1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
//! Structs and methods for Bolin & Rodhes reservoir models.
use csv::{Writer};
use crate::utils;
use rand_distr::{Exp, Distribution};
use rand::{thread_rng, Rng};
use rand::distributions::Uniform;
use serde::{Serialize, Deserialize};
use std::fs::File;
use std::io;
use std::ops::Range;
use rand_distr::num_traits::abs;
use rayon::prelude::*;
use std::time::{Duration, SystemTime};



/// Holder struct for goodness-of-fit statistics.
#[derive(Debug, Deserialize, Serialize)]
pub struct Gof {
    input: f64,
    output: f64,
    ks: f64,
    kp: f64,
    n: f64,
}


impl Gof {
    /// Convert csv record to Gof struct.
    pub fn read(path: &str) -> Result<Vec<Gof>, ResError> {
        let mut gof = Vec::new();
        let var = File::open(path)?;
        let mut rdr = csv::Reader::from_reader(
            var);
        for result in rdr.records() {
            let row = result?;
            let row: Gof = row.deserialize(None)?;
            gof.push(row);
        }
        Ok(gof)
    }

    /// Write statistical results to csv file.
    pub fn record(rec: &mut Vec<Gof>, title: &str) -> Result<(), ResError> {
        let mut wtr = Writer::from_path(title)?;
        for i in rec {
            wtr.serialize(i)?;
        }
        wtr.flush()?;
        Ok(())
    }
}

/// Holder struct to read in charcoal sample ages from csv.
#[derive(Debug, Deserialize)]
pub struct Sample {
    id: String,
    pub age: f64,
    pub facies: String,
}


/// Struct for recording reservoir characteristics.
#[derive(Debug, Clone)]
pub struct Reservoir {
    input: Option<Exp<f64>>,
    pub mass: Vec<f64>,
    output: Option<Exp<f64>>,
    flux: Vec<f64>,
    inherit: Option<Vec<f64>>,
}

#[derive(Debug)]
pub enum ResError {
    CsvError,
    ExpError,
    IoError,
}

impl std::error::Error for ResError {}

impl std::fmt::Display for ResError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            ResError::CsvError => write!(f, "Could not serialize/deserialize csv file."),
            ResError::ExpError => write!(f, "Could not create exponential distribution from rate provided."),
            ResError::IoError => write!(f, "Could not read file from path provided."),
        }
    }
}

impl From<csv::Error> for ResError {
    fn from(_: csv::Error) -> Self {
        ResError::CsvError
    }
}

impl From<rand_distr::ExpError> for ResError {
    fn from(_: rand_distr::ExpError) -> Self {
        ResError::ExpError
    }
}


impl From<std::io::Error> for ResError {
    fn from(_: std::io::Error) -> Self {
        ResError::IoError
    }
}

impl Reservoir {

    pub fn fit_range(&self, period: &f64, boot: usize, bat: usize, dur: u64, input: Range<f64>, output: Range<f64>, obs: &Vec<f64>, title: &str) -> (){
        let dur = Duration::new(60*60*dur, 0);
        let now = SystemTime::now();
        let mut rec = Vec::new();
        let exists = std::path::Path::new(title).exists();
        match exists {
            true => {
                let mut gof: Vec<Gof>  = Gof::read(title).unwrap();
                rec.append(&mut gof);
            }
            false => {}
        }
        while SystemTime::now() < now + dur {
            let mut new = self.fit_rng(period, boot, bat, input.clone(), output.clone(), obs);
            {
                rec.append(&mut new);
            }
            Gof::record(&mut rec, title).unwrap();

        }
    }

    /// Randomly selects rate pairs from ranges `input` and `output`, and simulates `boot` number of accumulation records
    /// in batches of `bat` using [fit_rate](#method.fit_rate).  Returns the selected input/output pair and the mean
    /// goodness-of-fit statistics for each pair from `boot` simulations.  Called by [fit_range](#method.fit_range).
    ///
    /// # Examples
    ///
    /// ```rust
    /// use reservoirs::prelude::*;
    ///
    /// // mean expected deposit age and inherited age by facies
    /// let dep = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/dep.csv")?;
    /// let iat = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/iat.csv")?;
    ///
    /// // subset mean ages of debris flows
    /// let df: Vec<f64> = dep.iter().filter(|x| x.facies == "DF").map(|x| x.age).collect();
    /// // subset inherited ages
    /// let ia: Vec<f64> = iat.iter().map(|x| x.age).collect();
    ///
    /// let mut debris_flows = Reservoir::new().input(&0.78)?.output(&0.78)?.inherit(&ia);
    /// // fit 10 randomly selected rate pairs (from range 0.01 to 1.0) to observed debris flows
    /// // by running 1000 simulations for 30000 years for each pair
    /// let gofs = debris_flows.fit_rng(&30000.0, 1000, 10, 0.01..1.0, 0.01..1.0, &df);
    /// ```
    pub fn fit_rng(&self, period: &f64, boot: usize, bat: usize, input: Range<f64>, output: Range<f64>, obs: &Vec<f64>) -> Vec<Gof> {
        let mut roll = thread_rng();
        let mut inputs = Vec::with_capacity(bat);
        let mut outputs = Vec::with_capacity(bat);
        let mut fits = Vec::with_capacity(bat);
        for i in 0..bat {
            inputs.push(Uniform::from(input.clone()).sample(&mut roll));
            outputs.push(Uniform::from(output.clone().start.max(inputs[i] * 0.975)..output.clone().end.min(inputs[i] * 1.0125)).sample(&mut roll));
            fits.push(self.clone().input(&inputs[i]).unwrap().output(&outputs[i]).unwrap());
        }
        let gof: Vec<(f64, f64, f64)> = fits.par_iter().map(|x| x.fit_rate(period, &obs, boot)).collect();
        let mut gofs = Vec::with_capacity(bat);
        for i in 0..bat {
            gofs.push(
                Gof {
                    input: inputs[i],
                    output: outputs[i],
                    ks: gof[i].0,
                    kp: gof[i].1,
                    n: gof[i].2,
                }
            )
        }
        gofs


    }

    /// Runs `boot` number of simulations of length `period` on a reservoir.
    /// Returns the mean goodness-of-fit statistics compared to accumulation record `other`.
    /// Called by [fit_rng](#method.fit_rng) and [steady](#method.steady).  To use,
    /// set characteristics of the reservoir before running.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use reservoirs::prelude::*;
    ///
    /// // mean expected deposit age and inherited age by facies
    /// let dep = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/dep.csv")?;
    /// let iat = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/iat.csv")?;
    ///
    /// // subset mean ages of debris flows
    /// let df: Vec<f64> = dep.iter().filter(|x| x.facies == "DF").map(|x| x.age).collect();
    /// // subset inherited ages
    /// let ia: Vec<f64> = iat.iter().map(|x| x.age).collect();
    ///
    /// let mut debris_flows = Reservoir::new().input(&0.78)?.output(&0.78)?.inherit(&ia);
    /// // run 1000 simulations for 30000 years and compare the fit against observed debris flows
    /// let (ks, kp, _) = debris_flows.fit_rate(&30000.0, &df, 1000);
    /// println!("K-S fit is {}.", ks);
    /// println!("Kuiper fit is {}.", kp);
    ///
    /// ```
    pub fn fit_rate(&self, period: &f64, other: &Vec<f64>, boot: usize) -> (f64, f64, f64) {
        let mut res: Vec<Reservoir> = Vec::with_capacity(boot);
        for _ in 0..boot {
            res.push(self.clone());
        }
        res = res.par_iter().cloned().map(|x| x.sim(period).unwrap()).collect();
        let fits: Vec<(f64, f64)> = res.par_iter().cloned().map(|x| x.gof(other)).collect();
        let kss: Vec<f64> = fits.clone().par_iter().map(|x| x.0).collect();
        let kps: Vec<f64> = fits.clone().par_iter().map(|x| x.1).collect();
        let ns: Vec<f64> = res.clone().iter().map(|x| x.mass.len() as f64 / other.len() as f64).collect();

        (utils::mean(&kss), utils::median(&kps), utils::mean(&ns))
    }

    pub fn fit_steady(&self, period: &f64, boot: usize, bat: usize, dur: u64, rate: Range<f64>, obs: &Vec<f64>, title: &str) -> () {
        let dur = Duration::new(60 * 60 * dur, 0);
        let now = SystemTime::now();
        let mut rec = Vec::new();
        let exists = std::path::Path::new(title).exists();
        match exists {
            true => {
                let mut gof: Vec<Gof> = Gof::read(title).unwrap();
                rec.append(&mut gof);
            }
            false => {}
        }
        while SystemTime::now() < now + dur {
            let mut new = self.steady(period, boot, bat, rate.clone(), obs);
            {
                rec.append(&mut new);
            }
            Gof::record(&mut rec, title).unwrap();
        }
    }

    /// Compare the accumulated mass in a reservoir to another record.
    /// Produces two goodness-of-fit statistics in a tuple:
    /// the K-S statistic and the Kuiper statistic, respectively.
    /// Called by [fit_rate](#method.fit_rate), you can use it on individual records too.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use reservoirs::prelude::*;
    ///
    /// // mean expected deposit age and inherited age by facies
    /// let dep = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/dep.csv")?;
    /// let iat = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/iat.csv")?;
    ///
    /// // subset mean ages of debris flows
    /// let df: Vec<f64> = dep.iter().filter(|x| x.facies == "DF").map(|x| x.age).collect();
    /// // subset inherited ages
    /// let ia: Vec<f64> = iat.iter().map(|x| x.age).collect();
    ///
    /// let mut debris_flows = Reservoir::new().input(&0.78)?.output(&0.78)?.inherit(&ia);
    /// debris_flows = debris_flows.sim(&30000.0)?;
    /// let (ks, kp) = debris_flows.gof(&df);
    /// println!("K-S fit is {}.", ks);
    /// println!("Kuiper fit is {}.", kp);
    ///
    /// ```
    pub fn gof(&self, other: &Vec<f64>) -> (f64, f64) {
        let mut x = self.mass.clone();
        let mut y = other.clone();
        let lnx = x.len() as f64;
        let lny = y.len() as f64;
        let xo = x.clone();
        let yo = y.clone();
        x.append(&mut y);
        x.sort_by(|a, b| a.partial_cmp(b).unwrap());
        x.dedup();
        let mut cdf = Vec::new();
        for i in x {
            let numx: Vec<&f64> = xo.iter().filter(|z| **z <= i).collect();
            let numy: Vec<&f64> = yo.iter().filter(|z| **z <= i).collect();
            let resx = numx.len() as f64 / lnx;
            let resy = numy.len() as f64 / lny;
            cdf.push((resx, resy));
        }
        let ks = cdf.iter().map(|x| abs(x.0 - x.1)).fold(0.0, f64::max);
        let kp1 = cdf.iter().map(|x| x.0 - x.1).fold(0.0, f64::max);
        let kp2 = cdf.iter().map(|x| x.1 - x.0).fold(0.0, f64::max);
        let kp = kp1 + kp2;
        (ks, kp)
    }


    /// Inherited age refers to age of charcoal upon entering the reservoir.
    /// Multiple samples of charcoal from a single deposit produces a vector of inherited ages,
    /// represented by the mean expected age of each charcoal sample in a f64 vector.
    /// The sample age of charcoal is the sum of its inherited age plus transit time through the reservoir.
    /// When simulating a reservoir model, each event entering the reservoir receives
    /// a random amount of inherited age sampled from the vector `ages`.
    ///
    /// # Examples
    ///
    /// ```
    /// use reservoirs::prelude::*;
    /// // mean expected inherited age by facies
    /// let iat = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/iat.csv")?;
    ///
    /// // subset inherited ages
    /// let ia: Vec<f64> = iat.iter().map(|x| x.age).collect();
    ///
    /// let res = Reservoir::new().inherit(&ia);
    /// ```
    pub fn inherit(mut self, ages: &Vec<f64>) -> Self {
        self.inherit = Some(ages.clone());
        self
    }

    /// Assign an input rate to a reservoir.
    /// Converts a reference to a float 64 `rate` into an exponential distribution with lamdba `rate` using the rand crate.
    ///
    /// # Examples
    ///
    /// ```
    /// use reservoirs::prelude::*;
    /// res = Reservoir::new().input(&0.58)?;
    /// ```
    pub fn input(mut self, rate: &f64) -> Result<Self, ResError> {
        let rate = Exp::new(*rate)?;
        self.input = Some(rate);
        Ok(self)
    }


    /// Create reservoirs using a builder pattern.  Calling new() creates an empty reservoir.
    /// Use the [input](#method.input) and [output](#method.output) methods to set rates, which start at None.
    /// Set inherited age similarly using the method [inherit](#method.inherit).
    ///
    /// # Examples
    /// ```
    /// use reservoirs::prelude::*;
    /// let mut res = Reservoir::new();
    /// ```
    pub fn new() -> Self {
        Reservoir {
            input: None,
            mass: Vec::new(),
            output: None,
            flux: Vec::new(),
            inherit: None,
        }
    }

    /// Assign an output rate to a reservoir.
    /// Converts a reference to a float 64 `rate` into an exponential distribution with lamdba `rate` using the rand crate.
    ///
    /// # Examples
    ///
    /// ```
    /// use reservoirs::prelude::*;
    /// res = Reservoir::new().output(&0.58)?;
    /// ```
    pub fn output(mut self, rate: &f64) -> Result<Self, ResError> {
        let rate = Exp::new(*rate)?;
        self.output = Some(rate);
        Ok(self)
    }

    /// Workhorse function for simulating accumulation records in a reservoir.
    /// Runs simulations on reservoir objects created using the builder pattern.
    /// `period` specifies the amount of time to simulate accumulation in years.
    /// While generally this is a function called in series by other functions, you can use
    /// it to simulate a single accumulation record for a reservoir.
    ///
    /// # Examples
    ///
    /// ```
    /// use reservoirs::prelude::*;
    ///
    /// // create reservoirs
    /// let mut fines = Reservoir::new().input(&0.75)?.output(&0.75)?;
    /// let mut gravels = Reservoir::new().input(&0.54)?.output(&0.54)?;
    ///
    /// // simulate accumulation for 30000 years
    /// fines = fines.sim(&30000.0)?;
    /// gravels = gravels.sim(&30000.0)?;
    ///
    /// ```
    pub fn sim(mut self, period: &f64) -> Result<Self, ResError> {
        let mut rng = thread_rng();
        let mut om = 0f64;
        let mut im = 0f64;
        let mut mass = Vec::new();  // time of arrivals in reservoir
        // let mut flux = Vec::new();  //

        while om < *period {
            // Generate a time for removal
            match self.output {
                Some(x) => om = om + x.sample(&mut rand::thread_rng()) as f64,
                None => continue,
            }

            while im < om {
                // Generate inputs until time for removal
                match self.input {
                    Some(x) => {
                        im = im + x.sample(&mut rand::thread_rng()) as f64;
                        mass.push(im);
                    },
                    None => { },
                }
            }

            if mass.len() > 0 {
                // If there are inputs to remove
                let mvec: Vec<f64> = mass.par_iter().cloned().filter(|x| x <= &om).collect();
                // Only remove inputs younger than the output time
                if mvec.len() > 0 {
                    let rm = Uniform::from(0..mvec.len()).sample(&mut rng);
                    // flux.push(mass[rm]);
                    mass.remove(rm);
                }
            }
        }


        mass = mass.par_iter().map(|x| period - x).collect();
        // flux = flux.par_iter().map(|x| period - x).collect();
        match self.inherit.clone() {
            Some(x) => {
                let ln = x.len();
                mass = mass.iter().map(|z| z + x[Uniform::from(0..ln).sample(&mut rng)]).collect();
                // flux = flux.iter().map(|z| z + x[Uniform::from(0..ln).sample(&mut rng)]).collect();
            },
            None => {},
        }


        self.mass = mass;
        // self.flux = flux;
        Ok(self)
    }



    pub fn stereotype(&self, period: &f64, boot: usize, bins: usize) -> Vec<f64> {
        let mut res: Vec<Reservoir> = Vec::with_capacity(boot);
        for _ in 0..boot {  // make boot number copies of reservoir
            res.push(self.clone());
        }
        res = res.par_iter().cloned().map(|x| x.sim(period).unwrap()).collect();  // simulate accumulation record for each copy
        let mut ns: Vec<f64> = res.par_iter().cloned().map(|x| x.mass.len() as f64).collect();  // number of deposits in reservoir
        let mid_n = utils::median(&ns); // median number of deposits
        ns = ns.iter().map(|x| abs((x / mid_n) - 1.0)).collect(); // distance from median length
        // collect reservoir masses into single vector and calculate the cdf
        let mut rec = Vec::new();  // vector of mass
        for r in res.clone() {
            rec.append(&mut r.mass.clone()); // add each run to make one long vector
        }
        let cdf = utils::cdf_bin(&rec, bins);  // subsample vector to length bins

        // TODO:  parallelize
        let gof: Vec<(f64, f64)> = res.par_iter().cloned().map(|x| x.gof(&cdf)).collect();  // ks and kp values
        let ks: Vec<f64> = gof.par_iter().cloned().map(|x| x.0).collect(); // clip to just ks values
        let mut least = 1.0; // test for lowest fit (set to high value)
        let mut low = Reservoir::new();  // initialize variable to hold lowest fit
        for (i, val) in ns.iter().enumerate() {
            let loss = ks[i] + val;  // loss function
            if loss < least { // if lowest value
                low = res[i].clone();  // copy to low
                least = loss; // set least to new low value
            }
        }

        low.mass
    }



    /// Randomly selects a rate from ranges `rate` for a steady state reservoir,
    /// and simulates `boot` number of accumulation records
    /// in batches of `bat` using [fit_rate](#method.fit_rate).  Returns the selected input/output pair and the mean
    /// goodness-of-fit statistics compared to `obs` for each pair from `boot` simulations.
    /// Called by [fit_steady](#method.fit_steady).
    ///
    /// # Examples
    ///
    /// ```rust
    /// use reservoirs::prelude::*;
    ///
    /// // mean expected deposit age and inherited age by facies
    /// let dep = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/dep.csv")?;
    /// let iat = Sample::read("https://github.com/crumplecup/reservoirs/blob/master/examples/iat.csv")?;
    ///
    /// // subset mean ages of debris flows
    /// let df: Vec<f64> = dep.iter().filter(|x| x.facies == "DF").map(|x| x.age).collect();
    /// // subset inherited ages
    /// let ia: Vec<f64> = iat.iter().map(|x| x.age).collect();
    ///
    /// let mut debris_flows = Reservoir::new().input(&0.78)?.output(&0.78)?.inherit(&ia);
    /// // fit 10 steady state reservoirs with randomly selected rates (from range 0.01 to 1.0) to observed debris flows
    /// // by running 1000 simulations for 30000 years for each pair
    /// let gofs = debris_flows.steady(&30000.0, 1000, 10, 0.01..1.0, &df);
    /// ```
    pub fn steady(&self, period: &f64, boot: usize, bat: usize, rate: Range<f64>, obs: &Vec<f64>) -> Vec<Gof> {
        let mut roll = thread_rng();
        let mut rates = Vec::with_capacity(bat);
        let mut fits = Vec::with_capacity(bat);
        for i in 0..bat {
            rates.push(Uniform::from(rate.clone()).sample(&mut roll));
            fits.push(self.clone().input(&rates[i]).unwrap().output(&rates[i]).unwrap());
        }
        let gof: Vec<(f64, f64, f64)> = fits.par_iter().map(|x| x.fit_rate(period, &obs, boot)).collect();
        let mut gofs = Vec::with_capacity(bat);
        for i in 0..bat {
            gofs.push(
                Gof {
                    input: rates[i],
                    output: rates[i],
                    ks: gof[i].0,
                    kp: gof[i].1,
                    n: gof[i].2,
                }
            )
        }
        gofs
    }


}


impl Sample {
    /// Converts a csv file of charcoal ages into a Sample struct.
    pub fn read(path: &str) -> io::Result<Vec<Sample>> {
        let mut record = Vec::new();
        let var = File::open(path)?;
        let mut rdr = csv::Reader::from_reader(var);
        for result in rdr.records() {
            let row = result?;
            let row: Sample = row.deserialize(None)?;
            record.push(row);
        }
        Ok(record)
    }

}