1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/// A `PartialReciprocal` represents an integer (floored) division
/// by a `u64` that's not 0, 1 or u64::MAX.
///
/// Once constructed for a given `d`, `apply`ing a `PartialReciprocal`
/// to a `u64` computes an integer division of that argument by `d`.
/// The parameters represent an expression of the form
///   `f(x) = (x + increment) * multiplier >> (64 + shift)`
/// in full 128-bit arithmetic; for appropriately chosen values,
/// this expression can implement any (unsigned) integer division.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct PartialReciprocal {
    multiplier: u64,
    shift: u8,
    increment: u8,
}

/// A `Reciprocal` represents an integer division by any non-zero
/// `u64`.  It replaces `PartialReciprocal`'s expression,
///   `f(x) = (x + increment) * multiplier >> (64 + shift)`, where
/// the inner addition is a saturating add by 0 or 1, with
///   `g(x) = (x * multiplier + summand) >> (64 + shift)`, where
/// both the multiplication and additions are in full 128 bit
/// arithmetic.  This additional work lets us handle all the cases,
/// including divisions by 1 and by `u64::MAX`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Reciprocal {
    multiplier: u64,
    summand: u64, // Always 0 (round up) or `multiplier` (round down)
    shift: u8,
}

impl PartialReciprocal {
    /// Constructs a `PartialReciprocal` that computes a floored
    /// division by `d`.
    ///
    /// Returns `None` if `d == 0`, or if `d == 1 || d == u64::MAX`:
    /// these last two divisors cannot be safely implemented as
    /// `PartialReciprocal` (the sequence would fail for `u64::MAX /
    /// 1` and `u64::MAX / u64::MAX`).
    ///
    /// The full `Reciprocal` handles these last two cases, at the
    /// expense of one more `u64` field and a branch.
    pub fn new(d: u64) -> Option<PartialReciprocal> {
        // Division by `d \in {1, u64::MAX}` are special because
        // `u64::MAX / d` differs from `(u64::MAX - 1) / d`,
        // and can't be computed by an increment-less sequence.
        //
        // We must give up on those... and 0, obviously.
        if d <= 1 || d == u64::MAX {
            return None;
        }

        // ilog2_d = floor(log_2(x)).
        let ilog2_d = 63 - d.leading_zeros();
        assert!(d >= 1u64 << ilog2_d);

        // Handle powers of two.
        if (d & (d - 1)) == 0 {
            assert!(d == 1u64 << ilog2_d);
            assert!(ilog2_d >= 1); // We guard against d == 1.

            // We want to shift right by ilog2_d >= 1, but we
            // don't have that in our PartialReciprocal expression.
            // What we do have is a full multiplication by a 64-bit
            // constant followed by a shift right by 64.  Let's
            // multiply by `1 << (64 - ilog2_d)`; after the shift
            // right by 64, that's equivalent to a shift by `ilog2_d`.
            return Some(PartialReciprocal {
                multiplier: 1u64 << (64 - ilog2_d),
                shift: 0,
                increment: 0,
            });
        }

        // We need `64 + ceil(log_2(d))` bits of precision in our
        // fixed-point approximation, to ensure the final truncated
        // result is error-free.
        //
        // We'll get that by rounding the approximation to nearest,
        // so we only need `64 + ceil(log_2(d)) - 1 = 64 + ilog2_d`
        // bits in our approximation.
        let shift = ilog2_d;
        let unity = 1u128 << (64 + shift);
        let scale = unity / (d as u128);
        let rem = unity % (d as u128);

        assert!(scale <= u64::MAX as u128);
        // If we want to round the approximation down...
        if rem as u64 <= d / 2 {
            // Then we have to nudge the runtime multiplicand up by 1
            // before the fixed multiplication.
            //
            // That's the multiply-and-add scheme of Arch Robison
            // [N-Bit Unsigned Division Via N-Bit Multiply-Add](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.512.2627&rep=rep1&type=pdf)
            Some(PartialReciprocal {
                multiplier: scale as u64,
                shift: shift as u8,
                increment: 1,
            })
        } else {
            // Otherwise, we can round our approximation up.
            // That's the usual div-by-mul scheme described in, e.g.,
            // Granlund and Montgomery's
            // [Division by invariant integers using multiplication](https://gmplib.org/~tege/divcnst-pldi94.pdf)

            // Rounding up can't overflow because that would be
            // equivalent to a division by a power of two, and we
            // handled those earlier.
            assert!(scale < u64::MAX as u128);
            Some(PartialReciprocal {
                multiplier: (scale + 1) as u64,
                shift: shift as u8,
                increment: 0,
            })
        }
    }

    /// Computes `x / d`, where `d` is the divison for which this
    /// reciprocal was constructed.
    ///
    /// The library tries to dispatch to a reasonable implementation
    /// for each platform.
    #[inline]
    #[must_use]
    #[cfg(target_arch = "x86_64")]
    pub fn apply(self, x: u64) -> u64 {
        self.apply_overflowing(x)
    }

    /// Computes `x / d`, where `d` is the divison for which this
    /// reciprocal was constructed.
    ///
    /// The library tries to dispatch to a reasonable implementation
    /// for each platform.
    #[inline]
    #[must_use]
    #[cfg(not(target_arch = "x86_64"))]
    pub fn apply(self, x: u64) -> u64 {
        self.apply_saturating(x)
    }

    /// Computes `x / d` with saturating arithmetic.
    #[inline]
    #[must_use]
    pub fn apply_saturating(self, x: u64) -> u64 {
        let shifted = x.saturating_add(self.increment as u64);
        let hi = ((self.multiplier as u128 * shifted as u128) >> 64) as u64;

        hi >> self.shift
    }

    /// Computes `x / d` with an alternative saturating increment that
    /// is shorter and equally efficient on x86-64.
    #[inline]
    #[must_use]
    pub fn apply_overflowing(self, x: u64) -> u64 {
        // Manually implement a saturating increment: we know
        // `increment` is only 0 or 1, so we can recover from any
        // overflow by subtracting 1 from `shifted`.  We can then
        // expect LLVM to implement that as a subtract-with-borrow on
        // x86-64.
        let (mut shifted, overflow) = x.overflowing_add(self.increment as u64);
        if overflow {
            shifted = shifted.wrapping_sub(1);
        }

        let hi = ((self.multiplier as u128 * shifted as u128) >> 64) as u64;

        hi >> self.shift
    }
}

impl Reciprocal {
    /// Constructs a `Reciprocal` that computes a floored division by `d`.
    ///
    /// Returns None if `d == 0`.
    pub fn new(d: u64) -> Option<Reciprocal> {
        if d == 0 {
            return None;
        }

        if let Some(base) = PartialReciprocal::new(d) {
            return Some(Reciprocal {
                multiplier: base.multiplier,
                summand: base.multiplier * base.increment as u64,
                shift: base.shift,
            });
        }

        // The two special cases below work in 64.64 fixed point.
        // While they have the usual `summand = multiplier` structure,
        // their results differ when dividing u64::MAX and (u64::MAX -
        // 1).  That's why we can't use the same constants for the
        // `PartialReciprocal` sequence, which
        // pre-saturating-increments the dividend, instead of actually
        // adding the summand to the intermediate 128-bit product.

        // We can thus determine whether to use `u64_max_result` by
        // checking if the increment overflows.
        assert!(d == 1 || d == u64::MAX);
        if d == 1 {
            // We want to divide by 1, i.e., multiply by 1.
            //
            // We can fake it by scaling by by u64::MAX / 2**64 (1 -
            // 2**-64), and adding (1 - 2**-64) again.
            //
            // It would even be correct to add 1 (x * u64::MAX / 2**64
            // truncates to x - 1 for all u64 values), but that
            // doesn't fit our pattern... and adding (1 - 2**-64)
            // suffices to compensate even the worst-case
            // approximation error (max x * [1 - (1 - 2**-64)]
            // = max x / 2**64 = u64::MAX / 2**-64).
            return Some(Reciprocal {
                multiplier: u64::MAX,
                summand: u64::MAX,
                shift: 0,
            });
        }

        // And we can fake a division by u64::MAX with a
        // multiplication by 2**-64, followed by adding 2**-64 again..
        //
        // For any value less than u64::MAX, the result is less than
        // 1, so truncates to 0.  For u64::MAX, we get exactly 1.
        Some(Reciprocal {
            multiplier: 1,
            summand: 1,
            shift: 0,
        })
    }

    /// Computes `x / d`, where `d` is the divison for which this
    /// reciprocal was constructed.
    #[inline]
    #[must_use]
    pub fn apply(&self, x: u64) -> u64 {
        let mut product = x as u128 * self.multiplier as u128;
        product += self.summand as u128;

        (product >> 64) as u64 >> self.shift
    }
}

#[cfg(test)]
mod tests {
    const PROBE_RANGE: u64 = 1u64 << 12;

    fn check(d: u64) {
        let partial = crate::PartialReciprocal::new(d);
        let recip = crate::Reciprocal::new(d);

        let probe = |x: u64| {
            let expected = x / d;
            if let Some(p) = partial {
                assert_eq!(p.apply_saturating(x), expected, "d={}, x={}", d, x);
                assert_eq!(p.apply_overflowing(x), expected, "d={}, x={}", d, x);
            }

            if let Some(r) = recip {
                assert_eq!(r.apply(x), expected, "d={}, x={}", d, x);

                #[cfg(feature = "nightly")]
                assert_eq!(r.apply_branchfree(x), expected, "d={}, x={}", d, x);
            }
        };

        if partial.is_none() && recip.is_none() {
            assert!(d == 0);
            return;
        }

        assert!(d > 0);
        assert_ne!(recip, None);
        if d != 1 && d != u64::MAX {
            assert_ne!(partial, None);
        }

        // The `center` is the largest `u64` multiple of `d`.
        let center = d * (u64::MAX / d);
        for i in 0..=PROBE_RANGE {
            // Probe around 0.
            probe(i);
            // Probe around u64::MAX.
            probe(u64::MAX - i);

            // Probe a symmetrical range around `d`
            probe(d.wrapping_add(i));
            probe(d.wrapping_sub(i));
            // Another symmetrical range around `center - d`.
            probe(center.wrapping_sub(d).wrapping_add(i));
            probe(center.wrapping_sub(d).wrapping_sub(i));
            // A symmetrical range around `center`
            probe(center.wrapping_add(i));
            probe(center.wrapping_sub(i));

            // And a last symmetrical range around `u64::MAX - d`.
            probe(u64::MAX.wrapping_sub(d).wrapping_add(i));
            probe(u64::MAX.wrapping_sub(d).wrapping_sub(i));
        }
    }

    #[test]
    fn check_edge_cases() {
        for d in [0, 1, 2, u64::MAX - 1, u64::MAX].iter().copied() {
            check(d);
        }
    }

    #[test]
    fn check_powers_of_two() {
        for p in 0..64 {
            check(1u64 << p);
        }
    }

    #[test]
    fn test_small_divisors() {
        for d in 0..256 {
            check(d);
            check(u64::MAX - d);
        }
    }

    #[test]
    fn test_sparse_divisors() {
        for i in 0..64 {
            for j in i..64 {
                let d = (1u64 << i) | (1u64 << j);

                check(d);
                // Also check the bitwise complement (dense divisors).
                check(!d);
            }
        }
    }

    #[test]
    fn test_near_powers_of_two() {
        for p in 0..64 {
            let po2 = 1u64 << p;
            for i in 1..=8 {
                check(po2.wrapping_sub(i));
                check(po2.wrapping_add(i));
            }
        }
    }

    #[test]
    fn test_powers_of_two_and_half() {
        for p in 0..64 {
            let po2 = 1u64 << p;
            let delta = po2 / 2;

            let x = po2.wrapping_sub(delta / 4);
            let y = po2.wrapping_add(delta);

            check(x);
            check(y);
            for i in 1..=8 {
                check(x.wrapping_sub(i));
                check(x.wrapping_add(i));
                check(y.wrapping_sub(i));
                check(y.wrapping_add(i));
            }
        }
    }

    #[test]
    fn test_factors_of_u64_max() {
        // Factors of u64::MAX are the only ones for which
        // dividing u64::MAX and u64::MAX - 1 yields different
        // values (1 and u64::MAX also count, but we test those
        // separately in `check_edge_cases`).
        let factors = [3, 5, 17, 257, 641, 65537, 6700417];

        assert_eq!(factors.iter().product::<u64>(), u64::MAX);
        for d in factors.iter().copied() {
            check(d);
        }
    }
}