1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
//! # RealFFT: Real-to-complex FFT and complex-to-real iFFT based on RustFFT
//!
//! This library is a wrapper for RustFFT that enables performing FFT of real-valued data.
//! The API is designed to be as similar as possible to RustFFT.
//!
//! Using this library instead of RustFFT directly avoids the need of converting real-valued data to complex before performing a FFT.
//! If the length is even, it also enables faster computations by using a complex FFT of half the length.
//! It then packs a 2N long real vector into an N long complex vector, which is transformed using a standard FFT.
//! The FFT result is then post-processed to give only the first half of the complex spectrum, as an N+1 long complex vector.
//!
//! The iFFT goes through the same steps backwards, to transform an N+1 long complex spectrum to a 2N long real result.
//!
//! The speed increase compared to just converting the input to a 2N long complex vector
//! and using a 2N long FFT depends on the length f the input data.
//! The largest improvements are for long FFTs and for lengths over around 1000 elements there is an improvement of about a factor 2.
//! The difference shrinks for shorter lengths, and around 30 elements there is no longer any difference.  
//!
//! ## Why use real-to-complex FFT?
//! ### Using a complex-to-complex FFT
//! A simple way to get the FFT of a rea values vector is to convert it to complex, and using a complex-to-complex FFT.
//!
//! Let's assume `x` is a 6 element long real vector:
//! ```text
//! x = [x0r, x1r, x2r, x3r, x4r, x5r]
//! ```
//!
//! We now convert `x` to complex by adding an imaginary part with value zero. Using the notation `(xNr, xNi)` for the complex value `xN`, this becomes:
//! ```text
//! x_c = [(x0r, 0), (x1r, 0), (x2r, 0), (x3r, 0), (x4r, 0, (x5r, 0)]
//! ```
//!
//! Performing a normal complex FFT, the result of `FFT(x_c)` is:
//! ```text
//! FFT(x_c) = [(X0r, X0i), (X1r, X1i), (X2r, X2i), (X3r, X3i), (X4r, X4i), (X5r, X5i)]
//! ```
//!
//! But because our `x_c` is real-valued (all imaginary parts are zero), some of this becomes redundant:
//! ```text
//! FFT(x_c) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, 0), (X2r, -X2i), (X1r, -X1i)]
//! ```
//!
//! The last two values are the complex conjugates of `X1` and `X2`. Additionally, `X0i` and `X3i` are zero.
//! As we can see, the output contains 6 independent values, and the rest is redundant.
//! But it still takes time for the FFT to calculate the redundant values.
//! Converting the input data to complex also takes a little bit of time.
//!
//! If the length of `x` instead had been 7, result would have been:
//! ```text
//! FFT(x_c) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, X3i), (X3r, -X3i), (X2r, -X2i), (X1r, -X1i)]
//! ```
//!
//! The result is similar, but this time there is no zero at `X3i`. Also in this case we got the same number of indendent values as we started with.
//!
//! ### Real-to-complex
//! Using a real-to-complex FFT removes the need for converting the input data to complex.
//! It also avoids caclulating the redundant output values.
//!
//! The result for 6 elements is:
//! ```text
//! RealFFT(x) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, 0)]
//! ```
//!
//! The result for 7 elements is:
//! ```text
//! RealFFT(x) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, X3i)]
//! ```
//!
//! This is the data layout output by the real-to-complex FFT, and the one expected as input to the complex-to-real iFFT.
//!
//! ## Scaling
//! RealFFT matches the behaviour of RustFFT and does not normalize the output of either FFT of iFFT. To get normalized results, each element must be scaled by `1/sqrt(length)`. If the processing involves both an FFT and an iFFT step, it is advisable to merge the two normalization steps to a single, by scaling by `1/length`.
//!
//! ## Documentation
//!
//! The full documentation can be generated by rustdoc. To generate and view it run:
//! ```text
//! cargo doc --open
//! ```
//!
//! ## Benchmarks
//!
//! To run a set of benchmarks comparing real-to-complex FFT with standard complex-to-complex, type:
//! ```text
//! cargo bench
//! ```
//! The results are printed while running, and are compiled into an html report containing much more details.
//! To view, open `target/criterion/report/index.html` in a browser.
//!
//! ## Example
//! Transform a vector, and then inverse transform the result.
//! ```
//! use realfft::RealFftPlanner;
//! use rustfft::num_complex::Complex;
//! use rustfft::num_traits::Zero;
//!
//! let length = 256;
//!
//! // make a planner
//! let mut real_planner = RealFftPlanner::<f64>::new();
//!
//! // create a FFT
//! let r2c = real_planner.plan_fft_forward(length);
//! // make input and output vectors
//! let mut indata = r2c.make_input_vec();
//! let mut spectrum = r2c.make_output_vec();
//!
//! // Are they the length we expect?
//! assert_eq!(indata.len(), length);
//! assert_eq!(spectrum.len(), length/2+1);
//!
//! // Forward transform the input data
//! r2c.process(&mut indata, &mut spectrum).unwrap();
//!
//! // create an iFFT and an output vector
//! let c2r = real_planner.plan_fft_inverse(length);
//! let mut outdata = c2r.make_output_vec();
//! assert_eq!(outdata.len(), length);
//!
//! c2r.process(&mut spectrum, &mut outdata).unwrap();
//! ```
//!
//! ### Versions
//! - 2.0.0: Update RustFFT to 6.0.0 and num-complex to 0.4.0.
//! - 1.1.0: Add missing Sync+Send.
//! - 1.0.0: First version with new api.
//!
//! ### Compatibility
//!
//! The `realfft` crate requires rustc version 1.37 or newer.

pub use rustfft::num_complex;
pub use rustfft::num_traits;
pub use rustfft::FftNum;

use rustfft::num_complex::Complex;
use rustfft::num_traits::Zero;
use rustfft::FftPlanner;
use std::collections::HashMap;
use std::error;
use std::fmt;
use std::sync::Arc;

type Res<T> = Result<T, Box<dyn error::Error>>;

/// Custom error returned by FFTs
#[derive(Debug)]
pub struct FftError {
    desc: String,
}

impl fmt::Display for FftError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.desc)
    }
}

impl error::Error for FftError {
    fn description(&self) -> &str {
        &self.desc
    }
}

impl FftError {
    pub fn new(desc: &str) -> Self {
        FftError {
            desc: desc.to_owned(),
        }
    }
}

fn compute_twiddle<T: FftNum>(index: usize, fft_len: usize) -> Complex<T> {
    let constant = -2f64 * std::f64::consts::PI / fft_len as f64;
    let angle = constant * index as f64;
    Complex {
        re: T::from_f64(angle.cos()).unwrap(),
        im: T::from_f64(angle.sin()).unwrap(),
    }
}

pub struct RealToComplexOdd<T> {
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

pub struct RealToComplexEven<T> {
    twiddles: Vec<Complex<T>>,
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

pub struct ComplexToRealOdd<T> {
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

pub struct ComplexToRealEven<T> {
    twiddles: Vec<Complex<T>>,
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

/// An FFT that takes a real-valued input vector of length 2*N and transforms it to a complex
/// spectrum of length N+1.
#[allow(clippy::len_without_is_empty)]
pub trait RealToComplex<T>: Sync + Send {
    /// Transform a vector of N real-valued samples, storing the result in the N/2+1 (with N/2 rounded down) element long complex output vector.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    fn process(&self, input: &mut [T], output: &mut [Complex<T>]) -> Res<()>;

    /// Transform a vector of N real-valued samples, storing the result in the N/2+1 (with N/2 rounded down) element long complex output vector.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also uses the provided scratch vector instead of allocating, which will be faster if it is called more than once.
    /// An error is returned if any of the given slices has the wrong length.
    fn process_with_scratch(
        &self,
        input: &mut [T],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) -> Res<()>;

    /// Get the length of the scratch space needed for `process_with_scratch`.
    fn get_scratch_len(&self) -> usize;

    /// Get the number of points that this FFT can process.
    fn len(&self) -> usize;

    /// Convenience method to make an input vector of the right type and length.
    fn make_input_vec(&self) -> Vec<T>;

    /// Convenience method to make an output vector of the right type and length.
    fn make_output_vec(&self) -> Vec<Complex<T>>;

    /// Convenience method to make a scratch vector of the right type and length.
    fn make_scratch_vec(&self) -> Vec<Complex<T>>;
}

/// An FFT that takes a complex-valued input vector of length N+1 and transforms it to a complex
/// spectrum of length 2*N.
#[allow(clippy::len_without_is_empty)]
pub trait ComplexToReal<T>: Sync + Send {
    /// Transform a complex spectrum of N/2+1 (with N/2 rounded down) values and store the real result in the N long output.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    fn process(&self, input: &mut [Complex<T>], output: &mut [T]) -> Res<()>;

    /// Transform a complex spectrum of N/2+1 (with N/2 rounded down) values and store the real result in the 2*N long output.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also uses the provided scratch vector instead of allocating, which will be faster if it is called more than once.
    /// An error is returned if any of the given slices has the wrong length.
    fn process_with_scratch(
        &self,
        input: &mut [Complex<T>],
        output: &mut [T],
        scratch: &mut [Complex<T>],
    ) -> Res<()>;

    /// Get the length of the scratch space needed for `process_with_scratch`.
    fn get_scratch_len(&self) -> usize;

    /// Get the number of points that this FFT can process.
    fn len(&self) -> usize;

    /// Convenience method to make an input vector of the right type and length.
    fn make_input_vec(&self) -> Vec<Complex<T>>;

    /// Convenience method to make an output vector of the right type and length.
    fn make_output_vec(&self) -> Vec<T>;

    /// Convenience method to make a scratch vector of the right type and length.
    fn make_scratch_vec(&self) -> Vec<Complex<T>>;
}

fn zip3<A, B, C>(a: A, b: B, c: C) -> impl Iterator<Item = (A::Item, B::Item, C::Item)>
where
    A: IntoIterator,
    B: IntoIterator,
    C: IntoIterator,
{
    a.into_iter()
        .zip(b.into_iter().zip(c))
        .map(|(x, (y, z))| (x, y, z))
}

/// A planner is used to create FFTs. It caches results internally,
/// so when making more than one FFT it is advisable to reuse the same planner.
pub struct RealFftPlanner<T: FftNum> {
    planner: FftPlanner<T>,
    r2c_cache: HashMap<usize, Arc<dyn RealToComplex<T>>>,
    c2r_cache: HashMap<usize, Arc<dyn ComplexToReal<T>>>,
}

impl<T: FftNum> RealFftPlanner<T> {
    /// Create a new planner.
    pub fn new() -> Self {
        let planner = FftPlanner::<T>::new();
        Self {
            r2c_cache: HashMap::new(),
            c2r_cache: HashMap::new(),
            planner,
        }
    }

    /// Plan a Real-to-Complex forward FFT. Returns the FFT in a shared reference.
    /// If requesting a second FFT of the same length, this will return a new reference to the already existing one.
    pub fn plan_fft_forward(&mut self, len: usize) -> Arc<dyn RealToComplex<T>> {
        if let Some(fft) = self.r2c_cache.get(&len) {
            Arc::clone(&fft)
        } else {
            let fft = if len % 2 > 0 {
                Arc::new(RealToComplexOdd::new(len, &mut self.planner)) as Arc<dyn RealToComplex<T>>
            } else {
                Arc::new(RealToComplexEven::new(len, &mut self.planner))
                    as Arc<dyn RealToComplex<T>>
            };
            self.r2c_cache.insert(len, Arc::clone(&fft));
            fft
        }
    }

    /// Plan a Complex-to-Real inverse FFT. Returns the FFT in a shared reference.
    /// If requesting a second FFT of the same length, this will return a new reference to the already existing one.
    pub fn plan_fft_inverse(&mut self, len: usize) -> Arc<dyn ComplexToReal<T>> {
        if let Some(fft) = self.c2r_cache.get(&len) {
            Arc::clone(&fft)
        } else {
            let fft = if len % 2 > 0 {
                Arc::new(ComplexToRealOdd::new(len, &mut self.planner)) as Arc<dyn ComplexToReal<T>>
            } else {
                Arc::new(ComplexToRealEven::new(len, &mut self.planner))
                    as Arc<dyn ComplexToReal<T>>
            };
            self.c2r_cache.insert(len, Arc::clone(&fft));
            fft
        }
    }
}

impl<T: FftNum> Default for RealFftPlanner<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: FftNum> RealToComplexOdd<T> {
    /// Create a new RealToComplex FFT for input data of a given length, and uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not odd.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 == 0 {
            panic!("Length must be odd, got {}", length,);
        }
        let fft = fft_planner.plan_fft_forward(length);
        let scratch_len = fft.get_inplace_scratch_len() + length;
        RealToComplexOdd {
            length,
            fft,
            scratch_len,
        }
    }
}

impl<T: FftNum> RealToComplex<T> for RealToComplexOdd<T> {
    /// Transform a vector of N real-valued samples, storing the result in the N/2+1 (with N/2 rounded down) element long complex output vector.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    fn process(&self, input: &mut [T], output: &mut [Complex<T>]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    /// Transform a vector of N real-valued samples, storing the result in the N/2+1 (with N/2 rounded down) element long complex output vector.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also uses the provided scratch vector instead of allocating, which will be faster if it is called more than once.
    /// An error is returned if any of the given slices has the wrong length.
    fn process_with_scratch(
        &self,
        input: &mut [T],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        if input.len() != self.length {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of input, expected {}, got {}",
                    self.length,
                    input.len()
                )
                .as_str(),
            )));
        }
        if output.len() != (self.length / 2 + 1) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of output, expected {}, got {}",
                    self.length / 2 + 1,
                    input.len()
                )
                .as_str(),
            )));
        }
        if scratch.len() != (self.scratch_len) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of scratch, expected {}, got {}",
                    self.scratch_len / 2 + 1,
                    scratch.len()
                )
                .as_str(),
            )));
        }
        let (buffer, fft_scratch) = scratch.split_at_mut(self.length);

        for (val, buf) in input.iter().zip(buffer.iter_mut()) {
            *buf = Complex::new(*val, T::zero());
        }
        // FFT and store result in buffer_out
        self.fft.process_with_scratch(buffer, fft_scratch);
        output.copy_from_slice(&buffer[0..self.length / 2 + 1]);
        Ok(())
    }

    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_output_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.len() / 2 + 1]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

impl<T: FftNum> RealToComplexEven<T> {
    /// Create a new RealToComplex FFT for input data of a given length, and uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not even.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 > 0 {
            panic!("Length must be even, got {}", length,);
        }
        let twiddle_count = if length % 4 == 0 {
            length / 4
        } else {
            length / 4 + 1
        };
        let twiddles: Vec<Complex<T>> = (1..twiddle_count)
            .map(|i| compute_twiddle(i, length) * T::from_f64(0.5).unwrap())
            .collect();
        //let mut fft_planner = FftPlanner::<T>::new();
        let fft = fft_planner.plan_fft_forward(length / 2);
        let scratch_len = fft.get_outofplace_scratch_len();
        RealToComplexEven {
            twiddles,
            length,
            fft,
            scratch_len,
        }
    }
}

impl<T: FftNum> RealToComplex<T> for RealToComplexEven<T> {
    /// Transform a vector of N real-valued samples, storing the result in the N/2+1 element long complex output vector.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    fn process(&self, input: &mut [T], output: &mut [Complex<T>]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    /// Transform a vector of N real-valued samples, storing the result in the N/2+1 element long complex output vector.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also uses the provided scratch vector instead of allocating, which will be faster if it is called more than once.
    /// An error is returned if any of the given slices has the wrong length.
    fn process_with_scratch(
        &self,
        input: &mut [T],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        if input.len() != self.length {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of input, expected {}, got {}",
                    self.length,
                    input.len()
                )
                .as_str(),
            )));
        }
        if output.len() != (self.length / 2 + 1) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of output, expected {}, got {}",
                    self.length / 2 + 1,
                    input.len()
                )
                .as_str(),
            )));
        }
        if scratch.len() != (self.scratch_len) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of scratch, expected {}, got {}",
                    self.scratch_len / 2 + 1,
                    scratch.len()
                )
                .as_str(),
            )));
        }

        let fftlen = self.length / 2;
        let mut buf_in = unsafe {
            let ptr = input.as_mut_ptr() as *mut Complex<T>;
            let len = input.len();
            std::slice::from_raw_parts_mut(ptr, len / 2)
        };

        // FFT and store result in buffer_out
        self.fft
            .process_outofplace_with_scratch(&mut buf_in, &mut output[0..fftlen], scratch);
        let (mut output_left, mut output_right) = output.split_at_mut(output.len() / 2);

        // The first and last element don't require any twiddle factors, so skip that work
        match (output_left.first_mut(), output_right.last_mut()) {
            (Some(first_element), Some(last_element)) => {
                // The first and last elements are just a sum and difference of the first value's real and imaginary values
                let first_value = *first_element;
                *first_element = Complex {
                    re: first_value.re + first_value.im,
                    im: T::zero(),
                };
                *last_element = Complex {
                    re: first_value.re - first_value.im,
                    im: T::zero(),
                };

                // Chop the first and last element off of our slices so that the loop below doesn't have to deal with them
                output_left = &mut output_left[1..];
                let right_len = output_right.len();
                output_right = &mut output_right[..right_len - 1];
            }
            _ => {
                return Ok(());
            }
        }
        // Loop over the remaining elements and apply twiddle factors on them
        for (twiddle, out, out_rev) in zip3(
            self.twiddles.iter(),
            output_left.iter_mut(),
            output_right.iter_mut().rev(),
        ) {
            let sum = *out + *out_rev;
            let diff = *out - *out_rev;
            let half = T::from_f64(0.5).unwrap();
            // Apply twiddle factors. Theoretically we'd have to load 2 separate twiddle factors here, one for the beginning
            // and one for the end. But the twiddle factor for the end is jsut the twiddle for the beginning, with the
            // real part negated. Since it's the same twiddle, we can factor out a ton of math ops and cut the number of
            // multiplications in half
            let twiddled_re_sum = sum * twiddle.re;
            let twiddled_im_sum = sum * twiddle.im;
            let twiddled_re_diff = diff * twiddle.re;
            let twiddled_im_diff = diff * twiddle.im;
            let half_sum_re = half * sum.re;
            let half_diff_im = half * diff.im;

            let output_twiddled_real = twiddled_re_sum.im + twiddled_im_diff.re;
            let output_twiddled_im = twiddled_im_sum.im - twiddled_re_diff.re;

            // We finally have all the data we need to write the transformed data back out where we found it
            *out = Complex {
                re: half_sum_re + output_twiddled_real,
                im: half_diff_im + output_twiddled_im,
            };

            *out_rev = Complex {
                re: half_sum_re - output_twiddled_real,
                im: output_twiddled_im - half_diff_im,
            };
        }

        // If the output len is odd, the loop above can't postprocess the centermost element, so handle that separately
        if output.len() % 2 == 1 {
            if let Some(center_element) = output.get_mut(output.len() / 2) {
                center_element.im = -center_element.im;
            }
        }
        Ok(())
    }
    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_output_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.len() / 2 + 1]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

impl<T: FftNum> ComplexToRealOdd<T> {
    /// Create a new ComplexToReal FFT for input data of a given length, and uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not odd.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 == 0 {
            panic!("Length must be odd, got {}", length,);
        }
        //let mut fft_planner = FftPlanner::<T>::new();
        let fft = fft_planner.plan_fft_inverse(length);
        let scratch_len = length + fft.get_inplace_scratch_len();
        ComplexToRealOdd {
            length,
            fft,
            scratch_len,
        }
    }
}

impl<T: FftNum> ComplexToReal<T> for ComplexToRealOdd<T> {
    /// Transform a complex spectrum of N/2+1 (with N/2 rounded down) values and store the real result in the N long output.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    fn process(&self, input: &mut [Complex<T>], output: &mut [T]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    /// Transform a complex spectrum of N/2+1 (with N/2 rounded down) values and store the real result in the N long output.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also uses the provided scratch vector instead of allocating, which will be faster if it is called more than once.
    /// An error is returned if any of the given slices has the wrong length.
    fn process_with_scratch(
        &self,
        input: &mut [Complex<T>],
        output: &mut [T],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        if input.len() != (self.length / 2 + 1) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of input, expected {}, got {}",
                    self.length / 2 + 1,
                    input.len()
                )
                .as_str(),
            )));
        }
        if output.len() != self.length {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of output, expected {}, got {}",
                    self.length,
                    input.len()
                )
                .as_str(),
            )));
        }
        if scratch.len() != (self.scratch_len) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of scratch, expected {}, got {}",
                    self.scratch_len / 2 + 1,
                    scratch.len()
                )
                .as_str(),
            )));
        }

        let (buffer, fft_scratch) = scratch.split_at_mut(self.length);

        buffer[0..input.len()].copy_from_slice(&input);
        for (buf, val) in buffer
            .iter_mut()
            .rev()
            .take(self.length / 2)
            .zip(input.iter().skip(1))
        {
            *buf = val.conj();
            //buf.im = -val.im;
        }
        self.fft.process_with_scratch(buffer, fft_scratch);
        for (val, out) in buffer.iter().zip(output.iter_mut()) {
            *out = val.re;
        }
        Ok(())
    }

    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.len() / 2 + 1]
    }

    fn make_output_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

impl<T: FftNum> ComplexToRealEven<T> {
    /// Create a new ComplexToReal FFT for input data of a given length, and uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not even.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 > 0 {
            panic!("Length must be even, got {}", length,);
        }
        let twiddle_count = if length % 4 == 0 {
            length / 4
        } else {
            length / 4 + 1
        };
        let twiddles: Vec<Complex<T>> = (1..twiddle_count)
            .map(|i| compute_twiddle(i, length).conj())
            .collect();
        //let mut fft_planner = FftPlanner::<T>::new();
        let fft = fft_planner.plan_fft_inverse(length / 2);
        let scratch_len = fft.get_outofplace_scratch_len();
        ComplexToRealEven {
            twiddles,
            length,
            fft,
            scratch_len,
        }
    }
}
impl<T: FftNum> ComplexToReal<T> for ComplexToRealEven<T> {
    /// Transform a complex spectrum of N/2+1 values and store the real result in the N long output.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    fn process(&self, input: &mut [Complex<T>], output: &mut [T]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    /// Transform a complex spectrum of N/2+1 values and store the real result in the N long output.
    /// The input buffer is used as scratch space, so the contents of input should be considered garbage after calling.
    /// It also uses the provided scratch vector instead of allocating, which will be faster if it is called more than once.
    /// An error is returned if any of the given slices has the wrong length.
    fn process_with_scratch(
        &self,
        input: &mut [Complex<T>],
        output: &mut [T],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        if input.len() != (self.length / 2 + 1) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of input, expected {}, got {}",
                    self.length / 2 + 1,
                    input.len()
                )
                .as_str(),
            )));
        }
        if output.len() != self.length {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of output, expected {}, got {}",
                    self.length,
                    input.len()
                )
                .as_str(),
            )));
        }
        if scratch.len() != (self.scratch_len) {
            return Err(Box::new(FftError::new(
                format!(
                    "Wrong length of scratch, expected {}, got {}",
                    self.scratch_len / 2 + 1,
                    scratch.len()
                )
                .as_str(),
            )));
        }
        let (mut input_left, mut input_right) = input.split_at_mut(input.len() / 2);

        // We have to preprocess the input in-place before we send it to the FFT.
        // The first and centermost values have to be preprocessed separately from the rest, so do that now
        match (input_left.first_mut(), input_right.last_mut()) {
            (Some(first_input), Some(last_input)) => {
                let first_sum = *first_input + *last_input;
                let first_diff = *first_input - *last_input;

                *first_input = Complex {
                    re: first_sum.re - first_sum.im,
                    im: first_diff.re - first_diff.im,
                };

                input_left = &mut input_left[1..];
                let right_len = input_right.len();
                input_right = &mut input_right[..right_len - 1];
            }
            _ => return Ok(()),
        };

        // now, in a loop, preprocess the rest of the elements 2 at a time
        for (twiddle, fft_input, fft_input_rev) in zip3(
            self.twiddles.iter(),
            input_left.iter_mut(),
            input_right.iter_mut().rev(),
        ) {
            let sum = *fft_input + *fft_input_rev;
            let diff = *fft_input - *fft_input_rev;

            // Apply twiddle factors. Theoretically we'd have to load 2 separate twiddle factors here, one for the beginning
            // and one for the end. But the twiddle factor for the end is jsut the twiddle for the beginning, with the
            // real part negated. Since it's the same twiddle, we can factor out a ton of math ops and cut the number of
            // multiplications in half
            let twiddled_re_sum = sum * twiddle.re;
            let twiddled_im_sum = sum * twiddle.im;
            let twiddled_re_diff = diff * twiddle.re;
            let twiddled_im_diff = diff * twiddle.im;

            let output_twiddled_real = twiddled_re_sum.im + twiddled_im_diff.re;
            let output_twiddled_im = twiddled_im_sum.im - twiddled_re_diff.re;

            // We finally have all the data we need to write our preprocessed data back where we got it from
            *fft_input = Complex {
                re: sum.re - output_twiddled_real,
                im: diff.im - output_twiddled_im,
            };
            *fft_input_rev = Complex {
                re: sum.re + output_twiddled_real,
                im: -output_twiddled_im - diff.im,
            }
        }

        // If the output len is odd, the loop above can't preprocess the centermost element, so handle that separately
        if input.len() % 2 == 1 {
            let center_element = input[input.len() / 2];
            let doubled = center_element + center_element;
            input[input.len() / 2] = doubled.conj();
        }

        // FFT and store result in buffer_out
        let mut buf_out = unsafe {
            let ptr = output.as_mut_ptr() as *mut Complex<T>;
            let len = output.len();
            std::slice::from_raw_parts_mut(ptr, len / 2)
        };
        self.fft.process_outofplace_with_scratch(
            &mut input[..output.len() / 2],
            &mut buf_out,
            scratch,
        );
        Ok(())
    }

    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.len() / 2 + 1]
    }

    fn make_output_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

#[cfg(test)]
mod tests {
    use crate::RealFftPlanner;
    use rand::Rng;
    use rustfft::num_complex::Complex;
    use rustfft::num_traits::Zero;
    use rustfft::FftPlanner;

    // get the largest difference
    fn compare_complex(a: &[Complex<f64>], b: &[Complex<f64>]) -> f64 {
        a.iter().zip(b.iter()).fold(0.0, |maxdiff, (val_a, val_b)| {
            let diff = (val_a - val_b).norm();
            if maxdiff > diff {
                maxdiff
            } else {
                diff
            }
        })
    }

    // get the largest difference
    fn compare_f64(a: &[f64], b: &[f64]) -> f64 {
        a.iter().zip(b.iter()).fold(0.0, |maxdiff, (val_a, val_b)| {
            let diff = (val_a - val_b).abs();
            if maxdiff > diff {
                maxdiff
            } else {
                diff
            }
        })
    }

    // Compare ComplexToReal with standard iFFT
    #[test]
    fn complex_to_real() {
        for length in 1..1000 {
            let mut real_planner = RealFftPlanner::<f64>::new();
            let c2r = real_planner.plan_fft_inverse(length);
            let mut out_a = c2r.make_output_vec();
            let mut indata = c2r.make_input_vec();
            let mut rustfft_check: Vec<Complex<f64>> = vec![Complex::zero(); length];
            let mut rng = rand::thread_rng();
            for val in indata.iter_mut() {
                *val = Complex::new(rng.gen::<f64>(), rng.gen::<f64>());
            }
            indata[0].im = 0.0;
            if length % 2 == 0 {
                indata[length / 2].im = 0.0;
            }
            for (val_long, val) in rustfft_check
                .iter_mut()
                .take(length / 2 + 1)
                .zip(indata.iter())
            {
                *val_long = *val;
            }
            for (val_long, val) in rustfft_check
                .iter_mut()
                .rev()
                .take(length / 2)
                .zip(indata.iter().skip(1))
            {
                *val_long = val.conj();
            }
            let mut fft_planner = FftPlanner::<f64>::new();
            let fft = fft_planner.plan_fft_inverse(length);

            c2r.process(&mut indata, &mut out_a).unwrap();
            fft.process(&mut rustfft_check);

            let check_real = rustfft_check.iter().map(|val| val.re).collect::<Vec<f64>>();
            let maxdiff = compare_f64(&out_a, &check_real);
            assert!(
                maxdiff < 1.0e-9,
                "Length: {}, too large error: {}",
                length,
                maxdiff
            );
        }
    }

    // Compare RealToComplex with standard FFT
    #[test]
    fn real_to_complex() {
        for length in 1..1000 {
            let mut real_planner = RealFftPlanner::<f64>::new();
            let r2c = real_planner.plan_fft_forward(length);
            let mut out_a = r2c.make_output_vec();
            let mut indata = r2c.make_input_vec();
            let mut rng = rand::thread_rng();
            for val in indata.iter_mut() {
                *val = rng.gen::<f64>();
            }
            let mut rustfft_check = indata
                .iter()
                .map(|val| Complex::from(val))
                .collect::<Vec<Complex<f64>>>();
            let mut fft_planner = FftPlanner::<f64>::new();
            let fft = fft_planner.plan_fft_forward(length);

            fft.process(&mut rustfft_check);
            r2c.process(&mut indata, &mut out_a).unwrap();
            let maxdiff = compare_complex(&out_a, &rustfft_check[0..(length / 2 + 1)]);
            assert!(
                maxdiff < 1.0e-9,
                "Length: {}, too large error: {}",
                length,
                maxdiff
            );
        }
    }
}