1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
//! The `ParallelIterator` module makes it easy to write parallel
//! programs using an iterator-style interface. To get access to all
//! the methods you want, the easiest is to write `use
//! rayon::prelude::*;` at the top of your module, which will import
//! the various traits and methods you need.
//!
//! The submodules of this module mostly just contain implementaton
//! details of little interest to an end-user. If you'd like to read
//! the code itself, the `plumbing` module and `README.md` file are a
//! good place to start.

pub use either::Either;
use std::cmp::{self, Ordering};
use std::iter::{Sum, Product};
use std::ops::Fn;
use self::plumbing::*;

// There is a method to the madness here:
//
// - Most of these modules are private but expose certain types to the end-user
//   (e.g., `enumerate::Enumerate`) -- specifically, the types that appear in the
//   public API surface of the `ParallelIterator` traits.
// - In **this** module, those public types are always used unprefixed, which forces
//   us to add a `pub use` and helps identify if we missed anything.
// - In contrast, items that appear **only** in the body of a method,
//   e.g. `find::find()`, are always used **prefixed**, so that they
//   can be readily distinguished.

mod find;
mod find_first_last;
mod chain;
pub use self::chain::Chain;
mod collect;
mod enumerate;
pub use self::enumerate::Enumerate;
mod filter;
pub use self::filter::Filter;
mod filter_map;
pub use self::filter_map::FilterMap;
mod flat_map;
pub use self::flat_map::FlatMap;
mod flatten;
pub use self::flatten::Flatten;
mod from_par_iter;
pub mod plumbing;
mod for_each;
mod fold;
pub use self::fold::{Fold, FoldWith};
mod reduce;
mod skip;
pub use self::skip::Skip;
mod splitter;
pub use self::splitter::{split, Split};
mod take;
pub use self::take::Take;
mod map;
pub use self::map::Map;
mod map_with;
pub use self::map_with::MapWith;
mod zip;
pub use self::zip::Zip;
mod zip_eq;
pub use self::zip_eq::ZipEq;
mod interleave;
pub use self::interleave::Interleave;
mod interleave_shortest;
pub use self::interleave_shortest::InterleaveShortest;
mod intersperse;
pub use self::intersperse::Intersperse;

mod noop;
mod rev;
pub use self::rev::Rev;
mod len;
pub use self::len::{MinLen, MaxLen};
mod sum;
mod product;
mod cloned;
pub use self::cloned::Cloned;
mod inspect;
pub use self::inspect::Inspect;
mod while_some;
pub use self::while_some::WhileSome;
mod extend;
mod unzip;
mod repeat;
pub use self::repeat::{Repeat, repeat};
pub use self::repeat::{RepeatN, repeatn};

mod empty;
pub use self::empty::{Empty, empty};
mod once;
pub use self::once::{Once, once};

#[cfg(test)]
mod test;

/// `IntoParallelIterator` implements the conversion to a [`ParallelIterator`].
///
/// By implementing `IntoParallelIterator` for a type, you define how it will
/// transformed into an iterator. This is a parallel version of the standard
/// library's [`std::iter::IntoIterator`] trait.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`std::iter::IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
pub trait IntoParallelIterator {
    type Iter: ParallelIterator<Item = Self::Item>;
    type Item: Send;

    fn into_par_iter(self) -> Self::Iter;
}

/// `IntoParallelRefIterator` implements the conversion to a
/// [`ParallelIterator`], providing shared references to the data.
///
/// This is a parallel version of the `iter()` method
/// defined by various collections.
///
/// This trait is automatically implemented
/// `for I where &I: IntoParallelIterator`. In most cases, users
/// will want to implement [`IntoParallelIterator`] rather than implement
/// this trait directly.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
pub trait IntoParallelRefIterator<'data> {
    type Iter: ParallelIterator<Item = Self::Item>;
    type Item: Send + 'data;

    fn par_iter(&'data self) -> Self::Iter;
}

impl<'data, I: 'data + ?Sized> IntoParallelRefIterator<'data> for I
    where &'data I: IntoParallelIterator
{
    type Iter = <&'data I as IntoParallelIterator>::Iter;
    type Item = <&'data I as IntoParallelIterator>::Item;

    fn par_iter(&'data self) -> Self::Iter {
        self.into_par_iter()
    }
}


/// `IntoParallelRefMutIterator` implements the conversion to a
/// [`ParallelIterator`], providing mutable references to the data.
///
/// This is a parallel version of the `iter_mut()` method
/// defined by various collections.
///
/// This trait is automatically implemented
/// `for I where &mut I: IntoParallelIterator`. In most cases, users
/// will want to implement [`IntoParallelIterator`] rather than implement
/// this trait directly.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
pub trait IntoParallelRefMutIterator<'data> {
    type Iter: ParallelIterator<Item = Self::Item>;
    type Item: Send + 'data;

    fn par_iter_mut(&'data mut self) -> Self::Iter;
}

impl<'data, I: 'data + ?Sized> IntoParallelRefMutIterator<'data> for I
    where &'data mut I: IntoParallelIterator
{
    type Iter = <&'data mut I as IntoParallelIterator>::Iter;
    type Item = <&'data mut I as IntoParallelIterator>::Item;

    fn par_iter_mut(&'data mut self) -> Self::Iter {
        self.into_par_iter()
    }
}

/// The `ParallelIterator` interface.
pub trait ParallelIterator: Sized + Send {
    type Item: Send;

    /// Executes `OP` on each item produced by the iterator, in parallel.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// (0..100).into_par_iter().for_each(|x| println!("{}", x));
    /// ```
    fn for_each<OP>(self, op: OP)
        where OP: Fn(Self::Item) + Sync + Send
    {
        for_each::for_each(self, &op)
    }

    /// Executes `OP` on the given `init` value with each item produced by
    /// the iterator, in parallel.
    ///
    /// The `init` value will be cloned only as needed to be paired with
    /// the group of items in each rayon job.  It does not require the type
    /// to be `Sync`.
    fn for_each_with<OP, T>(self, init: T, op: OP)
        where OP: Fn(&mut T, Self::Item) + Sync + Send,
              T: Send + Clone
    {
        self.map_with(init, op).for_each(|()| ())
    }

    /// Counts the number of items in this parallel iterator.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = (1..100).into_par_iter().filter(|x| x % 2 == 0).count();
    /// assert_eq!(a, 49);
    /// ```
    fn count(self) -> usize {
        self.map(|_| 1).sum()
    }

    /// Applies `map_op` to each item of this iterator, producing a new
    /// iterator with the results.
    fn map<F, R>(self, map_op: F) -> Map<Self, F>
        where F: Fn(Self::Item) -> R + Sync + Send,
              R: Send
    {
        map::new(self, map_op)
    }

    /// Applies `map_op` to the given `init` value with each item of this
    /// iterator, producing a new iterator with the results.
    ///
    /// The `init` value will be cloned only as needed to be paired with
    /// the group of items in each rayon job.  It does not require the type
    /// to be `Sync`.
    fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F>
        where F: Fn(&mut T, Self::Item) -> R + Sync + Send,
              T: Send + Clone,
              R: Send
    {
        map_with::new(self, init, map_op)
    }

    /// Creates an iterator which clones all of its elements.  This may be
    /// useful when you have an iterator over `&T`, but you need `T`.
    fn cloned<'a, T>(self) -> Cloned<Self>
        where T: 'a + Clone + Send,
              Self: ParallelIterator<Item = &'a T>
    {
        cloned::new(self)
    }

    /// Applies `inspect_op` to a reference to each item of this iterator,
    /// producing a new iterator passing through the original items.  This is
    /// often useful for debugging to see what's happening in iterator stages.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = (1i32..10).into_par_iter()
    ///        .inspect(|x| println!("about to filter: {}", x))
    ///        .filter(|x| x % 2 == 0)
    ///        .inspect(|x| println!("made it through filter: {}", x))
    ///        .collect::<Vec<_>>();
    /// assert_eq!(a, [2_i32, 4, 6, 8]);
    /// ```
    fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP>
        where OP: Fn(&Self::Item) + Sync + Send
    {
        inspect::new(self, inspect_op)
    }

    /// Applies `filter_op` to each item of this iterator, producing a new
    /// iterator with only the items that gave `true` results.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = (1i32..10).into_par_iter()
    ///        .inspect(|x| println!("about to filter: {}", x))
    ///        .filter(|x| x % 2 == 0)
    ///        .inspect(|x| println!("made it through filter: {}", x))
    ///        .collect::<Vec<_>>();
    /// assert_eq!(a, [2_i32, 4, 6, 8]);
    /// ```
    fn filter<P>(self, filter_op: P) -> Filter<Self, P>
        where P: Fn(&Self::Item) -> bool + Sync + Send
    {
        filter::new(self, filter_op)
    }

    /// Applies `filter_op` to each item of this iterator to get an `Option`,
    /// producing a new iterator with only the items from `Some` results.
    fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P>
        where P: Fn(Self::Item) -> Option<R> + Sync + Send,
              R: Send
    {
        filter_map::new(self, filter_op)
    }

    /// Applies `map_op` to each item of this iterator to get nested iterators,
    /// producing a new iterator that flattens these back into one.
    fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F>
        where F: Fn(Self::Item) -> PI + Sync + Send,
              PI: IntoParallelIterator
    {
        flat_map::new(self, map_op)
    }

    /// An adaptor that flattens iterable `Item`s into one large iterator
    ///
    /// Example:
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let x: Vec<Vec<i32>> = vec![vec![1, 2], vec![3, 4]];
    /// let y: Vec<i32> = x.into_par_iter().flatten().collect();
    /// assert_eq!(y, vec![1, 2, 3, 4]);
    /// ```
    fn flatten(self) -> Flatten<Self>
        where Self::Item: IntoParallelIterator
    {
        flatten::new(self)
    }

    /// Reduces the items in the iterator into one item using `op`.
    /// The argument `identity` should be a closure that can produce
    /// "identity" value which may be inserted into the sequence as
    /// needed to create opportunities for parallel execution. So, for
    /// example, if you are doing a summation, then `identity()` ought
    /// to produce something that represents the zero for your type
    /// (but consider just calling `sum()` in that case).
    ///
    /// Example:
    ///
    /// ```
    /// // Iterate over a sequence of pairs `(x0, y0), ..., (xN, yN)`
    /// // and use reduce to compute one pair `(x0 + ... + xN, y0 + ... + yN)`
    /// // where the first/second elements are summed separately.
    /// use rayon::prelude::*;
    /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)]
    ///            .par_iter()        // iterating over &(i32, i32)
    ///            .cloned()          // iterating over (i32, i32)
    ///            .reduce(|| (0, 0), // the "identity" is 0 in both columns
    ///                    |a, b| (a.0 + b.0, a.1 + b.1));
    /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9));
    /// ```
    ///
    /// **Note:** unlike a sequential `fold` operation, the order in
    /// which `op` will be applied to reduce the result is not fully
    /// specified. So `op` should be [associative] or else the results
    /// will be non-deterministic. And of course `identity()` should
    /// produce a true identity.
    ///
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
    fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item
        where OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
              ID: Fn() -> Self::Item + Sync + Send
    {
        reduce::reduce(self, identity, op)
    }

    /// Reduces the items in the iterator into one item using `op`.
    /// If the iterator is empty, `None` is returned; otherwise,
    /// `Some` is returned.
    ///
    /// This version of `reduce` is simple but somewhat less
    /// efficient. If possible, it is better to call `reduce()`, which
    /// requires an identity element.
    ///
    /// **Note:** unlike a sequential `fold` operation, the order in
    /// which `op` will be applied to reduce the result is not fully
    /// specified. So `op` should be [associative] or else the results
    /// will be non-deterministic.
    ///
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
    fn reduce_with<OP>(self, op: OP) -> Option<Self::Item>
        where OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send
    {
        self.fold(|| None, |opt_a, b| match opt_a {
                Some(a) => Some(op(a, b)),
                None => Some(b),
            })
            .reduce(|| None, |opt_a, opt_b| match (opt_a, opt_b) {
                (Some(a), Some(b)) => Some(op(a, b)),
                (Some(v), None) | (None, Some(v)) => Some(v),
                (None, None) => None,
            })
    }

    /// Parallel fold is similar to sequential fold except that the
    /// sequence of items may be subdivided before it is
    /// folded. Consider a list of numbers like `22 3 77 89 46`. If
    /// you used sequential fold to add them (`fold(0, |a,b| a+b)`,
    /// you would wind up first adding 0 + 22, then 22 + 3, then 25 +
    /// 77, and so forth. The **parallel fold** works similarly except
    /// that it first breaks up your list into sublists, and hence
    /// instead of yielding up a single sum at the end, it yields up
    /// multiple sums. The number of results is nondeterministic, as
    /// is the point where the breaks occur.
    ///
    /// So if did the same parallel fold (`fold(0, |a,b| a+b)`) on
    /// our example list, we might wind up with a sequence of two numbers,
    /// like so:
    ///
    /// ```notrust
    /// 22 3 77 89 46
    ///       |     |
    ///     102   135
    /// ```
    ///
    /// Or perhaps these three numbers:
    ///
    /// ```notrust
    /// 22 3 77 89 46
    ///       |  |  |
    ///     102 89 46
    /// ```
    ///
    /// In general, Rayon will attempt to find good breaking points
    /// that keep all of your cores busy.
    ///
    /// ### Fold versus reduce
    ///
    /// The `fold()` and `reduce()` methods each take an identity element
    /// and a combining function, but they operate rather differently.
    ///
    /// `reduce()` requires that the identity function has the same
    /// type as the things you are iterating over, and it fully
    /// reduces the list of items into a single item. So, for example,
    /// imagine we are iterating over a list of bytes `bytes: [128_u8,
    /// 64_u8, 64_u8]`. If we used `bytes.reduce(|| 0_u8, |a: u8, b:
    /// u8| a + b)`, we would get an overflow. This is because `0`,
    /// `a`, and `b` here are all bytes, just like the numbers in the
    /// list (I wrote the types explicitly above, but those are the
    /// only types you can use). To avoid the overflow, we would need
    /// to do something like `bytes.map(|b| b as u32).reduce(|| 0, |a,
    /// b| a + b)`, in which case our result would be `256`.
    ///
    /// In contrast, with `fold()`, the identity function does not
    /// have to have the same type as the things you are iterating
    /// over, and you potentially get back many results. So, if we
    /// continue with the `bytes` example from the previous paragraph,
    /// we could do `bytes.fold(|| 0_u32, |a, b| a + (b as u32))` to
    /// convert our bytes into `u32`. And of course we might not get
    /// back a single sum.
    ///
    /// There is a more subtle distinction as well, though it's
    /// actually implied by the above points. When you use `reduce()`,
    /// your reduction function is sometimes called with values that
    /// were never part of your original parallel iterator (for
    /// example, both the left and right might be a partial sum). With
    /// `fold()`, in contrast, the left value in the fold function is
    /// always the accumulator, and the right value is always from
    /// your original sequence.
    ///
    /// ### Fold vs Map/Reduce
    ///
    /// Fold makes sense if you have some operation where it is
    /// cheaper to groups of elements at a time. For example, imagine
    /// collecting characters into a string. If you were going to use
    /// map/reduce, you might try this:
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let s =
    ///     ['a', 'b', 'c', 'd', 'e']
    ///     .par_iter()
    ///     .map(|c: &char| format!("{}", c))
    ///     .reduce(|| String::new(),
    ///             |mut a: String, b: String| { a.push_str(&b); a });
    /// assert_eq!(s, "abcde");
    /// ```
    ///
    /// Because reduce produces the same type of element as its input,
    /// you have to first map each character into a string, and then
    /// you can reduce them. This means we create one string per
    /// element in ou iterator -- not so great. Using `fold`, we can
    /// do this instead:
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let s =
    ///     ['a', 'b', 'c', 'd', 'e']
    ///     .par_iter()
    ///     .fold(|| String::new(),
    ///             |mut s: String, c: &char| { s.push(*c); s })
    ///     .reduce(|| String::new(),
    ///             |mut a: String, b: String| { a.push_str(&b); a });
    /// assert_eq!(s, "abcde");
    /// ```
    ///
    /// Now `fold` will process groups of our characters at a time,
    /// and we only make one string per group. We should wind up with
    /// some small-ish number of strings roughly proportional to the
    /// number of CPUs you have (it will ultimately depend on how busy
    /// your processors are). Note that we still need to do a reduce
    /// afterwards to combine those groups of strings into a single
    /// string.
    ///
    /// You could use a similar trick to save partial results (e.g., a
    /// cache) or something similar.
    ///
    /// ### Combining fold with other operations
    ///
    /// You can combine `fold` with `reduce` if you want to produce a
    /// single value. This is then roughly equivalent to a map/reduce
    /// combination in effect:
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let bytes = 0..22_u8; // series of u8 bytes
    /// let sum = bytes.into_par_iter()
    ///                .fold(|| 0_u32, |a: u32, b: u8| a + (b as u32))
    ///                .sum::<u32>();
    /// assert_eq!(sum, (0..22).sum()); // compare to sequential
    /// ```
    fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F>
        where F: Fn(T, Self::Item) -> T + Sync + Send,
              ID: Fn() -> T + Sync + Send,
              T: Send
    {
        fold::fold(self, identity, fold_op)
    }

    /// Applies `fold_op` to the given `init` value with each item of this
    /// iterator, finally producing the value for further use.
    ///
    /// This works essentially like `fold(|| init.clone(), fold_op)`, except
    /// it doesn't require the `init` type to be `Sync`, nor any other form
    /// of added synchronization.
    fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F>
        where F: Fn(T, Self::Item) -> T + Sync + Send,
              T: Send + Clone
    {
        fold::fold_with(self, init, fold_op)
    }

    /// Sums up the items in the iterator.
    ///
    /// Note that the order in items will be reduced is not specified,
    /// so if the `+` operator is not truly [associative] \(as is the
    /// case for floating point numbers), then the results are not
    /// fully deterministic.
    ///
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
    ///
    /// Basically equivalent to `self.reduce(|| 0, |a, b| a + b)`,
    /// except that the type of `0` and the `+` operation may vary
    /// depending on the type of value being produced.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [1, 5, 7];
    /// let sum: i32 = a.par_iter().sum();
    /// assert_eq!(sum, 13);
    /// ```
    fn sum<S>(self) -> S
        where S: Send + Sum<Self::Item> + Sum<S>
    {
        sum::sum(self)
    }

    /// Multiplies all the items in the iterator.
    ///
    /// Note that the order in items will be reduced is not specified,
    /// so if the `*` operator is not truly [associative] \(as is the
    /// case for floating point numbers), then the results are not
    /// fully deterministic.
    ///
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
    ///
    /// Basically equivalent to `self.reduce(|| 1, |a, b| a * b)`,
    /// except that the type of `1` and the `*` operation may vary
    /// depending on the type of value being produced.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// fn factorial(n: u32) -> u32 {
    ///    (1..n+1).into_par_iter().product()
    /// }
    /// assert_eq!(factorial(0), 1);
    /// assert_eq!(factorial(1), 1);
    /// assert_eq!(factorial(5), 120);
    /// ```
    fn product<P>(self) -> P
        where P: Send + Product<Self::Item> + Product<P>
    {
        product::product(self)
    }

    /// Computes the minimum of all the items in the iterator. If the
    /// iterator is empty, `None` is returned; otherwise, `Some(min)`
    /// is returned.
    ///
    /// Note that the order in which the items will be reduced is not
    /// specified, so if the `Ord` impl is not truly associative, then
    /// the results are not deterministic.
    ///
    /// Basically equivalent to `self.reduce_with(|a, b| cmp::min(a, b))`.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [45, 74, 32];
    /// let b: [i32; 0] = [];
    /// assert_eq!(a.par_iter().min(), Some(&32));
    /// assert_eq!(b.par_iter().min(), None);
    /// ```
    fn min(self) -> Option<Self::Item>
        where Self::Item: Ord
    {
        self.reduce_with(cmp::min)
    }

    /// Computes the minimum of all the items in the iterator with respect to
    /// the given comparison function. If the iterator is empty, `None` is
    /// returned; otherwise, `Some(min)` is returned.
    ///
    /// Note that the order in which the items will be reduced is not
    /// specified, so if the comparison function is not associative, then
    /// the results are not deterministic.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [-3_i32, 77, 53, 240, -1];
    /// assert_eq!(a.par_iter().min_by(|x, y| x.cmp(y)), Some(&-3));
    /// ```
    fn min_by<F>(self, f: F) -> Option<Self::Item>
        where F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering
    {
        self.reduce_with(|a, b| match f(&a, &b) {
                             Ordering::Greater => b,
                             _ => a,
                         })
    }

    /// Computes the item that yields the minimum value for the given
    /// function. If the iterator is empty, `None` is returned;
    /// otherwise, `Some(item)` is returned.
    ///
    /// Note that the order in which the items will be reduced is not
    /// specified, so if the `Ord` impl is not truly associative, then
    /// the results are not deterministic.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
    /// assert_eq!(a.par_iter().min_by_key(|x| x.abs()), Some(&2));
    /// ```
    fn min_by_key<K, F>(self, f: F) -> Option<Self::Item>
        where K: Ord + Send,
              F: Sync + Send + Fn(&Self::Item) -> K
    {
        self.map(|x| (f(&x), x))
            .min_by(|a, b| (a.0).cmp(&b.0))
            .map(|(_, x)| x)
    }

    /// Computes the maximum of all the items in the iterator. If the
    /// iterator is empty, `None` is returned; otherwise, `Some(max)`
    /// is returned.
    ///
    /// Note that the order in which the items will be reduced is not
    /// specified, so if the `Ord` impl is not truly associative, then
    /// the results are not deterministic.
    ///
    /// Basically equivalent to `self.reduce_with(|a, b| cmp::max(a, b))`.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [45, 74, 32];
    /// let b: [i32; 0] = [];
    /// assert_eq!(a.par_iter().max(), Some(&74));
    /// assert_eq!(b.par_iter().max(), None);
    /// ```
    fn max(self) -> Option<Self::Item>
        where Self::Item: Ord
    {
        self.reduce_with(cmp::max)
    }

    /// Computes the maximum of all the items in the iterator with respect to
    /// the given comparison function. If the iterator is empty, `None` is
    /// returned; otherwise, `Some(min)` is returned.
    ///
    /// Note that the order in which the items will be reduced is not
    /// specified, so if the comparison function is not associative, then
    /// the results are not deterministic.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [-3_i32, 77, 53, 240, -1];
    /// assert_eq!(a.par_iter().max_by(|x, y| x.abs().cmp(&y.abs())), Some(&240));
    /// ```
    fn max_by<F>(self, f: F) -> Option<Self::Item>
        where F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering
    {
        self.reduce_with(|a, b| match f(&a, &b) {
                             Ordering::Greater => a,
                             _ => b,
                         })
    }

    /// Computes the item that yields the maximum value for the given
    /// function. If the iterator is empty, `None` is returned;
    /// otherwise, `Some(item)` is returned.
    ///
    /// Note that the order in which the items will be reduced is not
    /// specified, so if the `Ord` impl is not truly associative, then
    /// the results are not deterministic.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
    /// assert_eq!(a.par_iter().max_by_key(|x| x.abs()), Some(&34));
    /// ```
    fn max_by_key<K, F>(self, f: F) -> Option<Self::Item>
        where K: Ord + Send,
              F: Sync + Send + Fn(&Self::Item) -> K
    {
        self.map(|x| (f(&x), x))
            .max_by(|a, b| (a.0).cmp(&b.0))
            .map(|(_, x)| x)
    }

    /// Takes two iterators and creates a new iterator over both.
    fn chain<C>(self, chain: C) -> Chain<Self, C::Iter>
        where C: IntoParallelIterator<Item = Self::Item>
    {
        chain::new(self, chain.into_par_iter())
    }

    /// Searches for **some** item in the parallel iterator that
    /// matches the given predicate and returns it. This operation
    /// is similar to [`find` on sequential iterators][find] but
    /// the item returned may not be the **first** one in the parallel
    /// sequence which matches, since we search the entire sequence in parallel.
    ///
    /// Once a match is found, we will attempt to stop processing
    /// the rest of the items in the iterator as soon as possible
    /// (just as `find` stops iterating once a match is found).
    ///
    /// [find]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [1, 2, 3, 3];
    /// assert_eq!(a.par_iter().find_any(|&&x| x == 3), Some(&3));
    /// assert_eq!(a.par_iter().find_any(|&&x| x == 100), None);
    /// ```
    fn find_any<P>(self, predicate: P) -> Option<Self::Item>
        where P: Fn(&Self::Item) -> bool + Sync + Send
    {
        find::find(self, predicate)
    }

    /// Searches for the sequentially **first** item in the parallel iterator
    /// that matches the given predicate and returns it.
    ///
    /// Once a match is found, all attempts to the right of the match
    /// will be stopped, while attempts to the left must continue in case
    /// an earlier match is found.
    ///
    /// Note that not all parallel iterators have a useful order, much like
    /// sequential `HashMap` iteration, so "first" may be nebulous.  If you
    /// just want the first match that discovered anywhere in the iterator,
    /// `find_any` is a better choice.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [1, 2, 3, 3];
    /// assert_eq!(a.par_iter().find_first(|&&x| x == 3), Some(&3));
    /// assert_eq!(a.par_iter().find_first(|&&x| x == 100), None);
    /// ```
    fn find_first<P>(self, predicate: P) -> Option<Self::Item>
        where P: Fn(&Self::Item) -> bool + Sync + Send
    {
        find_first_last::find_first(self, predicate)
    }

    /// Searches for the sequentially **last** item in the parallel iterator
    /// that matches the given predicate and returns it.
    ///
    /// Once a match is found, all attempts to the left of the match
    /// will be stopped, while attempts to the right must continue in case
    /// a later match is found.
    ///
    /// Note that not all parallel iterators have a useful order, much like
    /// sequential `HashMap` iteration, so "last" may be nebulous.  When the
    /// order doesn't actually matter to you, `find_any` is a better choice.
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let a = [1, 2, 3, 3];
    /// assert_eq!(a.par_iter().find_last(|&&x| x == 3), Some(&3));
    /// assert_eq!(a.par_iter().find_last(|&&x| x == 100), None);
    /// ```
    fn find_last<P>(self, predicate: P) -> Option<Self::Item>
        where P: Fn(&Self::Item) -> bool + Sync + Send
    {
        find_first_last::find_last(self, predicate)
    }

    #[doc(hidden)]
    #[deprecated(note = "parallel `find` does not search in order -- use `find_any`, \\
    `find_first`, or `find_last`")]
    fn find<P>(self, predicate: P) -> Option<Self::Item>
        where P: Fn(&Self::Item) -> bool + Sync + Send
    {
        self.find_any(predicate)
    }

    /// Searches for **some** item in the parallel iterator that
    /// matches the given predicate, and if so returns true.  Once
    /// a match is found, we'll attempt to stop process the rest
    /// of the items.  Proving that there's no match, returning false,
    /// does require visiting every item.
    fn any<P>(self, predicate: P) -> bool
        where P: Fn(Self::Item) -> bool + Sync + Send
    {
        self.map(predicate).find_any(|&p| p).is_some()
    }

    /// Tests that every item in the parallel iterator matches the given
    /// predicate, and if so returns true.  If a counter-example is found,
    /// we'll attempt to stop processing more items, then return false.
    fn all<P>(self, predicate: P) -> bool
        where P: Fn(Self::Item) -> bool + Sync + Send
    {
        self.map(predicate).find_any(|&p| !p).is_none()
    }

    /// Creates an iterator over the `Some` items of this iterator, halting
    /// as soon as any `None` is found.
    fn while_some<T>(self) -> WhileSome<Self>
        where Self: ParallelIterator<Item = Option<T>>,
              T: Send
    {
        while_some::new(self)
    }

    /// Create a fresh collection containing all the element produced
    /// by this parallel iterator.
    ///
    /// You may prefer to use `collect_into()`, which allocates more
    /// efficiently with precise knowledge of how many elements the
    /// iterator contains, and even allows you to reuse an existing
    /// vector's backing store rather than allocating a fresh vector.
    fn collect<C>(self) -> C
        where C: FromParallelIterator<Self::Item>
    {
        C::from_par_iter(self)
    }

    /// Unzips the items of a parallel iterator into a pair of arbitrary
    /// `ParallelExtend` containers.
    ///
    /// You may prefer to use `unzip_into()`, which allocates more
    /// efficiently with precise knowledge of how many elements the
    /// iterator contains, and even allows you to reuse existing
    /// vectors' backing stores rather than allocating fresh vectors.
    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
        where Self: ParallelIterator<Item = (A, B)>,
              FromA: Default + Send + ParallelExtend<A>,
              FromB: Default + Send + ParallelExtend<B>,
              A: Send,
              B: Send
    {
        unzip::unzip(self)
    }

    /// Partitions the items of a parallel iterator into a pair of arbitrary
    /// `ParallelExtend` containers.  Items for which the `predicate` returns
    /// true go into the first container, and the rest go into the second.
    ///
    /// Note: unlike the standard `Iterator::partition`, this allows distinct
    /// collection types for the left and right items.  This is more flexible,
    /// but may require new type annotations when converting sequential code
    /// that used type inferrence assuming the two were the same.
    fn partition<A, B, P>(self, predicate: P) -> (A, B)
        where A: Default + Send + ParallelExtend<Self::Item>,
              B: Default + Send + ParallelExtend<Self::Item>,
              P: Fn(&Self::Item) -> bool + Sync + Send
    {
        unzip::partition(self, predicate)
    }

    /// Partitions and maps the items of a parallel iterator into a pair of
    /// arbitrary `ParallelExtend` containers.  `Either::Left` items go into
    /// the first container, and `Either::Right` items go into the second.
    fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B)
        where A: Default + Send + ParallelExtend<L>,
              B: Default + Send + ParallelExtend<R>,
              P: Fn(Self::Item) -> Either<L, R> + Sync + Send,
              L: Send,
              R: Send
    {
        unzip::partition_map(self, predicate)
    }

    /// Intersperses clones of an element between items of this iterator.
    ///
    /// # Examples
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let x = vec![1, 2, 3];
    /// let r: Vec<i32> = x.into_par_iter().intersperse(-1).collect();
    /// assert_eq!(r, vec![1, -1, 2, -1, 3]);
    /// ```
    fn intersperse(self, element: Self::Item) -> Intersperse<Self>
        where Self::Item: Clone
    {
        intersperse::new(self, element)
    }

    /// Internal method used to define the behavior of this parallel
    /// iterator. You should not need to call this directly.
    ///
    /// This method causes the iterator `self` to start producing
    /// items and to feed them to the consumer `consumer` one by one.
    /// It may split the consumer before doing so to create the
    /// opportunity to produce in parallel.
    ///
    /// See the [README] for more details on the internals of parallel
    /// iterators.
    ///
    /// [README]: README.md
    fn drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>;


    /// Internal method used to define the behavior of this parallel
    /// iterator. You should not need to call this directly.
    ///
    /// Returns the number of items produced by this iterator, if known
    /// statically. This can be used by consumers to trigger special fast
    /// paths. Therefore, if `Some(_)` is returned, this iterator must only
    /// use the (indexed) `Consumer` methods when driving a consumer, such
    /// as `split_at()`. Calling `UnindexedConsumer::split_off_left()` or
    /// other `UnindexedConsumer` methods -- or returning an inaccurate
    /// value -- may result in panics.
    ///
    /// This method is currently used to optimize `collect` for want
    /// of true Rust specialization; it may be removed when
    /// specialization is stable.
    fn opt_len(&mut self) -> Option<usize> {
        None
    }
}

impl<T: ParallelIterator> IntoParallelIterator for T {
    type Iter = T;
    type Item = T::Item;

    fn into_par_iter(self) -> T {
        self
    }
}

/// An iterator that supports "random access" to its data, meaning
/// that you can split it at arbitrary indices and draw data from
/// those points.
///
/// **Note:** Not implemented for `u64` and `i64` ranges
pub trait IndexedParallelIterator: ParallelIterator {
    /// Collects the results of the iterator into the specified
    /// vector. The vector is always truncated before execution
    /// begins. If possible, reusing the vector across calls can lead
    /// to better performance since it reuses the same backing buffer.
    fn collect_into(self, target: &mut Vec<Self::Item>) {
        collect::collect_into(self, target);
    }

    /// Unzips the results of the iterator into the specified
    /// vectors. The vectors are always truncated before execution
    /// begins. If possible, reusing the vectors across calls can lead
    /// to better performance since they reuse the same backing buffer.
    fn unzip_into<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>)
        where Self: IndexedParallelIterator<Item = (A, B)>,
              A: Send,
              B: Send
    {
        collect::unzip_into(self, left, right);
    }

    /// Iterate over tuples `(A, B)`, where the items `A` are from
    /// this iterator and `B` are from the iterator given as argument.
    /// Like the `zip` method on ordinary iterators, if the two
    /// iterators are of unequal length, you only get the items they
    /// have in common.
    fn zip<Z>(self, zip_op: Z) -> Zip<Self, Z::Iter>
        where Z: IntoParallelIterator,
              Z::Iter: IndexedParallelIterator
    {
        zip::new(self, zip_op.into_par_iter())
    }

    /// The same as `Zip`, but requires that both iterators have the same length.
    ///
    /// # Panics
    /// Will panic if `self` and `zip_op` are not the same length.
    ///
    /// ```should_panic
    /// use rayon::prelude::*;
    ///
    /// let one = [1u8];
    /// let two = [2u8, 2];
    /// let one_iter = one.par_iter();
    /// let two_iter = two.par_iter();
    ///
    /// // this will panic
    /// let zipped: Vec<(&u8, &u8)> = one_iter.zip_eq(two_iter).collect();
    ///
    /// // we should never get here
    /// assert_eq!(1, zipped.len());
    /// ```
    fn zip_eq<Z>(mut self, zip_op: Z) -> ZipEq<Self, Z::Iter>
        where Z: IntoParallelIterator,
              Z::Iter: IndexedParallelIterator
    {
        let mut zip_op_iter = zip_op.into_par_iter();
        assert_eq!(self.len(), zip_op_iter.len());
        zip_eq::new(self, zip_op_iter)
    }

    /// Interleave elements of this iterator and the other given
    /// iterator. Alternately yields elements from this iterator and
    /// the given iterator, until both are exhausted. If one iterator
    /// is exhausted before the other, the last elements are provided
    /// from the other.
    ///
    /// Example:
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let (x, y) = (vec![1, 2], vec![3, 4, 5, 6]);
    /// let r: Vec<i32> = x.into_par_iter().interleave(y).collect();
    /// assert_eq!(r, vec![1, 3, 2, 4, 5, 6]);
    /// ```
    fn interleave<I>(self, other: I) -> Interleave<Self, I::Iter>
        where I: IntoParallelIterator<Item = Self::Item>,
              I::Iter: IndexedParallelIterator<Item = Self::Item>
    {
        interleave::new(self, other.into_par_iter())
    }

    /// Interleave elements of this iterator and the other given
    /// iterator, until one is exhausted.
    ///
    /// Example:
    ///
    /// ```
    /// use rayon::prelude::*;
    /// let (x, y) = (vec![1, 2, 3, 4], vec![5, 6]);
    /// let r: Vec<i32> = x.into_par_iter().interleave_shortest(y).collect();
    /// assert_eq!(r, vec![1, 5, 2, 6, 3]);
    /// ```
    fn interleave_shortest<I>(self, other: I) -> InterleaveShortest<Self, I::Iter>
        where I: IntoParallelIterator<Item = Self::Item>,
              I::Iter: IndexedParallelIterator<Item = Self::Item>
    {
        interleave_shortest::new(self, other.into_par_iter())
    }

    /// Lexicographically compares the elements of this `ParallelIterator` with those of
    /// another.
    fn cmp<I>(mut self, other: I) -> Ordering
        where I: IntoParallelIterator<Item = Self::Item>,
              I::Iter: IndexedParallelIterator,
              Self::Item: Ord
    {
        let mut other = other.into_par_iter();
        let ord_len = self.len().cmp(&other.len());
        self.zip(other)
            .map(|(x, y)| Ord::cmp(&x, &y))
            .find_first(|&ord| ord != Ordering::Equal)
            .unwrap_or(ord_len)
    }

    /// Lexicographically compares the elements of this `ParallelIterator` with those of
    /// another.
    fn partial_cmp<I>(mut self, other: I) -> Option<Ordering>
        where I: IntoParallelIterator,
              I::Iter: IndexedParallelIterator,
              Self::Item: PartialOrd<I::Item>
    {
        let mut other = other.into_par_iter();
        let ord_len = self.len().cmp(&other.len());
        self.zip(other)
            .map(|(x, y)| PartialOrd::partial_cmp(&x, &y))
            .find_first(|&ord| ord != Some(Ordering::Equal))
            .unwrap_or(Some(ord_len))
    }

    /// Determines if the elements of this `ParallelIterator`
    /// are equal to those of another
    fn eq<I>(mut self, other: I) -> bool
        where I: IntoParallelIterator,
              I::Iter: IndexedParallelIterator,
              Self::Item: PartialEq<I::Item>
    {
        let mut other = other.into_par_iter();
        self.len() == other.len() && self.zip(other).all(|(x, y)| x.eq(&y))
    }

    /// Determines if the elements of this `ParallelIterator`
    /// are unequal to those of another
    fn ne<I>(self, other: I) -> bool
        where I: IntoParallelIterator,
              I::Iter: IndexedParallelIterator,
              Self::Item: PartialEq<I::Item>
    {
        !self.eq(other)
    }

    /// Determines if the elements of this `ParallelIterator`
    /// are lexicographically less than those of another.
    fn lt<I>(self, other: I) -> bool
        where I: IntoParallelIterator,
              I::Iter: IndexedParallelIterator,
              Self::Item: PartialOrd<I::Item>
    {
        self.partial_cmp(other) == Some(Ordering::Less)
    }

    /// Determines if the elements of this `ParallelIterator`
    /// are less or equal to those of another.
    fn le<I>(self, other: I) -> bool
        where I: IntoParallelIterator,
              I::Iter: IndexedParallelIterator,
              Self::Item: PartialOrd<I::Item>
    {
        let ord = self.partial_cmp(other);
        ord == Some(Ordering::Equal) || ord == Some(Ordering::Less)
    }

    /// Determines if the elements of this `ParallelIterator`
    /// are lexicographically greater than those of another.
    fn gt<I>(self, other: I) -> bool
        where I: IntoParallelIterator,
              I::Iter: IndexedParallelIterator,
              Self::Item: PartialOrd<I::Item>
    {
        self.partial_cmp(other) == Some(Ordering::Greater)
    }

    /// Determines if the elements of this `ParallelIterator`
    /// are less or equal to those of another.
    fn ge<I>(self, other: I) -> bool
        where I: IntoParallelIterator,
              I::Iter: IndexedParallelIterator,
              Self::Item: PartialOrd<I::Item>
    {
        let ord = self.partial_cmp(other);
        ord == Some(Ordering::Equal) || ord == Some(Ordering::Greater)
    }

    /// Yields an index along with each item.
    fn enumerate(self) -> Enumerate<Self> {
        enumerate::new(self)
    }

    /// Creates an iterator that skips the first `n` elements.
    fn skip(self, n: usize) -> Skip<Self> {
        skip::new(self, n)
    }

    /// Creates an iterator that yields the first `n` elements.
    fn take(self, n: usize) -> Take<Self> {
        take::new(self, n)
    }

    /// Searches for **some** item in the parallel iterator that
    /// matches the given predicate, and returns its index.  Like
    /// `ParallelIterator::find_any`, the parallel search will not
    /// necessarily find the **first** match, and once a match is
    /// found we'll attempt to stop processing any more.
    fn position_any<P>(self, predicate: P) -> Option<usize>
        where P: Fn(Self::Item) -> bool + Sync + Send
    {
        self.map(predicate)
            .enumerate()
            .find_any(|&(_, p)| p)
            .map(|(i, _)| i)
    }

    /// Searches for the sequentially **first** item in the parallel iterator
    /// that matches the given predicate, and returns its index.
    ///
    /// Like `ParallelIterator::find_first`, once a match is found,
    /// all attempts to the right of the match will be stopped, while
    /// attempts to the left must continue in case an earlier match
    /// is found.
    ///
    /// Note that not all parallel iterators have a useful order, much like
    /// sequential `HashMap` iteration, so "first" may be nebulous.  If you
    /// just want the first match that discovered anywhere in the iterator,
    /// `position_any` is a better choice.
    fn position_first<P>(self, predicate: P) -> Option<usize>
        where P: Fn(Self::Item) -> bool + Sync + Send
    {
        self.map(predicate)
            .enumerate()
            .find_first(|&(_, p)| p)
            .map(|(i, _)| i)
    }

    /// Searches for the sequentially **last** item in the parallel iterator
    /// that matches the given predicate, and returns its index.
    ///
    /// Like `ParallelIterator::find_last`, once a match is found,
    /// all attempts to the left of the match will be stopped, while
    /// attempts to the right must continue in case a later match
    /// is found.
    ///
    /// Note that not all parallel iterators have a useful order, much like
    /// sequential `HashMap` iteration, so "last" may be nebulous.  When the
    /// order doesn't actually matter to you, `position_any` is a better
    /// choice.
    fn position_last<P>(self, predicate: P) -> Option<usize>
        where P: Fn(Self::Item) -> bool + Sync + Send
    {
        self.map(predicate)
            .enumerate()
            .find_last(|&(_, p)| p)
            .map(|(i, _)| i)
    }

    #[doc(hidden)]
    #[deprecated(note = "parallel `position` does not search in order -- use `position_any`, \\
    `position_first`, or `position_last`")]
    fn position<P>(self, predicate: P) -> Option<usize>
        where P: Fn(Self::Item) -> bool + Sync + Send
    {
        self.position_any(predicate)
    }

    /// Produces a new iterator with the elements of this iterator in
    /// reverse order.
    fn rev(self) -> Rev<Self> {
        rev::new(self)
    }

    /// Sets the minimum length of iterators desired to process in each
    /// thread.  Rayon will not split any smaller than this length, but
    /// of course an iterator could already be smaller to begin with.
    fn with_min_len(self, min: usize) -> MinLen<Self> {
        len::new_min_len(self, min)
    }

    /// Sets the maximum length of iterators desired to process in each
    /// thread.  Rayon will try to split at least below this length,
    /// unless that would put it below the length from `with_min_len()`.
    /// For example, given min=10 and max=15, a length of 16 will not be
    /// split any further.
    fn with_max_len(self, max: usize) -> MaxLen<Self> {
        len::new_max_len(self, max)
    }

    /// Produces an exact count of how many items this iterator will
    /// produce, presuming no panic occurs.
    fn len(&mut self) -> usize;

    /// Internal method used to define the behavior of this parallel
    /// iterator. You should not need to call this directly.
    ///
    /// This method causes the iterator `self` to start producing
    /// items and to feed them to the consumer `consumer` one by one.
    /// It may split the consumer before doing so to create the
    /// opportunity to produce in parallel. If a split does happen, it
    /// will inform the consumer of the index where the split should
    /// occur (unlike `ParallelIterator::drive_unindexed()`).
    ///
    /// See the [README] for more details on the internals of parallel
    /// iterators.
    ///
    /// [README]: README.md
    fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result;

    /// Internal method used to define the behavior of this parallel
    /// iterator. You should not need to call this directly.
    ///
    /// This method converts the iterator into a producer P and then
    /// invokes `callback.callback()` with P. Note that the type of
    /// this producer is not defined as part of the API, since
    /// `callback` must be defined generically for all producers. This
    /// allows the producer type to contain references; it also means
    /// that parallel iterators can adjust that type without causing a
    /// breaking change.
    ///
    /// See the [README] for more details on the internals of parallel
    /// iterators.
    ///
    /// [README]: README.md
    fn with_producer<CB: ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output;
}

/// `FromParallelIterator` implements the conversion from a [`ParallelIterator`].
/// By implementing `FromParallelIterator` for a type, you define how it will be
/// created from an iterator.
///
/// `FromParallelIterator` is used through [`ParallelIterator`]'s [`collect()`] method.
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
/// [`collect()`]: trait.ParallelIterator.html#method.collect
pub trait FromParallelIterator<T>
    where T: Send
{
    fn from_par_iter<I>(par_iter: I) -> Self where I: IntoParallelIterator<Item = T>;
}

/// `ParallelExtend` extends an existing collection with items from a [`ParallelIterator`].
///
/// [`ParallelIterator`]: trait.ParallelIterator.html
pub trait ParallelExtend<T>
    where T: Send
{
    fn par_extend<I>(&mut self, par_iter: I) where I: IntoParallelIterator<Item = T>;
}