_mask == mask_all {
                break;
            }
        }
    }
}

impl<'a, T: 'a + Clone> Iterator for Enumerator<'a, T> {
    type Item = Vec<T>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.next_state[0].set >= self.sets.len() {
            None
        } else {
            let result = self.next_state.iter().map(|item| {
                self.sets[item.set][item.index].clone()
            }).collect();
            self.find_next();
            Some(result)
        }
    }
}

#[cfg(test)]
mod test {
    use num_bigint::BigUint;
    use num_iter::range;
    use num_traits::{Zero, One};
    use super::{CountingFunctionCache, Counter, Generator, Enumerator};

    fn test_sets1() -> Vec<Vec<u8>> {
        vec![
            vec!['A' as u8, 'B' as u8, 'C' as u8, 'D' as u8],
            vec!['a' as u8, 'b' as u8, 'c' as u8],
            vec!['0' as u8, '1' as u8],
        ]
    }

    struct ResultCycleTest<'a> {
        generator: &'a Generator<'a, u8>,
    }
    impl<'a> ResultCycleTest<'a> {
        fn run(&self, length: usize) {
            let count = self.generator.counter.count(0, length);
            for value in range(BigUint::zero(), count.clone()) {
                let value1 = count.clone() + value.clone();
                assert_eq!(self.generator.generate(length, value),
                           self.generator.generate(length, value1));
            }
        }
    }

    #[test]
    fn result_cycle_test() {
        let sets = test_sets1();
        let mut cache = CountingFunctionCache::new();
        let test = ResultCycleTest {
            generator: &Generator::new(&mut cache, &sets),
        };
        test.run(3);
        test.run(4);
    }

    struct ResultMatchTest<'a> {
        generator: &'a Generator<'a, u8>,
    }
    impl<'a> ResultMatchTest<'a> {
        fn run(&self, length: usize) {
            let mut value = BigUint::zero();
            for item in Enumerator::new(self.generator.sets, length) {
                let result = self.generator.generate(length, value.clone());
                assert_eq!(result, item);
                value = value + BigUint::one();
            }
            assert_eq!(value, self.generator.counter.count(0, length));
        }
    }

    #[test]
    fn result_match_test() {
        let sets = test_sets1();
        let mut cache = CountingFunctionCache::new();
        let test = ResultMatchTest {
            generator: &Generator::new(&mut cache, &sets),
        };
        test.run(3);
        test.run(4);
    }

    #[test]
    fn zero_count_test() {
        let mut cache = CountingFunctionCache::new();
        let set_lens = vec![];
        assert!(Counter::new(&mut cache, &set_lens).count(0, 5).is_zero());
        let set_lens = vec![5, 0, 8];
        assert!(Counter::new(&mut cache, &set_lens).count(0, 5).is_zero());
        let set_lens = vec![5, 2, 8];
        assert!(Counter::new(&mut cache, &set_lens).count(0, 2).is_zero());
        let set_lens = vec![5, 1, 8];
        assert!(!Counter::new(&mut cache, &set_lens).count(0, 5).is_zero());
    }

    fn panic_generating_test(length: usize, sets: Vec<Vec<u8>>) {
        let mut cache = CountingFunctionCache::new();
        let generator = Generator::new(&mut cache, &sets);
        generator.generate(length, BigUint::zero());
    }

    #[test]
    #[should_panic]
    fn empty_sets_generating_test() {
        panic_generating_test(5, vec![]);
    }

    #[test]
    #[should_panic]
    fn empty_set_in_sets_generating_test() {
        panic_generating_test(5, vec![
            vec!['0' as u8, '1' as u8],
            vec![],
            vec!['A' as u8, 'B' as u8],
        ]);
    }

    #[test]
    #[should_panic]
    fn length_not_enough_generating_test() {
        panic_generating_test(2, vec![
            vec!['0' as u8, '1' as u8],
            vec!['A' as u8, 'B' as u8],
            vec!['a' as u8, 'b' as u8],
        ]);
    }
}