1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//! A library that provides a more flexible way to construct
//! and extend the recursive function.
//!
//! The `RecurFn` trait is an abstraction of a recursive function.
//! By accepting a function parameter `recur` as the recursion
//! rather than recurring directly, it makes constructing an
//! anonymous recursive function possible.
//!
//! ```
//! use recur_fn::{recur_fn, RecurFn};
//!
//! let fib = recur_fn(|fib, n: u64| {
//!     if n <= 1 {
//!         n
//!     } else {
//!         fib(n - 1) + fib(n - 2)
//!     }
//! });
//!
//! assert_eq!(55, fib.call(10));
//! ```
//!
//! Beside, it makes extending the body of a recursive function possible.
//!
//! ```
//! use recur_fn::{recur_fn, RecurFn};
//! use std::cell::RefCell;
//!
//! let fib = recur_fn(|fib, n: u64| {
//!     if n <= 1 {
//!         n
//!     } else {
//!         fib(n - 1) + fib(n - 2)
//!     }
//! });
//!
//! let log = RefCell::new(Vec::new());
//!
//! let fib_with_logging = recur_fn(|recur, n: u64| {
//!     log.borrow_mut().push(n);
//!     fib.body(recur, n)
//! });
//!
//! fib_with_logging.call(3);
//! assert_eq!(*log.borrow(), vec![3, 2, 1, 0, 1]);
//! ```
//!
//! As `recur_fn` is a convenient way to construct a `RecurFn`,
//! calling it will be slightly slower than direct recursion.
//! To make it zero-cost, consider defining a struct,
//! implementing `RecurFn` trait for it and mark the `body` method by `#[inline]`.
//!
//! ```
//! use recur_fn::RecurFn;
//!
//! let fib = {
//!     struct Fib {}
//!     impl RecurFn<u64, u64> for Fib {
//!         #[inline]
//!         fn body(&self, fib: impl Fn(u64) -> u64, n: u64) -> u64 {
//!             if n <= 1 {
//!                 n
//!             } else {
//!                 fib(n - 1) + fib(n - 2)
//!             }
//!         }
//!     }
//!     Fib {}
//! };
//!
//! assert_eq!(55, fib.call(10));
//! ```
//!
//! or if the function doesn't capture anything,
//! you can use `as_recur_fn` macro.
//!
//! ```
//! use recur_fn::{as_recur_fn, RecurFn};
//!
//! let fact = as_recur_fn!(fact(n: u64) -> u64 {
//!     if n == 0 { 1 } else { n * fact(n - 1) }
//! });
//! assert_eq!(6, fact.call(3));
//! assert_eq!(0,
//!     fact.body(|_| 0, 3));
//! ```
//!
//! `DynRecurFn` is a dynamic version of `RecurFn`
//! that allows you to have a trait object.
//!
//! ```
//! use recur_fn::{recur_fn, RecurFn, DynRecurFn};
//! use core::ops::Deref;
//!
//! let dyn_fact: &DynRecurFn<_, _> =
//!     &recur_fn(|fact, n: u64| if n == 0 { 1 } else { n * fact(n - 1) });
//!
//! // Any type that derefs to `DynRecurFn` implements `RecurFn`.
//! fn test_fact_deref(fact: impl RecurFn<u64, u64>) {
//!     assert_eq!(6, fact.call(3));
//!     assert_eq!(0, fact.body(|_| 0, 3));
//! }
//! test_fact_deref(dyn_fact);
//! ```

#![no_std]
use core::ops::Deref;

/// The recursive function trait.
///
/// Instead of recurring directly,
/// this trait allows user to customize the recursion.
/// In this way, we can extract and extend the body of a recursive function.
///
/// This trait supports only one argument.
/// If you need multiple arguments, use tuple.
pub trait RecurFn<Arg, Output> {
    /// The body of the recursive function.
    ///
    /// Marking this method by `#[inline]` will make the `call` method
    /// as fast as recurring directly.
    fn body(&self, recur: impl Fn(Arg) -> Output, arg: Arg) -> Output;

    /// Calls the recursive function.
    #[inline]
    fn call(&self, arg: Arg) -> Output {
        self.body(|arg| self.call(arg), arg)
    }
}

/// The dynamic version of `RecurFn` that supports trait object.
pub trait DynRecurFn<Arg, Output> {
    /// The body of the recursive function.
    fn dyn_body(&self, recur: &Fn(Arg) -> Output, arg: Arg) -> Output;
}

impl<Arg, Output, R: RecurFn<Arg, Output>> DynRecurFn<Arg, Output> for R {
    fn dyn_body(&self, recur: &Fn(Arg) -> Output, arg: Arg) -> Output {
        self.body(recur, arg)
    }
}

impl<Arg, Output, D: Deref> RecurFn<Arg, Output> for D
where
    D::Target: DynRecurFn<Arg, Output>,
{
    fn body(&self, recur: impl Fn(Arg) -> Output, arg: Arg) -> Output {
        self.deref().dyn_body(&recur, arg)
    }
}

/*
/// The recursive function trait that might mutate the states.
/// It's similar to `RecurFn`, except it accept `&mut self` and `FnMut`.
/// Currently there's a borrow check error that I can't resolve.
pub trait RecurFnMut<Arg, Output> {
    /// The body of the recursive function.
    fn body<Recur: FnMut(Arg) -> Output>
    (&mut self, recur: Recur, arg: Arg) -> Output;

    /// Call the recursive function.
    #[inline]
    fn call(&mut self, arg: Arg) -> Output {
        self.body(|arg| self.call(arg), arg) // Borrow check error here.
    }
}*/

/// Constructs a non-recursive `RecurFn` calling `f` directly.
///
/// # Examples
///
/// ```
/// use recur_fn::{RecurFn, direct};
///
/// let double = direct(|n: u64| n * 2);
/// assert_eq!(4, double.call(2));
/// assert_eq!(20, double.body(|_| 0, 10));
/// ```
pub fn direct<Arg, Output, F: Fn(Arg) -> Output>(f: F) -> impl RecurFn<Arg, Output> {
    struct RecurFnImpl<F>(F);

    impl<Arg, Output, F> RecurFn<Arg, Output> for RecurFnImpl<F>
    where
        F: Fn(Arg) -> Output,
    {
        #[inline]
        fn body(&self, _: impl Fn(Arg) -> Output, arg: Arg) -> Output {
            (self.0)(arg)
        }

        fn call(&self, arg: Arg) -> Output {
            (self.0)(arg)
        }
    }

    RecurFnImpl(f)
}

/// Constructs a `RecurFn` with the body speicified.
///
/// ## Examples
///
/// ```
/// use recur_fn::{recur_fn, RecurFn};
///
/// let fib = recur_fn(|fib, n: u64| {
///     if n <= 1 {
///         n
///     } else {
///         fib(n - 1) + fib(n - 2)
///     }
/// });
///
/// assert_eq!(55, fib.call(10));
/// ```
pub fn recur_fn<Arg, Output, F>(body: F) -> impl RecurFn<Arg, Output>
where
    F: Fn(&Fn(Arg) -> Output, Arg) -> Output,
{
    struct RecurFnImpl<F>(F);

    impl<Arg, Output, F> RecurFn<Arg, Output> for RecurFnImpl<F>
    where
        F: Fn(&Fn(Arg) -> Output, Arg) -> Output,
    {
        fn body(&self, recur: impl Fn(Arg) -> Output, arg: Arg) -> Output {
            (self.0)(&recur, arg)
        }

        fn call(&self, arg: Arg) -> Output {
            (self.0)(&|arg| self.call(arg), arg)
        }
    }

    RecurFnImpl(body)
}

/// Expands a function definition to defining a struct,
/// implementing `RecurFn` for the struct and constructing it.
/// It can be useful if you want a zero-cost `RecurFn` implementation.
///
/// You can consider it as a function definition,
/// except `fn` keyword is replaced by this macro.
///
/// ## Examples
///
/// ```
/// use recur_fn::{as_recur_fn, RecurFn};
///
/// let fact = as_recur_fn!(fact(n: u64) -> u64 {
///     if n == 0 { 1 } else { n * fact(n - 1) }
/// });
/// assert_eq!(6, fact.call(3));
/// assert_eq!(0,
///     fact.body(|_| 0, 3));
/// ```
#[macro_export]
macro_rules! as_recur_fn {
    ($fn_name:ident ($arg_name:ident: $arg_type:ty) -> $output_type:ty $body:block) => {{
        struct RecurFnImpl {}

        impl RecurFn<$arg_type, $output_type> for RecurFnImpl {
            #[inline]
            fn body(
                &self,
                $fn_name: impl Fn($arg_type) -> $output_type,
                $arg_name: $arg_type,
            ) -> $output_type {
                $body
            }
        }
        RecurFnImpl {}
    }};
}

#[cfg(test)]
mod tests {
    extern crate std;
    use crate::*;
    use std::boxed::Box;

    #[test]
    fn fact_works() {
        let fact = {
            struct Fact {}
            impl RecurFn<u64, u64> for Fact {
                fn body(&self, recur: impl Fn(u64) -> u64, arg: u64) -> u64 {
                    if arg == 0 {
                        1
                    } else {
                        arg * recur(arg - 1)
                    }
                }
            }
            Fact {}
        };
        assert_eq!(3628800, fact.call(10));
    }

    #[test]
    fn as_recur_fn_works() {
        let fact = as_recur_fn!(fact(n: u64) -> u64 {
            if n == 0 { 1 } else { n * fact(n - 1) }
        });
        assert_eq!(6, fact.call(3));
        assert_eq!(3, fact.body(|_| 1, 3));
    }

    #[test]
    fn dyn_works() {
        let dyn_fib: Box<DynRecurFn<_, _> + Send + Sync> =
            Box::new(recur_fn(
                |fact, n: usize| {
                    if n <= 1 {
                        n
                    } else {
                        n * fact(n - 1)
                    }
                },
            ));

        dyn_fib.call(0);
    }
}