1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//! Traits and functions used to implement parallel iteration.  These are
//! low-level details -- users of parallel iterators should not need to
//! interact with them directly.  See `README.md` for a high-level overview.

use join_context;

use super::IndexedParallelIterator;

use std::cmp;
use std::usize;

pub trait ProducerCallback<T> {
    type Output;
    fn callback<P>(self, producer: P) -> Self::Output where P: Producer<Item = T>;
}

/// A producer which will produce a fixed number of items N. This is
/// not queryable through the API; the consumer is expected to track
/// it.
pub trait Producer: Send + Sized {
    // Rust issue https://github.com/rust-lang/rust/issues/20671
    // prevents us from declaring the DoubleEndedIterator and
    // ExactSizeIterator constraints on a required IntoIterator trait,
    // so we inline IntoIterator here until that issue is fixed.
    type Item;
    type IntoIter: Iterator<Item = Self::Item> + DoubleEndedIterator + ExactSizeIterator;

    fn into_iter(self) -> Self::IntoIter;

    fn min_len(&self) -> usize {
        1
    }
    fn max_len(&self) -> usize {
        usize::MAX
    }

    /// Split into two producers; one produces items `0..index`, the
    /// other `index..N`. Index must be less than or equal to `N`.
    fn split_at(self, index: usize) -> (Self, Self);

    /// Iterate the producer, feeding each element to `folder`, and
    /// stop when the folder is full (or all elements have been consumed).
    ///
    /// The provided implementation is sufficient for most iterables.
    fn fold_with<F>(self, folder: F) -> F
        where F: Folder<Self::Item>
    {
        folder.consume_iter(self.into_iter())
    }
}

/// A consumer which consumes items that are fed to it.
pub trait Consumer<Item>: Send + Sized {
    type Folder: Folder<Item, Result = Self::Result>;
    type Reducer: Reducer<Self::Result>;
    type Result: Send;

    /// Divide the consumer into two consumers, one processing items
    /// `0..index` and one processing items from `index..`. Also
    /// produces a reducer that can be used to reduce the results at
    /// the end.
    fn split_at(self, index: usize) -> (Self, Self, Self::Reducer);

    /// Convert the consumer into a folder that can consume items
    /// sequentially, eventually producing a final result.
    fn into_folder(self) -> Self::Folder;

    /// Hint whether this `Consumer` would like to stop processing
    /// further items, e.g. if a search has been completed.
    fn full(&self) -> bool;
}

pub trait Folder<Item>: Sized {
    type Result;

    /// Consume next item and return new sequential state.
    fn consume(self, item: Item) -> Self;

    /// Consume items from the iterator until full, and return new sequential state.
    fn consume_iter<I>(mut self, iter: I) -> Self
        where I: IntoIterator<Item = Item>
    {
        for item in iter {
            self = self.consume(item);
            if self.full() {
                break;
            }
        }
        self
    }

    /// Finish consuming items, produce final result.
    fn complete(self) -> Self::Result;

    /// Hint whether this `Folder` would like to stop processing
    /// further items, e.g. if a search has been completed.
    fn full(&self) -> bool;
}

pub trait Reducer<Result> {
    /// Reduce two final results into one; this is executed after a
    /// split.
    fn reduce(self, left: Result, right: Result) -> Result;
}

/// A stateless consumer can be freely copied.
pub trait UnindexedConsumer<I>: Consumer<I> {
    // The result of split_off_left should be used for the left side of the
    // data it consumes, and the remaining consumer for the right side
    // (this matters for methods like find_first).
    fn split_off_left(&self) -> Self;
    fn to_reducer(&self) -> Self::Reducer;
}

/// An unindexed producer that doesn't know its exact length.
/// (or can't represent its known length in a `usize`)
pub trait UnindexedProducer: Send + Sized {
    type Item;

    /// Split midway into a new producer if possible, otherwise return `None`.
    fn split(self) -> (Self, Option<Self>);

    /// Iterate the producer, feeding each element to `folder`, and
    /// stop when the folder is full (or all elements have been consumed).
    fn fold_with<F>(self, folder: F) -> F where F: Folder<Self::Item>;
}

/// A splitter controls the policy for splitting into smaller work items.
///
/// Thief-splitting is an adaptive policy that starts by splitting into
/// enough jobs for every worker thread, and then resets itself whenever a
/// job is actually stolen into a different thread.
#[derive(Clone, Copy)]
struct Splitter {
    /// The `splits` tell us approximately how many remaining times we'd
    /// like to split this job.  We always just divide it by two though, so
    /// the effective number of pieces will be `next_power_of_two()`.
    splits: usize,
}

impl Splitter {
    #[inline]
    fn new() -> Splitter {
        Splitter {
            splits: ::current_num_threads(),
        }
    }

    #[inline]
    fn try(&mut self, stolen: bool) -> bool {
        let Splitter { splits } = *self;

        if stolen {
            // This job was stolen!  Reset the number of desired splits to the
            // thread count, if that's more than we had remaining anyway.
            self.splits = cmp::max(::current_num_threads(), self.splits / 2);
            true
        } else if splits > 0 {
            // We have splits remaining, make it so.
            self.splits /= 2;
            true
        } else {
            // Not stolen, and no more splits -- we're done!
            false
        }
    }
}

/// The length splitter is built on thief-splitting, but additionally takes
/// into account the remaining length of the iterator.
#[derive(Clone, Copy)]
struct LengthSplitter {
    inner: Splitter,

    /// The smallest we're willing to divide into.  Usually this is just 1,
    /// but you can choose a larger working size with `with_min_len()`.
    min: usize,
}

impl LengthSplitter {
    /// Create a new splitter based on lengths.
    ///
    /// The `min` is a hard lower bound.  We'll never split below that, but
    /// of course an iterator might start out smaller already.
    ///
    /// The `max` is an upper bound on the working size, used to determine
    /// the minimum number of times we need to split to get under that limit.
    /// The adaptive algorithm may very well split even further, but never
    /// smaller than the `min`.
    #[inline]
    fn new(min: usize, max: usize, len: usize) -> LengthSplitter {
        let mut splitter = LengthSplitter {
            inner: Splitter::new(),
            min: cmp::max(min, 1),
        };

        // Divide the given length by the max working length to get the minimum
        // number of splits we need to get under that max.  This rounds down,
        // but the splitter actually gives `next_power_of_two()` pieces anyway.
        // e.g. len 12345 / max 100 = 123 min_splits -> 128 pieces.
        let min_splits = len / cmp::max(max, 1);

        // Only update the value if it's not splitting enough already.
        if min_splits > splitter.inner.splits {
            splitter.inner.splits = min_splits;
        }

        splitter
    }

    #[inline]
    fn try(&mut self, len: usize, stolen: bool) -> bool {
        // If splitting wouldn't make us too small, try the inner splitter.
        len / 2 >= self.min && self.inner.try(stolen)
    }
}

pub fn bridge<I, C>(mut par_iter: I, consumer: C) -> C::Result
    where I: IndexedParallelIterator,
          C: Consumer<I::Item>
{
    let len = par_iter.len();
    return par_iter.with_producer(Callback {
                                      len: len,
                                      consumer: consumer,
                                  });

    struct Callback<C> {
        len: usize,
        consumer: C,
    }

    impl<C, I> ProducerCallback<I> for Callback<C>
        where C: Consumer<I>
    {
        type Output = C::Result;
        fn callback<P>(self, producer: P) -> C::Result
            where P: Producer<Item = I>
        {
            bridge_producer_consumer(self.len, producer, self.consumer)
        }
    }
}

pub fn bridge_producer_consumer<P, C>(len: usize, producer: P, consumer: C) -> C::Result
    where P: Producer,
          C: Consumer<P::Item>
{
    let splitter = LengthSplitter::new(producer.min_len(), producer.max_len(), len);
    return helper(len, false, splitter, producer, consumer);

    fn helper<P, C>(len: usize,
                    migrated: bool,
                    mut splitter: LengthSplitter,
                    producer: P,
                    consumer: C)
                    -> C::Result
        where P: Producer,
              C: Consumer<P::Item>
    {
        if consumer.full() {
            consumer.into_folder().complete()
        } else if splitter.try(len, migrated) {
            let mid = len / 2;
            let (left_producer, right_producer) = producer.split_at(mid);
            let (left_consumer, right_consumer, reducer) = consumer.split_at(mid);
            let (left_result, right_result) =
                join_context(|context| {
                    helper(mid, context.migrated(), splitter,
                           left_producer, left_consumer)
                }, |context| {
                    helper(len - mid, context.migrated(), splitter,
                           right_producer, right_consumer)
                });
            reducer.reduce(left_result, right_result)
        } else {
            producer.fold_with(consumer.into_folder()).complete()
        }
    }
}

pub fn bridge_unindexed<P, C>(producer: P, consumer: C) -> C::Result
    where P: UnindexedProducer,
          C: UnindexedConsumer<P::Item>
{
    let splitter = Splitter::new();
    bridge_unindexed_producer_consumer(false, splitter, producer, consumer)
}

fn bridge_unindexed_producer_consumer<P, C>(migrated: bool,
                                            mut splitter: Splitter,
                                            producer: P,
                                            consumer: C)
                                            -> C::Result
    where P: UnindexedProducer,
          C: UnindexedConsumer<P::Item>
{
    if consumer.full() {
        consumer.into_folder().complete()
    } else if splitter.try(migrated) {
        match producer.split() {
            (left_producer, Some(right_producer)) => {
                let (reducer, left_consumer, right_consumer) =
                    (consumer.to_reducer(), consumer.split_off_left(), consumer);
                let bridge = bridge_unindexed_producer_consumer;
                let (left_result, right_result) =
                    join_context(|context| {
                        bridge(context.migrated(), splitter, left_producer, left_consumer)
                    }, |context| {
                        bridge(context.migrated(), splitter, right_producer, right_consumer)
                    });
                reducer.reduce(left_result, right_result)
            }
            (producer, None) => producer.fold_with(consumer.into_folder()).complete(),
        }
    } else {
        producer.fold_with(consumer.into_folder()).complete()
    }
}