1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! An implementation of the [RC2][1] block cipher.
//!
//! [1]: https://en.wikipedia.org/wiki/RC2

#![no_std]
#![doc(html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo_small.png")]
#![forbid(unsafe_code)]
#![warn(rust_2018_idioms)]

#[macro_use]
extern crate opaque_debug;

pub use block_cipher;

use block_cipher::consts::{U1, U32, U8};
use block_cipher::generic_array::GenericArray;
use block_cipher::InvalidKeyLength;
use block_cipher::{BlockCipher, NewBlockCipher};

mod consts;
use crate::consts::PI_TABLE;

/// A structure that represents the block cipher initialized with a key
pub struct Rc2 {
    exp_key: [u16; 64],
}

impl Rc2 {
    /// Create a cipher with the specified effective key length
    pub fn new_with_eff_key_len(key: &[u8], eff_key_len: usize) -> Self {
        Self {
            exp_key: Rc2::expand_key(key, eff_key_len),
        }
    }

    fn expand_key(key: &[u8], t1: usize) -> [u16; 64] {
        let key_len = key.len() as usize;

        let t8: usize = (t1 + 7) >> 3;

        let tm: usize = (255 % ((2 as u32).pow((8 + t1 - 8 * t8) as u32))) as usize;

        let mut key_buffer: [u8; 128] = [0; 128];
        key_buffer[..key_len].copy_from_slice(&key[..key_len]);

        for i in key_len..128 {
            let pos: u32 =
                (u32::from(key_buffer[i - 1]) + u32::from(key_buffer[i - key_len])) & 0xff;
            key_buffer[i] = PI_TABLE[pos as usize];
        }

        key_buffer[128 - t8] = PI_TABLE[(key_buffer[128 - t8] & tm as u8) as usize];

        for i in (0..128 - t8).rev() {
            let pos: usize = (key_buffer[i + 1] ^ key_buffer[i + t8]) as usize;
            key_buffer[i] = PI_TABLE[pos];
        }

        let mut result: [u16; 64] = [0; 64];
        for i in 0..64 {
            result[i] = (u16::from(key_buffer[2 * i + 1]) << 8) + u16::from(key_buffer[2 * i])
        }
        result
    }

    fn mix(&self, r: &mut [u16; 4], j: &mut usize) {
        r[0] = r[0]
            .wrapping_add(self.exp_key[*j])
            .wrapping_add(r[3] & r[2])
            .wrapping_add(!r[3] & r[1]);
        *j += 1;
        r[0] = (r[0] << 1) | (r[0] >> 15);

        r[1] = r[1]
            .wrapping_add(self.exp_key[*j])
            .wrapping_add(r[0] & r[3])
            .wrapping_add(!r[0] & r[2]);
        *j += 1;
        r[1] = (r[1] << 2) | (r[1] >> 14);

        r[2] = r[2]
            .wrapping_add(self.exp_key[*j])
            .wrapping_add(r[1] & r[0])
            .wrapping_add(!r[1] & r[3]);
        *j += 1;
        r[2] = (r[2] << 3) | (r[2] >> 13);

        r[3] = r[3]
            .wrapping_add(self.exp_key[*j])
            .wrapping_add(r[2] & r[1])
            .wrapping_add(!r[2] & r[0]);
        *j += 1;
        r[3] = (r[3] << 5) | (r[3] >> 11);
    }

    fn mash(&self, r: &mut [u16; 4]) {
        r[0] = r[0].wrapping_add(self.exp_key[(r[3] & 63) as usize]);
        r[1] = r[1].wrapping_add(self.exp_key[(r[0] & 63) as usize]);
        r[2] = r[2].wrapping_add(self.exp_key[(r[1] & 63) as usize]);
        r[3] = r[3].wrapping_add(self.exp_key[(r[2] & 63) as usize]);
    }

    fn reverse_mix(&self, r: &mut [u16; 4], j: &mut usize) {
        r[3] = (r[3] << 11) | (r[3] >> 5);
        r[3] = r[3]
            .wrapping_sub(self.exp_key[*j])
            .wrapping_sub(r[2] & r[1])
            .wrapping_sub(!r[2] & r[0]);
        *j -= 1;

        r[2] = (r[2] << 13) | (r[2] >> 3);
        r[2] = r[2]
            .wrapping_sub(self.exp_key[*j])
            .wrapping_sub(r[1] & r[0])
            .wrapping_sub(!r[1] & r[3]);
        *j -= 1;

        r[1] = (r[1] << 14) | (r[1] >> 2);
        r[1] = r[1]
            .wrapping_sub(self.exp_key[*j])
            .wrapping_sub(r[0] & r[3])
            .wrapping_sub(!r[0] & r[2]);
        *j -= 1;

        r[0] = (r[0] << 15) | (r[0] >> 1);
        r[0] = r[0]
            .wrapping_sub(self.exp_key[*j])
            .wrapping_sub(r[3] & r[2])
            .wrapping_sub(!r[3] & r[1]);
        *j = j.wrapping_sub(1);
    }

    fn reverse_mash(&self, r: &mut [u16; 4]) {
        r[3] = r[3].wrapping_sub(self.exp_key[(r[2] & 63) as usize]);
        r[2] = r[2].wrapping_sub(self.exp_key[(r[1] & 63) as usize]);
        r[1] = r[1].wrapping_sub(self.exp_key[(r[0] & 63) as usize]);
        r[0] = r[0].wrapping_sub(self.exp_key[(r[3] & 63) as usize]);
    }

    fn encrypt(&self, block: &mut GenericArray<u8, U8>) {
        let mut r: [u16; 4] = [
            (u16::from(block[1]) << 8) + u16::from(block[0]),
            (u16::from(block[3]) << 8) + u16::from(block[2]),
            (u16::from(block[5]) << 8) + u16::from(block[4]),
            (u16::from(block[7]) << 8) + u16::from(block[6]),
        ];

        let mut j = 0;

        for i in 0..16 {
            self.mix(&mut r, &mut j);
            if i == 4 || i == 10 {
                self.mash(&mut r);
            }
        }

        block[0] = (r[0] & 0xff) as u8;
        block[1] = (r[0] >> 8) as u8;
        block[2] = (r[1] & 0xff) as u8;
        block[3] = (r[1] >> 8) as u8;
        block[4] = (r[2] & 0xff) as u8;
        block[5] = (r[2] >> 8) as u8;
        block[6] = (r[3] & 0xff) as u8;
        block[7] = (r[3] >> 8) as u8;
    }

    fn decrypt(&self, block: &mut GenericArray<u8, U8>) {
        let mut r: [u16; 4] = [
            (u16::from(block[1]) << 8) + u16::from(block[0]),
            (u16::from(block[3]) << 8) + u16::from(block[2]),
            (u16::from(block[5]) << 8) + u16::from(block[4]),
            (u16::from(block[7]) << 8) + u16::from(block[6]),
        ];

        let mut j = 63;

        for i in 0..16 {
            self.reverse_mix(&mut r, &mut j);
            if i == 4 || i == 10 {
                self.reverse_mash(&mut r);
            }
        }

        block[0] = r[0] as u8;
        block[1] = (r[0] >> 8) as u8;
        block[2] = r[1] as u8;
        block[3] = (r[1] >> 8) as u8;
        block[4] = r[2] as u8;
        block[5] = (r[2] >> 8) as u8;
        block[6] = r[3] as u8;
        block[7] = (r[3] >> 8) as u8;
    }
}

impl NewBlockCipher for Rc2 {
    type KeySize = U32;

    fn new(key: &GenericArray<u8, U32>) -> Self {
        Self::new_varkey(key).unwrap()
    }

    fn new_varkey(key: &[u8]) -> Result<Self, InvalidKeyLength> {
        if key.is_empty() || key.len() > 128 {
            Err(InvalidKeyLength)
        } else {
            Ok(Self::new_with_eff_key_len(key, key.len() * 8))
        }
    }
}

impl BlockCipher for Rc2 {
    type BlockSize = U8;
    type ParBlocks = U1;

    fn encrypt_block(&self, block: &mut GenericArray<u8, U8>) {
        self.encrypt(block);
    }

    fn decrypt_block(&self, block: &mut GenericArray<u8, U8>) {
        self.decrypt(block);
    }
}

impl_opaque_debug!(Rc2);