1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#![warn(missing_docs)]

//! A small crate to enable equality checks through pointer comparison

use std::fmt;
use std::hash::{Hash, Hasher};
use std::mem::size_of_val;
use std::ops::Deref;

/// Newtype for references (or smart pointers) where [equality](Eq) is defined
/// by the address (or address range) pointed to
///
/// # Caveats / Notes
///
/// * Empty address ranges are always considered equal, disregarding different base addresses (and Rust's rules on wide-pointer comparison).
/// * Working with trait objects may cause surprising behavior due to Rust's
/// pointer comparison rules.
///
/// # Example
/// ```
/// use refid::RefId;
/// use std::collections::HashSet;
/// fn count_distinct<T>(slice: &[&T]) -> usize {
///     let mut counted: HashSet<RefId<&T>> = HashSet::new();
///     let mut count: usize = 0;
///     for item in slice {
///         if counted.insert(RefId(item)) {
///             count += 1;
///         }
///     }
///     count
/// }
/// let v1 = "X".to_string();
/// let v2 = "X".to_string();
/// let v3 = "X".to_string();
/// assert_eq!(count_distinct(&vec![&v1, &v2, &v1, &v3]), 3);
/// ```
#[derive(Clone)]
pub struct RefId<T: ?Sized + Deref>(
    /// inner value (reference or smart pointer)
    pub T,
);

/// Comparison by address (but equal if range pointed to has size of zero)
impl<T: ?Sized + Deref> PartialEq for RefId<T> {
    fn eq(&self, other: &Self) -> bool {
        (size_of_val(&*self.0) == 0 && size_of_val(&*other.0) == 0)
            || (&*self.0 as *const T::Target == &*other.0 as *const T::Target)
    }
}

/// Comparison by address (but equal if range pointed to has size of zero)
impl<T: ?Sized + Deref> Eq for RefId<T> {}

impl<T: ?Sized + Deref> Hash for RefId<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        if size_of_val(&*self.0) != 0 {
            (&*self.0 as *const T::Target).hash(state)
        }
    }
}

/// Debug representation appended with "`@`" and address
impl<T: ?Sized + Deref> fmt::Debug for RefId<T>
where
    T::Target: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}@{:?}", &*self.0, &*self.0 as *const T::Target)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn test_two_refs_to_same_value() {
        let v = 1;
        let r1 = &v;
        let r2 = &v;
        assert_eq!(RefId(r1), RefId(r2));
    }
    #[test]
    fn test_two_boxes() {
        #[derive(Debug)]
        struct S {
            _value: i32,
        }
        let v1 = Box::new(S { _value: 1 });
        let v2 = Box::new(S { _value: 2 });
        let r1: &S = &v1;
        let r2: &S = &v2;
        assert_eq!(RefId(r1), RefId(r1));
        assert_ne!(RefId(r1), RefId(r2));
    }
    #[test]
    fn test_unit_type() {
        let v1 = ();
        let v2 = ();
        let r1: &() = &v1;
        let r2: &() = &v2;
        assert_eq!(RefId(r1), RefId(r2));
    }
    #[test]
    fn test_empty_slice() {
        let v = vec![5, 6, 7];
        let r1: &[i32] = &v[0..0];
        let r2: &[i32] = &v[1..1];
        assert_eq!(RefId(r1), RefId(r2));
    }
    #[test]
    fn test_nonempty_slices() {
        let v1 = vec![5, 6, 7];
        let v2 = vec![5, 6, 7];
        let r1: &[i32] = &v1[0..1];
        let r2: &[i32] = &v1[0..1];
        let r3: &[i32] = &v1[0..2];
        let r4: &[i32] = &v2[0..1];
        assert_eq!(RefId(r1), RefId(r1));
        assert_eq!(RefId(r1), RefId(r2));
        assert_ne!(RefId(r1), RefId(r3));
        assert_ne!(RefId(r1), RefId(r4));
    }
    #[test]
    fn test_rc() {
        use std::rc::Rc;
        let v1 = vec![9];
        let v2 = vec![9];
        let r1 = Rc::new(v1);
        let r2 = Rc::new(v2);
        let r3 = r1.clone();
        assert_ne!(RefId(r1.clone()), RefId(r2.clone()));
        assert_eq!(RefId(r1.clone()), RefId(r3.clone()));
    }
    #[test]
    fn test_hash_set() {
        use std::collections::HashSet;
        fn count_distinct<T>(slice: &[&T]) -> usize {
            let mut counted: HashSet<RefId<&T>> = HashSet::new();
            let mut count: usize = 0;
            for item in slice {
                if counted.insert(RefId(item)) {
                    count += 1;
                }
            }
            count
        }
        let v1 = "X".to_string();
        let v2 = "X".to_string();
        let v3 = "X".to_string();
        assert_eq!(count_distinct(&vec![&v1, &v2, &v1, &v3]), 3);
    }
}