1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
/*!
Rust X.509 certificate generation utility

This crate provides a way to generate self signed X.509 certificates.

The most simple way of using this crate is by calling the
`generate_simple_self_signed` function.
For more customization abilities, we provide the lower level
`Certificate::from_params` function.

## Example

```
extern crate rcgen;
use rcgen::generate_simple_self_signed;
# fn main () {
// Generate a certificate that's valid for "localhost" and "hello.world.example"
let subject_alt_names = vec!["hello.world.example".to_string(),
	"localhost".to_string()];

let cert = generate_simple_self_signed(subject_alt_names).unwrap();
println!("{}", cert.serialize_pem().unwrap());
println!("{}", cert.serialize_private_key_pem());
# }
```
*/

#![forbid(unsafe_code)]
#![deny(missing_docs)]

extern crate yasna;
extern crate ring;
#[cfg(feature = "pem")]
extern crate pem;
extern crate chrono;

use yasna::Tag;
use yasna::models::ObjectIdentifier;
#[cfg(feature = "pem")]
use pem::Pem;
#[cfg(feature = "pem")]
use std::convert::TryInto;
use ring::digest;
use ring::signature::{EcdsaKeyPair, Ed25519KeyPair, RsaKeyPair};
use ring::rand::SystemRandom;
use ring::signature::KeyPair as RingKeyPair;
use ring::signature::{self, EcdsaSigningAlgorithm, EdDSAParameters};
use yasna::DERWriter;
use yasna::models::GeneralizedTime;
use chrono::{DateTime, Timelike};
use chrono::{NaiveDate, Utc};
use std::collections::HashMap;
use std::fmt;
use std::convert::TryFrom;
use std::error::Error;
use std::net::IpAddr;
use std::str::FromStr;

/// A self signed certificate together with signing keys
pub struct Certificate {
	params :CertificateParams,
	key_pair :KeyPair,
}


/**
KISS function to generate a self signed certificate

Given a set of domain names you want your certificate to be valid for,
this function fills in the other generation parameters with
reasonable defaults and generates a self signed certificate
as output.

## Example

```
extern crate rcgen;
use rcgen::generate_simple_self_signed;
# fn main () {
let subject_alt_names :&[_] = &["hello.world.example".to_string(),
	"localhost".to_string()];

let cert = generate_simple_self_signed(subject_alt_names).unwrap();
// The certificate is now valid for localhost and the domain "hello.world.example"
println!("{}", cert.serialize_pem().unwrap());
println!("{}", cert.serialize_private_key_pem());
# }
```
*/
pub fn generate_simple_self_signed(subject_alt_names :impl Into<Vec<String>>) -> Result<Certificate, RcgenError> {
	Certificate::from_params(CertificateParams::new(subject_alt_names))
}

// https://tools.ietf.org/html/rfc5280#section-4.1.1

// Example certs usable as reference:
// Uses ECDSA: https://crt.sh/?asn1=607203242

/// pkcs-9-at-extensionRequest in RFC 2985
const OID_PKCS_9_AT_EXTENSION_REQUEST :&[u64] = &[1, 2, 840, 113549, 1, 9, 14];

/// id-at-countryName in RFC 5820
const OID_COUNTRY_NAME :&[u64] = &[2, 5, 4, 6];
/// id-at-organizationName in RFC 5820
const OID_ORG_NAME :&[u64] = &[2, 5, 4, 10];
/// id-at-commonName in RFC 5820
const OID_COMMON_NAME :&[u64] = &[2, 5, 4, 3];

// https://tools.ietf.org/html/rfc5480#section-2.1.1
const OID_EC_PUBLIC_KEY :&[u64] = &[1, 2, 840, 10045, 2, 1];
const OID_EC_SECP_256_R1 :&[u64] = &[1, 2, 840, 10045, 3, 1, 7];
const OID_EC_SECP_384_R1 :&[u64] = &[1, 3, 132, 0, 34];

// rsaEncryption in RFC 4055
const OID_RSA_ENCRYPTION :&[u64] = &[1, 2, 840, 113549, 1, 1, 1];

// https://tools.ietf.org/html/rfc5280#appendix-A.2
// https://tools.ietf.org/html/rfc5280#section-4.2.1.6
const OID_SUBJECT_ALT_NAME :&[u64] = &[2, 5, 29, 17];

// https://tools.ietf.org/html/rfc5280#section-4.2.1.9
const OID_BASIC_CONSTRAINTS :&[u64] = &[2, 5, 29, 19];

// https://tools.ietf.org/html/rfc5280#section-4.2.1.2
const OID_SUBJECT_KEY_IDENTIFIER :&[u64] = &[2, 5, 29, 14];

// id-ce-extKeyUsage in
// https://tools.ietf.org/html/rfc5280#section-4.2.1.12
const OID_EXT_KEY_USAGE :&[u64] = &[2, 5, 29, 37];

// id-pe-acmeIdentifier in
// https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.1
const OID_PE_ACME :&[u64] = &[1, 3, 6, 1, 5, 5, 7, 1, 31];

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[allow(missing_docs)]
/// The type of subject alt name
pub enum SanType {
	/// Also known as E-Mail address
	Rfc822Name(String),
	DnsName(String),
	IpAddress(CidrSubnet),
	#[doc(hidden)]
	_Nonexhaustive,
}

impl SanType {
	fn tag(&self) -> u64 {
		// Defined in the GeneralName list in
		// https://tools.ietf.org/html/rfc5280#page-38
		const TAG_RFC822_NAME :u64 = 1;
		const TAG_DNS_NAME :u64 = 2;
		const TAG_IP_ADDRESS :u64 = 7;

		match self {
			SanType::Rfc822Name(_name) => TAG_RFC822_NAME,
			SanType::DnsName(_name) => TAG_DNS_NAME,
			SanType::IpAddress(_addr) => TAG_IP_ADDRESS,
			SanType::_Nonexhaustive => unimplemented!(),
		}
	}
}

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[allow(missing_docs)]
/// CIDR subnet, as per [RFC 4632](https://tools.ietf.org/html/rfc4632)
///
/// You might know CIDR subnets better by their textual representation
/// where they consist of an ip address followed by a slash and a prefix
/// number, for example `192.168.99.0/24`.
///
/// The first field in the enum is the address, the second is the mask.
/// Both are specified in network byte order.
pub enum CidrSubnet {
	V4([u8; 4], [u8; 4]),
	V6([u8; 16], [u8; 16]),
}

macro_rules! mask {
	($t:ty, $d:expr) => {{
		let v = <$t>::max_value();
		let v = v.checked_shr($d as u32).unwrap_or(0);
		(!v).to_be_bytes()
	}};
}

impl CidrSubnet {
	/// Obtains the CidrSubnet from the well-known
	/// addr/prefix notation.
	/// ```
	/// # use std::str::FromStr;
	/// # use rcgen::CidrSubnet;
	/// // The "192.0.2.0/24" example from
	/// // https://tools.ietf.org/html/rfc5280#page-42
	/// let subnet = CidrSubnet::from_str("192.0.2.0/24").unwrap();
	/// assert_eq!(subnet, CidrSubnet::V4([0xC0, 0x00, 0x02, 0x00], [0xFF, 0xFF, 0xFF, 0x00]));
	/// ```
	pub fn from_str(s :&str) -> Result<Self, ()> {
		let mut iter = s.split("/");
		if let (Some(addr_s), Some(prefix_s)) = (iter.next(), iter.next()) {
			let addr = IpAddr::from_str(addr_s).map_err(|_| ())?;
			let prefix = u8::from_str(prefix_s).map_err(|_| ())?;
			Ok(Self::from_addr_prefix(addr, prefix))
		} else {
			Err(())
		}
	}
	/// Obtains the CidrSubnet from an ip address
	/// as well as the specified prefix number.
	///
	/// ```
	/// # use std::net::IpAddr;
	/// # use std::str::FromStr;
	/// # use rcgen::CidrSubnet;
	/// // The "192.0.2.0/24" example from
	/// // https://tools.ietf.org/html/rfc5280#page-42
	/// let addr = IpAddr::from_str("192.0.2.0").unwrap();
	/// let subnet = CidrSubnet::from_addr_prefix(addr, 24);
	/// assert_eq!(subnet, CidrSubnet::V4([0xC0, 0x00, 0x02, 0x00], [0xFF, 0xFF, 0xFF, 0x00]));
	/// ```
	pub fn from_addr_prefix(addr :IpAddr, prefix :u8) -> Self {
		match addr {
			IpAddr::V4(addr) => {
				Self::from_v4_prefix(addr.octets(), prefix)
			},
			IpAddr::V6(addr) => {
				Self::from_v6_prefix(addr.octets(), prefix)
			},
		}
	}
	/// Obtains the CidrSubnet from an IPv4 address in network byte order
	/// as well as the specified prefix.
	pub fn from_v4_prefix(addr :[u8; 4], prefix :u8) -> Self {
		CidrSubnet::V4(addr, mask!(u32, prefix))
	}
	/// Obtains the CidrSubnet from an IPv6 address in network byte order
	/// as well as the specified prefix.
	pub fn from_v6_prefix(addr :[u8; 16], prefix :u8) -> Self {
		CidrSubnet::V6(addr, mask!(u128, prefix))
	}
	fn to_bytes(&self) -> Vec<u8> {
		let mut res = Vec::new();
		match self {
			CidrSubnet::V4(addr, mask) => {
				res.extend_from_slice(addr);
				res.extend_from_slice(mask);
			},
			CidrSubnet::V6(addr, mask) => {
				res.extend_from_slice(addr);
				res.extend_from_slice(mask);
			},
		}
		res
	}
}

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[allow(missing_docs)]
/// The attribute type of a distinguished name entry
pub enum DnType {
	CountryName,
	OrganizationName,
	CommonName,
	CustomDnType(Vec<u64>),
	#[doc(hidden)]
	_Nonexhaustive,
}

impl DnType {
	fn to_oid(&self) -> ObjectIdentifier {
		let sl = match self {
			DnType::CountryName => OID_COUNTRY_NAME,
			DnType::OrganizationName => OID_ORG_NAME,
			DnType::CommonName => OID_COMMON_NAME,
			DnType::CustomDnType(ref oid) => oid.as_slice(),
			DnType::_Nonexhaustive => unimplemented!(),
		};
		ObjectIdentifier::from_slice(sl)
	}

    /// Generate a DnType for the provided OID
	#[cfg(feature = "x509-parser")]
	pub fn from_oid(slice :&[u64]) -> Self {
		match slice {
			OID_COMMON_NAME => DnType::CommonName,
			OID_ORG_NAME => DnType::OrganizationName,
			OID_COUNTRY_NAME => DnType::CountryName,
			oid => DnType::CustomDnType(oid.into())
		}
	}
}

#[derive(Debug, PartialEq, Eq, Clone)]
/**
Distinguished name used e.g. for the issuer and subject fields of a certificate

A distinguished name is a set of (attribute type, attribute value) tuples.

See also the RFC 5280 sections on the [issuer](https://tools.ietf.org/html/rfc5280#section-4.1.2.4)
and [subject](https://tools.ietf.org/html/rfc5280#section-4.1.2.6) fields.
*/
pub struct DistinguishedName {
	entries :HashMap<DnType, String>,
	order :Vec<DnType>,
}

impl DistinguishedName {
	/// Creates a new, empty distinguished name
	pub fn new() -> Self {
		Self {
			entries : HashMap::new(),
			order : Vec::new(),
		}
	}
	/// Obtains the attribute value for the given attribute type
	pub fn get(&self, ty :&DnType) -> Option<&str> {
		self.entries.get(ty).map(|s| {
			let s :&str = s;
			s
		})
	}
	/// Inserts a new attribute that consists of type and name
	pub fn push(&mut self, ty :DnType, s :impl Into<String>) {
		if !self.entries.contains_key(&ty) {
			self.order.push(ty.clone());
		}
		self.entries.insert(ty, s.into());
	}
	/// Iterate over the entries
	pub fn iter(&self) -> DistinguishedNameIterator<'_> {
		DistinguishedNameIterator {
			distinguished_name :self,
			iter :self.order.iter()
		}
	}
}

/**
Iterator over `DistinguishedName` entries
*/
pub struct DistinguishedNameIterator<'a> {
	distinguished_name :&'a DistinguishedName,
	iter :std::slice::Iter<'a, DnType>,
}

impl <'a> Iterator for DistinguishedNameIterator<'a> {
	type Item = (&'a DnType, &'a str);

	fn next(&mut self) -> Option<Self::Item> {
		self.iter.next()
			.and_then(|ty| {
				self.distinguished_name.entries.get(ty).map(|v| (ty, v.as_str()))
			})
	}
}

/// Parameters used for certificate generation
#[allow(missing_docs)]
pub struct CertificateParams {
	pub alg :&'static SignatureAlgorithm,
	pub not_before :DateTime<Utc>,
	pub not_after :DateTime<Utc>,
	pub serial_number :Option<u64>,
	pub subject_alt_names :Vec<SanType>,
	pub distinguished_name :DistinguishedName,
	pub is_ca :IsCa,
	pub extended_key_usages :Vec<ExtendedKeyUsagePurpose>,
	pub custom_extensions :Vec<CustomExtension>,
	/// The certificate's key pair, a new random key pair will be generated if this is `None`
	pub key_pair :Option<KeyPair>,
	// To make the struct non-exhaustive
	_hidden :(),
}

impl Default for CertificateParams {
	fn default() -> Self {
		// not_before and not_after set to reasonably long dates
		let not_before = date_time_ymd(1975, 01, 01);
		let not_after = date_time_ymd(4096, 01, 01);
		let mut distinguished_name = DistinguishedName::new();
		distinguished_name.push(DnType::CommonName, "rcgen self signed cert");
		CertificateParams {
			alg : &PKCS_ECDSA_P256_SHA256,
			not_before,
			not_after,
			serial_number : None,
			subject_alt_names : Vec::new(),
			distinguished_name,
			is_ca : IsCa::SelfSignedOnly,
			extended_key_usages : Vec::new(),
			custom_extensions : Vec::new(),
			key_pair : None,
			_hidden :(),
		}
	}
}

impl CertificateParams {
	/// Parses the ca certificate from the ASCII PEM format
	///
	/// See `from_ca_cert_der` for more details.
	#[cfg(all(feature = "pem", feature = "x509-parser"))]
	pub fn from_ca_cert_pem(pem_str :&str, key_pair :KeyPair) -> Result<Self, RcgenError> {
		let certificate = pem::parse(pem_str)
			.or(Err(RcgenError::CouldNotParseCertificate))?;
		Self::from_ca_cert_der(&certificate.contents, key_pair)
	}

	/// Parses the ca certificate from the DER format
	///
	/// This function is only of use if you have an existing ca certificate with which
	/// you want to sign a certificate newly generated by `rcgen` using the
	/// `serialize_der_with_signer()` or `serialize_pem_with_signer()` functions.
	///
	/// Will not check if certificate is a ca certificate!
	#[cfg(feature = "x509-parser")]
	pub fn from_ca_cert_der(ca_cert :&[u8], key_pair :KeyPair) -> Result<Self, RcgenError> {
		let (_remainder, x509) = x509_parser::parse_x509_der(ca_cert)
			.or(Err(RcgenError::CouldNotParseCertificate))?;

		let alg = SignatureAlgorithm::from_oid(x509.signature_algorithm.algorithm.iter().as_slice())?;

		let mut dn = DistinguishedName::new();
		for rdn in x509.tbs_certificate.subject.rdn_seq.iter() {
			assert!(rdn.set.len() != 0, "x509-parser distinguished name set is empty");

			let attr = if rdn.set.len() > 1 {
				// no support for distinguished names with more than one attribute
				return Err(RcgenError::CouldNotParseCertificate);
			} else {
				&rdn.set.as_slice()[0]
			};
			let value = attr.attr_value.as_slice()
				.or(Err(RcgenError::CouldNotParseCertificate))?;

			let dn_type = DnType::from_oid(attr.attr_type.iter().as_slice());
			let dn_value = String::from_utf8(value.into())
				.or(Err(RcgenError::CouldNotParseCertificate))?;
			dn.push(dn_type, dn_value);
		}

		Ok(
			CertificateParams {
				alg,
				distinguished_name : dn,
				key_pair : Some(key_pair),
				.. Default::default()
			}
		)
	}
}

/// Whether the certificate is allowed to sign other certificates
pub enum IsCa {
	/// The certificate can only sign itself
	SelfSignedOnly,
	/// The certificate may be used to sign other certificates
	Ca(BasicConstraints),
}

/// The path length constraint (only relevant for CA certificates)
///
/// Sets an optional upper limit on the length of the intermediate certificate chain
/// length allowed for this CA certificate (not including the end entity certificate).
pub enum BasicConstraints {
	/// No constraint
	Unconstrained,
	/// Constrain to the contained number of intermediate certificates
	Constrained(u8),
}

impl CertificateParams {
	/// Generate certificate parameters with reasonable defaults
	pub fn new(subject_alt_names :impl Into<Vec<String>>) -> Self {
		let subject_alt_names = subject_alt_names.into()
			.into_iter()
			.map(|s| SanType::DnsName(s))
			.collect::<Vec<_>>();
		CertificateParams {
			subject_alt_names,
			.. Default::default()
		}
	}
}

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[allow(missing_docs)]
/// One of the purposes contained in the [extended key usage extension](https://tools.ietf.org/html/rfc5280#section-4.2.1.12)
pub enum ExtendedKeyUsagePurpose {
	/// anyExtendedKeyUsage
	Any,
	/// id-kp-serverAuth
	ServerAuth,
	/// id-kp-clientAuth
	ClientAuth,
	/// id-kp-codeSigning
	CodeSigning,
	/// id-kp-emailProtection
	EmailProtection,
	/// id-kp-timeStamping
	TimeStamping,
	/// id-kp-OCSPSigning
	OcspSigning,
}

impl ExtendedKeyUsagePurpose {
	fn oid(&self) -> &'static [u64] {
		use ExtendedKeyUsagePurpose::*;
		match self {
			// anyExtendedKeyUsage
			Any => &[2, 5, 29, 37],
			// id-kp-*
			ServerAuth => &[1, 3, 6, 1, 5, 5, 7, 3, 1],
			ClientAuth => &[1, 3, 6, 1, 5, 5, 7, 3, 2],
			CodeSigning => &[1, 3, 6, 1, 5, 5, 7, 3, 3],
			EmailProtection => &[1, 3, 6, 1, 5, 5, 7, 3, 4],
			TimeStamping => &[1, 3, 6, 1, 5, 5, 7, 3, 8],
			OcspSigning => &[1, 3, 6, 1, 5, 5, 7, 3, 9],
		}
	}
}

/// A custom extension of a certificate, as specified in
/// [RFC 5280](https://tools.ietf.org/html/rfc5280#section-4.2)
pub struct CustomExtension {
	oid :Vec<u64>,
	critical :bool,
	content :Vec<u8>,
}

impl CustomExtension {
	/// Creates a new acmeIdentifier extension for ACME TLS-ALPN-01
	/// as specified in [draft-ietf-acme-tls-alpn-06](https://tools.ietf.org/html/draft-ietf-acme-tls-alpn-06#section-3)
	///
	/// Panics if the passed `sha_digest` parameter doesn't hold 32 bytes (256 bits).
	pub fn new_acme_identifier(sha_digest :&[u8]) -> Self {
		assert_eq!(sha_digest.len(), 32, "wrong size of sha_digest");
		let content = yasna::construct_der(|writer| {
			writer.write_bytes(sha_digest);
		});
		Self {
			oid : OID_PE_ACME.to_owned(),
			critical : true,
			content,
		}
	}
	/// Create a new custom extension
	pub fn from_oid_content(oid :&[u64], content :Vec<u8>) -> Self {
		Self {
			oid : oid.to_owned(),
			critical : false,
			content,
		}
	}
	/// Sets the criticality flag of the extension.
	pub fn set_criticality(&mut self, criticality :bool) {
		self.critical = criticality;
	}
}

/// Helper to obtain a DateTime from year, month, day values
///
/// The year, month, day values are assumed to be in UTC.
///
/// This helper function serves two purposes: first, so that you don't
/// have to import the chrono crate yourself in order to specify date
/// information, second so that users don't have to type unproportionately
/// long code just to generate an instance of `DateTime<Utc>`.
pub fn date_time_ymd(year :i32, month :u32, day :u32) -> DateTime<Utc> {
	let naive_dt = NaiveDate::from_ymd(year, month, day).and_hms_milli(0, 0, 0, 0);
	DateTime::<Utc>::from_utc(naive_dt, Utc)
}

fn dt_to_generalized(dt :&DateTime<Utc>) -> Result<GeneralizedTime, RcgenError> {
	let mut date_time = *dt;
	// Set nanoseconds to zero (or to one leap second if there is a leap second)
	// This is needed because the GeneralizedTime serializer would otherwise
	// output fractional values which RFC 5820 explicitly forbode [1].
	// [1]: https://tools.ietf.org/html/rfc5280#section-4.1.2.5.2
	let nanos = if date_time.nanosecond() >= 1_000_000 {
		1_000_000
	} else {
		0
	};
	date_time = date_time.with_nanosecond(nanos).ok_or(RcgenError::Time)?;
	Ok(GeneralizedTime::from_datetime::<Utc>(&date_time))
}

impl Certificate {
	/// Generates a new certificate from the given parameters
	pub fn from_params(mut params :CertificateParams) -> Result<Self, RcgenError> {
		let key_pair = if let Some(key_pair) = params.key_pair.take() {
			if !key_pair.is_compatible(&params.alg) {
				return Err(RcgenError::CertificateKeyPairMismatch);
			}
			key_pair
		} else {
			KeyPair::generate(&params.alg)?
		};

		Ok(Certificate {
			params,
			key_pair,
		})
	}
	fn write_name(&self, writer :DERWriter, ca :&Certificate) {
		writer.write_sequence(|writer| {
			for (ty, content) in ca.params.distinguished_name.iter() {
				writer.next().write_set(|writer| {
					writer.next().write_sequence(|writer| {
						writer.next().write_oid(&ty.to_oid());
						writer.next().write_utf8_string(content);
					});
				});
			}
		});
	}
	fn write_subject_alt_names(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			let oid = ObjectIdentifier::from_slice(OID_SUBJECT_ALT_NAME);
			writer.next().write_oid(&oid);
			let bytes = yasna::construct_der(|writer| {
				writer.write_sequence(|writer| {
					for san in self.params.subject_alt_names.iter() {
						writer.next().write_tagged_implicit(Tag::context(san.tag()), |writer| {
							match san {
								SanType::Rfc822Name(name) |
								SanType::DnsName(name) => writer.write_utf8_string(name),
								SanType::IpAddress(subnet) => writer.write_bytes(&subnet.to_bytes()),
								SanType::_Nonexhaustive => unimplemented!(),
							}
						});
					}
				});
			});
			writer.next().write_bytes(&bytes);
		});

	}
    fn write_request(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			// Write version
			writer.next().write_u8(0);
			// Write issuer
			writer.next().write_sequence(|writer| {
				for (ty, content) in self.params.distinguished_name.iter() {
					writer.next().write_set(|writer| {
						writer.next().write_sequence(|writer| {
							writer.next().write_oid(&ty.to_oid());
							writer.next().write_utf8_string(content);
						});
					});
				}
			});
			// Write subjectPublicKeyInfo
			self.key_pair.serialize_public_key_der(writer.next());
			// Write extensions
			writer.next().write_tagged(Tag::context(0), |writer| {
				writer.write_sequence(|writer| {
					let oid = ObjectIdentifier::from_slice(OID_PKCS_9_AT_EXTENSION_REQUEST);
					writer.next().write_oid(&oid);
					writer.next().write_set(|writer| {
						writer.next().write_sequence(|writer| {
							// Write subject_alt_names
							self.write_subject_alt_names(writer.next());
						});
					});
				});
			});
		});
	}
	fn write_cert(&self, writer :DERWriter, ca :&Certificate) -> Result<(), RcgenError> {
		writer.write_sequence(|writer| {
			// Write version
			writer.next().write_tagged(Tag::context(0), |writer| {
				writer.write_u8(2);
			});
			// Write serialNumber
			let serial = self.params.serial_number.unwrap_or(42);
			writer.next().write_u64(serial);
			// Write signature
			self.params.alg.write_alg_ident(writer.next());
			// Write issuer
			self.write_name(writer.next(), ca);
			// Write validity
			writer.next().write_sequence(|writer| {
				// Not before
				let nb_gt = dt_to_generalized(&self.params.not_before)?;
				writer.next().write_generalized_time(&nb_gt);
				// Not after
				let na_gt = dt_to_generalized(&self.params.not_after)?;
				writer.next().write_generalized_time(&na_gt);
				Ok::<(), RcgenError>(())
			})?;
			// Write subject
			self.write_name(writer.next(), self);
			// Write subjectPublicKeyInfo
			self.key_pair.serialize_public_key_der(writer.next());
			// write extensions
			writer.next().write_tagged(Tag::context(3), |writer| {
				writer.write_sequence(|writer| {
					// Write subject_alt_names
					self.write_subject_alt_names(writer.next());
					// Write extended key usage
					if !self.params.extended_key_usages.is_empty() {
						writer.next().write_sequence(|writer| {
							let oid = ObjectIdentifier::from_slice(OID_EXT_KEY_USAGE);
							writer.next().write_oid(&oid);
							let bytes = yasna::construct_der(|writer| {
								writer.write_sequence(|writer| {
									for usage in self.params.extended_key_usages.iter() {
										let oid = ObjectIdentifier::from_slice(usage.oid());
										writer.next().write_oid(&oid);
									}
								});
							});
							writer.next().write_bytes(&bytes);
						});
					}
					if let IsCa::Ca(ref constraint) = self.params.is_ca {
						// Write subject_key_identifier
						writer.next().write_sequence(|writer| {
							let oid = ObjectIdentifier::from_slice(OID_SUBJECT_KEY_IDENTIFIER);
							writer.next().write_oid(&oid);
							let digest = digest::digest(&self.params.alg.digest_alg, self.key_pair.public_key_raw().as_ref());
							writer.next().write_bytes(&digest.as_ref());
						});
						// Write basic_constraints
						writer.next().write_sequence(|writer| {
							let oid = ObjectIdentifier::from_slice(OID_BASIC_CONSTRAINTS);
							writer.next().write_oid(&oid);
							let bytes = yasna::construct_der(|writer| {
								writer.write_sequence(|writer| {
									writer.next().write_bool(true); // cA flag
									if let BasicConstraints::Constrained(path_len_constraint) = constraint {
										writer.next().write_u8(*path_len_constraint);
									}
								});
							});
							writer.next().write_bytes(&bytes);
						});
					}
					// Write the custom extensions
					for ext in &self.params.custom_extensions {
						writer.next().write_sequence(|writer| {
							let oid = ObjectIdentifier::from_slice(&ext.oid);
							writer.next().write_oid(&oid);
							// If the extension is critical, we should signal this.
							// It's false by default so we don't need to write anything
							// if the extension is not critical.
							if ext.critical {
								writer.next().write_bool(true);
							}
							writer.next().write_bytes(&ext.content);
						});
					}
				});
			});
			Ok(())
		})
	}
	/// Serializes the certificate to the binary DER format
	pub fn serialize_der(&self) -> Result<Vec<u8>, RcgenError> {
		self.serialize_der_with_signer(&self)
	}
	/// Serializes the certificate, signed with another certificate's key, in binary DER format
	pub fn serialize_der_with_signer(&self, ca :&Certificate) -> Result<Vec<u8>, RcgenError> {
		yasna::try_construct_der(|writer| {
			writer.write_sequence(|writer| {

				let tbs_cert_list_serialized = yasna::try_construct_der(|writer| {
					self.write_cert(writer, ca)?;
					Ok::<(), RcgenError>(())
				})?;
				// Write tbsCertList
				writer.next().write_der(&tbs_cert_list_serialized);

				// Write signatureAlgorithm
				self.params.alg.write_alg_ident(writer.next());

				// Write signature
				ca.key_pair.sign(&tbs_cert_list_serialized, writer.next())?;

				Ok(())
			})
		})
	}
    /// Serializes a certificate signing request in binary DER format
    pub fn serialize_request_der(&self) -> Result<Vec<u8>, RcgenError> {
		yasna::try_construct_der(|writer| {
			writer.write_sequence(|writer| {
				let cert_data = yasna::construct_der(|writer| {
					self.write_request(writer);
				});
				writer.next().write_der(&cert_data);

				// Write signatureAlgorithm
				self.params.alg.write_alg_ident(writer.next());

				// Write signature
				self.key_pair.sign(&cert_data, writer.next())?;

				Ok(())
			})
		})
	}
	/// Return the certificate's key pair
	pub fn get_key_pair(&self) -> &KeyPair {
		&self.key_pair
	}
	/// Serializes the certificate to the ASCII PEM format
	#[cfg(feature = "pem")]
	pub fn serialize_pem(&self) -> Result<String, RcgenError> {
		let p = Pem {
			tag : "CERTIFICATE".to_string(),
			contents : self.serialize_der()?,
		};
		Ok(pem::encode(&p))
	}
	/// Serializes the certificate, signed with another certificate's key, to the ASCII PEM format
	#[cfg(feature = "pem")]
	pub fn serialize_pem_with_signer(&self, ca :&Certificate) -> Result<String, RcgenError> {
		let p = Pem {
			tag : "CERTIFICATE".to_string(),
			contents : self.serialize_der_with_signer(ca)?,
		};
		Ok(pem::encode(&p))
	}
	/// Serializes the certificate signing request to the ASCII PEM format
	#[cfg(feature = "pem")]
	pub fn serialize_request_pem(&self) -> Result<String, RcgenError> {
		let p = Pem {
			tag : "CERTIFICATE REQUEST".to_string(),
			contents : self.serialize_request_der()?,
		};
		Ok(pem::encode(&p))
	}
	/// Serializes the private key in PKCS#8 format
	pub fn serialize_private_key_der(&self) -> Vec<u8> {
		self.key_pair.serialize_der()
	}
	/// Serializes the private key in PEM format
	#[cfg(feature = "pem")]
	pub fn serialize_private_key_pem(&self) -> String {
		self.key_pair.serialize_pem()
	}
}

enum SignAlgo {
	EcDsa(&'static EcdsaSigningAlgorithm),
	EdDsa(&'static EdDSAParameters),
	Rsa(),
}

/// A key pair vairant
#[derive(Debug)]
enum KeyPairKind {
	/// A Ecdsa key pair
	Ec(EcdsaKeyPair),
	/// A Ed25519 key pair
	Ed(Ed25519KeyPair),
	/// A RSA key pair
	Rsa(RsaKeyPair),
}

/// A key pair used to sign certificates and CSRs
#[derive(Debug)]
pub struct KeyPair {
	kind :KeyPairKind,
	alg :&'static SignatureAlgorithm,
	serialized_der :Vec<u8>,
}

impl KeyPair {
	/// Parses the key pair from the ASCII PEM format
	#[cfg(feature = "pem")]
	pub fn from_pem(pem_str :&str) -> Result<Self, RcgenError> {
		let private_key = pem::parse(pem_str)?;
		let private_key_der :&[_] = &private_key.contents;
		Ok(private_key_der.try_into()?)
	}
}

#[derive(Debug, PartialEq, Eq)]
/// The error type of the rcgen crate
pub enum RcgenError {
	/// The given certificate couldn't be parsed
	CouldNotParseCertificate,
	/// The given key pair couldn't be parsed
	CouldNotParseKeyPair,
	/// There is no support for generating
	/// keys for the given algorithm
	KeyGenerationUnavailable,
	/// The requested signature algorithm is not supported
	UnsupportedSignatureAlgorithm,
	/// Unspecified ring error
	RingUnspecified,
	/// The provided certificate's signature algorithm
	/// is incompatible with the given key pair
	CertificateKeyPairMismatch,
	/// Time conversion related errors
	Time,
	#[cfg(feature = "pem")]
	/// Error from the pem crate
	PemError(pem::PemError),
	#[doc(hidden)]
	_Nonexhaustive,
}

impl fmt::Display for RcgenError {
	fn fmt(&self, f :&mut fmt::Formatter) -> fmt::Result {
		use self::RcgenError::*;
		match self {
			CouldNotParseCertificate => write!(f, "Could not parse certificate")?,
			CouldNotParseKeyPair => write!(f, "Could not parse key pair")?,
			KeyGenerationUnavailable => write!(f, "There is no support for generating \
				keys for the given algorithm")?,
			UnsupportedSignatureAlgorithm => write!(f, "The requested signature algorithm \
				is not supported")?,
			RingUnspecified => write!(f, "Unspecified ring error")?,
			CertificateKeyPairMismatch => write!(f, "The provided certificate's signature \
				algorithm is incompatible with the given key pair")?,
			Time => write!(f, "Time error")?,
			#[cfg(feature = "pem")]
			PemError(e) => write!(f, "PEM error: {}", e)?,
			_Nonexhaustive => panic!("Nonexhaustive error variant ought not be constructed"),
		};
		Ok(())
	}
}

impl Error for RcgenError {}

impl From<ring::error::Unspecified> for RcgenError {
	fn from(_unspecified :ring::error::Unspecified) -> Self {
		RcgenError::RingUnspecified
	}
}

#[cfg(feature = "pem")]
impl From<pem::PemError> for RcgenError {
	fn from(_pem_error :pem::PemError) -> Self {
		RcgenError::RingUnspecified
	}
}

impl TryFrom<&[u8]> for KeyPair {
	type Error = RcgenError;
	fn try_from(pkcs8 :&[u8]) -> Result<KeyPair, RcgenError> {
		let pkcs8_vec = std::iter::FromIterator::from_iter(pkcs8.iter().cloned());

		let (kind, alg) = if let Ok(edkp) = Ed25519KeyPair::from_pkcs8_maybe_unchecked(pkcs8) {
			(KeyPairKind::Ed(edkp), &PKCS_ED25519)
		} else if let Ok(eckp) = EcdsaKeyPair::from_pkcs8(&signature::ECDSA_P256_SHA256_ASN1_SIGNING, pkcs8) {
			(KeyPairKind::Ec(eckp), &PKCS_ECDSA_P256_SHA256)
		} else if let Ok(eckp) = EcdsaKeyPair::from_pkcs8(&signature::ECDSA_P384_SHA384_ASN1_SIGNING, pkcs8) {
			(KeyPairKind::Ec(eckp), &PKCS_ECDSA_P384_SHA384)
		} else if let Ok(rsakp) = RsaKeyPair::from_pkcs8(pkcs8) {
			(KeyPairKind::Rsa(rsakp), &PKCS_RSA_SHA256)
		} else {
			return Err(RcgenError::CouldNotParseKeyPair);
		};

		Ok(KeyPair {
			kind,
			alg,
			serialized_der : pkcs8_vec,
		})
	}
}

impl KeyPair {
	/// Generate a new random key pair for the specified signature algorithm
	pub fn generate(alg :&'static SignatureAlgorithm) -> Result<Self, RcgenError> {
		let system_random = SystemRandom::new();
		match alg.sign_alg {
			SignAlgo::EcDsa(sign_alg) => {
				let key_pair_doc = EcdsaKeyPair::generate_pkcs8(sign_alg, &system_random)?;
				let key_pair_serialized = key_pair_doc.as_ref().to_vec();

				let key_pair = EcdsaKeyPair::from_pkcs8(&sign_alg, &&key_pair_doc.as_ref()).unwrap();
				Ok(KeyPair {
					kind : KeyPairKind::Ec(key_pair),
					alg,
					serialized_der : key_pair_serialized,
				})
			},
			SignAlgo::EdDsa(_sign_alg) => {
				let key_pair_doc = Ed25519KeyPair::generate_pkcs8(&system_random)?;
				let key_pair_serialized = key_pair_doc.as_ref().to_vec();

				let key_pair = Ed25519KeyPair::from_pkcs8(&&key_pair_doc.as_ref()).unwrap();
				Ok(KeyPair {
					kind : KeyPairKind::Ed(key_pair),
					alg,
					serialized_der : key_pair_serialized,
				})
			},
			// Ring doesn't have RSA key generation yet:
			// https://github.com/briansmith/ring/issues/219
			// https://github.com/briansmith/ring/pull/733
			SignAlgo::Rsa() => Err(RcgenError::KeyGenerationUnavailable),
		}
	}
	fn serialize_public_key_der(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			self.alg.write_oids_sign_alg(writer.next());
			let pk = self.public_key_raw();
			writer.next().write_bitvec_bytes(&pk, pk.len() * 8);
		})
	}
	/// Get the raw public key of this key pair
	///
	/// The key is in raw format, as how `ring::signature::KeyPair::public_key`
	/// would output, and how `ring::signature::verify`
	/// would accept.
	pub fn public_key_raw(&self) -> &[u8] {
		match &self.kind {
			KeyPairKind::Ec(kp) => kp.public_key().as_ref(),
			KeyPairKind::Ed(kp) => kp.public_key().as_ref(),
			KeyPairKind::Rsa(kp) => kp.public_key().as_ref(),
		}
	}
	/// Check if this key pair can be used with the given signature algorithm
	pub fn is_compatible(&self, signature_algorithm :&SignatureAlgorithm) -> bool {
		self.alg == signature_algorithm
	}
	/// Returns (possibly multiple) compatible `SignatureAlgorithm`'s
	/// that the key can be used with
	pub fn compatible_algs(&self)
			-> impl Iterator<Item=&'static SignatureAlgorithm> {
		std::iter::once(self.alg)
	}
	fn sign(&self, msg :&[u8], writer :DERWriter) -> Result<(), RcgenError> {
		match &self.kind {
			KeyPairKind::Ec(kp) => {
				let system_random = SystemRandom::new();
				let signature = kp.sign(&system_random, msg)?;
				let sig = &signature.as_ref();
				writer.write_bitvec_bytes(&sig, &sig.len() * 8);
			},
			KeyPairKind::Ed(kp) => {
				let signature = kp.sign(msg);
				let sig = &signature.as_ref();
				writer.write_bitvec_bytes(&sig, &sig.len() * 8);
			},
			KeyPairKind::Rsa(kp) => {
				let system_random = SystemRandom::new();
				let mut signature = vec![0; kp.public_modulus_len()];
				kp.sign(&signature::RSA_PKCS1_SHA256, &system_random,
					msg, &mut signature)?;
				let sig = &signature.as_ref();
				writer.write_bitvec_bytes(&sig, &sig.len() * 8);
			},
		}
		Ok(())
	}
	/// Return the key pair's public key in DER format
	///
	/// The key is formatted according to the SubjectPublicKeyInfo struct of
	/// X.509 see https://tools.ietf.org/html/rfc5280#section-4.1
	pub fn public_key_der(&self) -> Vec<u8> {
		yasna::construct_der(|writer| self.serialize_public_key_der(writer))
	}
	/// Return the key pair's public key in PEM format
	///
	/// The returned string can be interpreted with `openssl pkey --inform PEM -pubout -pubin -text`
	#[cfg(feature = "pem")]
	pub fn public_key_pem(&self) -> String {
		let p = Pem {
			tag : "PUBLIC KEY".to_string(),
			contents : self.public_key_der(),
		};
		pem::encode(&p)
	}
	/// Serializes the key pair (including the private key) in PKCS#8 format in DER
	pub fn serialize_der(&self) -> Vec<u8> {
		self.serialized_der.clone()
	}
	/// Serializes the key pair (including the private key) in PKCS#8 format in PEM
	#[cfg(feature = "pem")]
	pub fn serialize_pem(&self) -> String {
		let p = Pem {
			tag : "PRIVATE KEY".to_string(),
			contents : self.serialize_der(),
		};
		pem::encode(&p)
	}
}

/// Signature algorithm type
pub struct SignatureAlgorithm {
	oids_sign_alg :&'static [&'static [u64]],
	sign_alg :SignAlgo,
	digest_alg :&'static ring::digest::Algorithm,
	oid_components :&'static [u64],
	write_null_params :bool,
}

impl fmt::Debug for SignatureAlgorithm {
    fn fmt(&self, f :&mut fmt::Formatter) -> fmt::Result {
		if self == &PKCS_RSA_SHA256 {
			write!(f, "PKCS_RSA_SHA256")
		} else if self == &PKCS_ECDSA_P256_SHA256 {
			write!(f, "PKCS_ECDSA_P256_SHA256")
		} else if self == &PKCS_ECDSA_P384_SHA384 {
			write!(f, "PKCS_ECDSA_P384_SHA384")
		} else if self == &PKCS_ED25519 {
			write!(f, "PKCS_ED25519")
		} else {
			write!(f, "Unknown")
		}
    }
}

impl PartialEq for SignatureAlgorithm {
    fn eq(&self, other :&Self) -> bool {
		let self_iter = self.oids_sign_alg.iter().map(|s| s.iter()).flatten();
		let othr_iter = other.oids_sign_alg.iter().map(|s| s.iter()).flatten();
        for (s, o) in self_iter.zip(othr_iter)  {
			if s != o {
				return false;
			}
		}
		true
    }
}

impl Eq for SignatureAlgorithm {}

impl SignatureAlgorithm {
	#[cfg(feature = "x509-parser")]
	fn iter() -> std::slice::Iter<'static, &'static SignatureAlgorithm> {
		static ALGORITHMS :&[&SignatureAlgorithm] = &[
			&PKCS_RSA_SHA256,
			&PKCS_ECDSA_P256_SHA256,
			&PKCS_ECDSA_P384_SHA384,
			&PKCS_ED25519
		];
		ALGORITHMS.iter()
	}

	/// Retrieve the SignatureAlgorithm for the provided OID
	#[cfg(feature = "x509-parser")]
	pub fn from_oid(oid :&[u64]) -> Result<&'static SignatureAlgorithm, RcgenError> {
		for algo in Self::iter() {
			if algo.oid_components == oid {
				return Ok(algo);
			}
		}
		Err(RcgenError::UnsupportedSignatureAlgorithm)
	}
}


/// RSA signing with PKCS#1 1.5 padding and SHA-256 hashing as per [RFC 4055](https://tools.ietf.org/html/rfc4055)
pub static PKCS_RSA_SHA256 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_RSA_ENCRYPTION],
	sign_alg :SignAlgo::Rsa(),
	digest_alg :&digest::SHA256,
	// sha256WithRSAEncryption in RFC 4055
	oid_components : &[1, 2, 840, 113549, 1, 1, 11],
	write_null_params : true,
};

/// ECDSA signing using the P-256 curves and SHA-256 hashing as per [RFC 5758](https://tools.ietf.org/html/rfc5758#section-3.2)
pub static PKCS_ECDSA_P256_SHA256 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_EC_PUBLIC_KEY, &OID_EC_SECP_256_R1],
	sign_alg :SignAlgo::EcDsa(&signature::ECDSA_P256_SHA256_ASN1_SIGNING),
	digest_alg :&digest::SHA256,
	/// ecdsa-with-SHA256 in RFC 5758
	oid_components : &[1, 2, 840, 10045, 4, 3, 2],
	write_null_params : false,
};

/// ECDSA signing using the P-384 curves and SHA-384 hashing as per [RFC 5758](https://tools.ietf.org/html/rfc5758#section-3.2)
pub static PKCS_ECDSA_P384_SHA384 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_EC_PUBLIC_KEY, &OID_EC_SECP_384_R1],
	sign_alg :SignAlgo::EcDsa(&signature::ECDSA_P384_SHA384_ASN1_SIGNING),
	digest_alg :&digest::SHA384,
	/// ecdsa-with-SHA384 in RFC 5758
	oid_components : &[1, 2, 840, 10045, 4, 3, 3],
	write_null_params : false,
};

// TODO PKCS_ECDSA_P521_SHA512 https://github.com/briansmith/ring/issues/824

/// ED25519 curve signing as per [RFC 8410](https://tools.ietf.org/html/rfc8410)
pub static PKCS_ED25519 :SignatureAlgorithm = SignatureAlgorithm {
	/// id-Ed25519 in RFC 8410
	oids_sign_alg :&[&[1, 3, 101, 112]],
	sign_alg :SignAlgo::EdDsa(&signature::ED25519),
	digest_alg :&digest::SHA512,
	/// id-Ed25519 in RFC 8410
	oid_components : &[1, 3, 101, 112],
	write_null_params : false,
};

// Signature algorithm IDs as per https://tools.ietf.org/html/rfc4055
impl SignatureAlgorithm {
	fn alg_ident_oid(&self) -> ObjectIdentifier {
		ObjectIdentifier::from_slice(self.oid_components)
	}
	fn write_alg_ident(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			writer.next().write_oid(&self.alg_ident_oid());
			if self.write_null_params {
				writer.next().write_null();
			}
		});
	}
	fn write_oids_sign_alg(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			for oid in self.oids_sign_alg {
				let oid = ObjectIdentifier::from_slice(oid);
				writer.next().write_oid(&oid);
			}
			if self.write_null_params {
				writer.next().write_null();
			}
		});
	}
}