1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#![recursion_limit = "1024"]
//! A library for manipulating memory regions
//!
//! This crate provides several functions for handling memory pages and regions.
//! It is implemented using platform specific APIs. The library exposes both low
//! and high level functionality for manipulating pages.
//!
//! Not all OS specific quirks are abstracted away. For instance; some OSs
//! enforce memory pages to be readable whilst other may prevent pages from
//! becoming executable (i.e DEP).
//!
//! *Note: a region is a collection of one or more pages laying consecutively in
//! memory, with the same properties.*
//!
//! # Installation
//!
//! This crate is [on crates.io](https://crates.io/crates/region) and can be
//! used by adding `region` to your dependencies in your project's `Cargo.toml`.
//!
//! ```toml
//! [dependencies]
//! region = "0.0.8"
//! ```
//!
//! and this to your crate root:
//!
//! ```rust
//! extern crate region;
//! ```
//!
//! # Examples
//!
//! - Using `View` to retrieve and change the state of memory pages.
//!
//!   ```rust
//!   # use region::{Access, View, Protection};
//!   let data = vec![0xFF; 100];
//!   let mut view = View::new(data.as_ptr(), data.len()).unwrap();
//!
//!   // Change memory protection to Read | Write | Execute
//!   unsafe { view.set_prot(Protection::ReadWriteExecute.into()).unwrap() };
//!   assert_eq!(view.get_prot(), Some(Protection::ReadWriteExecute));
//!
//!   // Restore to the previous memory protection
//!   unsafe { view.set_prot(Access::Previous).unwrap() };
//!   assert_eq!(view.get_prot(), Some(Protection::ReadWrite));
//!
//!   // Temporarily change memory protection
//!   unsafe {
//!       view.exec_with_prot(Protection::Read, || {
//!           // This would result in a memory violation
//!           // data[0] = 0xCC;
//!       }).unwrap();
//!   }
//!
//!   // Lock the memory page(s) to RAM
//!   let _guard = view.lock().unwrap();
//!   ```

#[macro_use] extern crate bitflags;
#[macro_use] extern crate error_chain;
extern crate errno;
extern crate libc;

pub use lock::*;
pub use protection::Protection;
pub use view::*;

pub mod error;
pub mod page;
mod lock;
mod os;
mod protection;
mod view;

/// A descriptor for a memory region
///
/// This type acts as a POD-type, i.e it has no functionality but merely
/// stores region information.
#[derive(Debug, Clone, Copy)]
pub struct Region {
    /// Base address of the region
    pub base: *const u8,
    /// Whether the region is guarded or not
    pub guarded: bool,
    /// Protection of the region
    pub protection: Protection::Flag,
    /// Whether the region is shared or not
    pub shared: bool,
    /// Size of the region (multiple of page size)
    pub size: usize,
}

impl Region {
    /// Returns the region's lower bound.
    pub fn lower(&self) -> usize {
        self.base as usize
    }

    /// Returns the region's upper bound.
    pub fn upper(&self) -> usize {
        self.lower() + self.size
    }
}

/// Queries the OS with an address, returning the region it resides within.
///
/// The implementation uses `VirtualQuery` on Windows, `mach_vm_region` on macOS
/// and by parsing `proc/[pid]/maps` on Linux.
///
/// - The enclosing region can be of multiple page sizes.
/// - The address is rounded down to the closest page boundary.
/// - The address may not be null.
///
/// # Examples
///
/// ```
/// use region::{Protection};
///
/// let data = [0; 100];
/// let region = region::query(data.as_ptr()).unwrap();
///
/// assert_eq!(region.protection, Protection::ReadWrite);
/// ```
pub fn query(address: *const u8) -> error::Result<Region> {
    if address.is_null() {
        bail!(error::ErrorKind::Null);
    }

    // The address must be aligned to the closest page boundary
    os::get_region(page::page_floor(address as usize) as *const u8)
}

/// Queries the OS with a range, returning the regions it contains.
///
/// A 2-byte range straddling a page boundary will return both pages (or one
/// region, if the pages have the same properties). The implementation uses
/// `query` internally.
///
/// - The range is `[address, address + size)`
/// - The address is rounded down to the closest page boundary.
/// - The address may not be null.
///
/// # Examples
///
/// ```
/// let data = [0; 100];
/// let region = region::query_range(data.as_ptr(), data.len()).unwrap();
///
/// assert!(region.len() > 0);
/// ```
pub fn query_range(address: *const u8, size: usize) -> error::Result<Vec<Region>> {
    let mut result = Vec::new();
    let mut base = page::page_floor(address as usize);
    let limit = address as usize + size;

    loop {
        let region = query(base as *const u8)?;
        result.push(region);
        base = region.upper();

        if limit <= region.upper() {
            break;
        }
    }

    Ok(result)
}

/// Changes the memory protection of one or more regions.
///
/// The address range may overlap one or more regions, and if so, all regions
/// within the range will be modified. The previous protection flags are not
/// preserved (to reset protection flags to their inital values, `query_range`
/// can be used prior to this call).
///
/// If the size is zero this will affect the whole page located at the address
///
/// - The range is `[address, address + size)`
/// - The address is rounded down to the closest page boundary.
/// - The address may not be null.
/// - The size is rounded up to the closest page boundary, relative to the
///   address.
///
/// # Examples
///
/// ```
/// use region::{Protection};
///
/// let ret5 = [0xB8, 0x05, 0x00, 0x00, 0x00, 0xC3];
/// let x: extern "C" fn() -> i32 = unsafe {
///   region::protect(ret5.as_ptr(), ret5.len(), Protection::ReadWriteExecute).unwrap();
///   std::mem::transmute(ret5.as_ptr())
/// };
/// assert_eq!(x(), 5);
/// ```
pub unsafe fn protect(address: *const u8,
                      size: usize,
                      protection: Protection::Flag)
                      -> error::Result<()> {
    if address.is_null() {
        bail!(error::ErrorKind::Null);
    }

    // Ignore the preservation of previous protection flags
    os::set_protection(page::page_floor(address as usize) as *const u8,
                       page::page_size_from_range(address, size),
                       protection)
}

#[cfg(test)]
mod tests {
    extern crate memmap;

    use self::memmap::Mmap;
    use super::*;

    pub fn alloc_pages(prots: &[Protection::Flag]) -> Mmap {
        let pz = page::page_size();
        let map = Mmap::anonymous(pz * prots.len(), memmap::Protection::Read).unwrap();
        let mut base = map.ptr();

        for protection in prots {
            unsafe {
                protect(base, pz, *protection).unwrap();
                base = base.offset(pz as isize);
            }
        }

        map
    }

    #[test]
    fn query_null() {
        assert!(query(::std::ptr::null()).is_err());
    }

    #[test]
    #[cfg(unix)]
    fn query_code() {
        // TODO: Find out why this fails on Windows
        let region = query(&query_code as *const _ as *const u8).unwrap();

        assert_eq!(region.guarded, false);
        assert_eq!(region.protection, Protection::ReadExecute);
        assert_eq!(region.shared, false);
    }

    #[test]
    fn query_alloc() {
        let size = page::page_size() * 2;
        let mut map = alloc_pages(&[Protection::ReadExecute, Protection::ReadExecute]);
        let region = query(map.ptr()).unwrap();

        assert_eq!(region.guarded, false);
        assert_eq!(region.protection, Protection::ReadExecute);
        assert!(!region.base.is_null() && region.base <= map.mut_ptr());
        assert!(region.size >= size);
    }

    #[test]
    fn query_area_zero() {
        let region = query_range(&query_area_zero as *const _ as *const u8, 0).unwrap();
        assert_eq!(region.len(), 1);
    }

    #[test]
    fn query_area_overlap() {
        let pz = page::page_size();
        let prots = [Protection::ReadExecute, Protection::ReadWrite];
        let map = alloc_pages(&prots);

        // Query an area that overlaps both pages
        let address = unsafe { map.ptr().offset(pz as isize - 1) };
        let result = query_range(address, 2).unwrap();

        assert_eq!(result.len(), prots.len());
        for i in 0..prots.len() {
            assert_eq!(result[i].protection, prots[i]);
        }
    }

    #[test]
    fn query_area_alloc() {
        let pz = page::page_size();
        let prots = [Protection::Read,
                     Protection::ReadWrite,
                     Protection::ReadExecute];
        let map = alloc_pages(&prots);

        // Confirm only one page is retrieved
        let result = query_range(map.ptr(), pz).unwrap();
        assert_eq!(result.len(), 1);
        assert_eq!(result[0].protection, prots[0]);

        // Retrieve all allocated pages
        let result = query_range(map.ptr(), pz * prots.len()).unwrap();
        assert_eq!(result.len(), prots.len());
        assert_eq!(result[1].size, pz);
        for i in 0..prots.len() {
            assert_eq!(result[i].protection, prots[i]);
        }
    }

    #[test]
    fn protect_null() {
        assert!(unsafe { protect(::std::ptr::null(), 0, Protection::None) }.is_err());
    }

    #[test]
    fn protect_code() {
        let address = &mut protect_code as *mut _ as *mut u8;
        unsafe {
            protect(address, 0x10, Protection::ReadWriteExecute).unwrap();
            *address = 0x90;
        }
    }

    #[test]
    fn protect_alloc() {
        let mut map = alloc_pages(&[Protection::Read]);
        unsafe {
            protect(map.ptr(), page::page_size(), Protection::ReadWrite).unwrap();
            *map.mut_ptr() = 0x1;
        }
    }

    #[test]
    fn protect_overlap() {
        let pz = page::page_size();

        // Create a page boundary with different protection flags in the
        // upper and lower span, so the intermediate page sizes are fixed.
        let prots = [Protection::Read,
                     Protection::ReadExecute,
                     Protection::ReadWrite,
                     Protection::Read];

        let map = alloc_pages(&prots);
        let base_exec = unsafe { map.ptr().offset(pz as isize) };
        let straddle = unsafe { base_exec.offset(pz as isize - 1) };

        // Change the protection over two page boundaries
        unsafe { protect(straddle, 2, Protection::ReadWriteExecute).unwrap() };

        // Ensure that the pages have merged into one region
        let result = query_range(base_exec, pz * 2).unwrap();
        assert_eq!(result.len(), 1);
        assert_eq!(result[0].protection, Protection::ReadWriteExecute);
        assert_eq!(result[0].size, pz * 2);
    }
}