1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use crate::geometry::{PointProjection, Ray, RayIntersection, Triangle, WQuadtree};
use crate::math::{Isometry, Point};
use na::Point3;
use ncollide::bounding_volume::{HasBoundingVolume, AABB};
use ncollide::query::{PointQuery, RayCast};
use ncollide::shape::FeatureId;

#[derive(Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// A triangle mesh.
pub struct Trimesh {
    wquadtree: WQuadtree<usize>,
    aabb: AABB<f32>,
    vertices: Vec<Point<f32>>,
    indices: Vec<Point3<u32>>,
}

impl Trimesh {
    /// Creates a new triangle mesh from a vertex buffer and an index buffer.
    pub fn new(vertices: Vec<Point<f32>>, indices: Vec<Point3<u32>>) -> Self {
        assert!(
            vertices.len() > 1,
            "A triangle mesh must contain at least one point."
        );
        assert!(
            indices.len() > 1,
            "A triangle mesh must contain at least one triangle."
        );

        let aabb = AABB::from_points(&vertices);
        let data = indices.iter().enumerate().map(|(i, idx)| {
            let aabb = Triangle::new(
                vertices[idx[0] as usize],
                vertices[idx[1] as usize],
                vertices[idx[2] as usize],
            )
            .local_bounding_volume();
            (i, aabb)
        });

        let mut wquadtree = WQuadtree::new();
        // NOTE: we apply no dilation factor because we won't
        // update this tree dynamically.
        wquadtree.clear_and_rebuild(data, 0.0);

        Self {
            wquadtree,
            aabb,
            vertices,
            indices,
        }
    }

    /// Compute the axis-aligned bounding box of this triangle mesh.
    pub fn aabb(&self, pos: &Isometry<f32>) -> AABB<f32> {
        self.aabb.transform_by(pos)
    }

    pub(crate) fn waabbs(&self) -> &WQuadtree<usize> {
        &self.wquadtree
    }

    /// The number of triangles forming this mesh.
    pub fn num_triangles(&self) -> usize {
        self.indices.len()
    }

    /// An iterator through all the triangles of this mesh.
    pub fn triangles(&self) -> impl Iterator<Item = Triangle> + '_ {
        self.indices.iter().map(move |ids| {
            Triangle::new(
                self.vertices[ids.x as usize],
                self.vertices[ids.y as usize],
                self.vertices[ids.z as usize],
            )
        })
    }

    /// Get the `i`-th triangle of this mesh.
    pub fn triangle(&self, i: usize) -> Triangle {
        let idx = self.indices[i];
        Triangle::new(
            self.vertices[idx.x as usize],
            self.vertices[idx.y as usize],
            self.vertices[idx.z as usize],
        )
    }

    /// The vertex buffer of this mesh.
    pub fn vertices(&self) -> &[Point<f32>] {
        &self.vertices[..]
    }

    /// The index buffer of this mesh.
    pub fn indices(&self) -> &[Point3<u32>] {
        &self.indices
    }

    /// A flat view of the index buffer of this mesh.
    pub fn flat_indices(&self) -> &[u32] {
        unsafe {
            let len = self.indices.len() * 3;
            let data = self.indices.as_ptr() as *const u32;
            std::slice::from_raw_parts(data, len)
        }
    }
}

impl PointQuery<f32> for Trimesh {
    fn project_point(&self, _m: &Isometry<f32>, _pt: &Point<f32>, _solid: bool) -> PointProjection {
        // TODO
        unimplemented!()
    }

    fn project_point_with_feature(
        &self,
        _m: &Isometry<f32>,
        _pt: &Point<f32>,
    ) -> (PointProjection, FeatureId) {
        // TODO
        unimplemented!()
    }
}

#[cfg(feature = "dim2")]
impl RayCast<f32> for Trimesh {
    fn toi_and_normal_with_ray(
        &self,
        _m: &Isometry<f32>,
        _ray: &Ray,
        _max_toi: f32,
        _solid: bool,
    ) -> Option<RayIntersection> {
        // TODO
        None
    }

    fn intersects_ray(&self, _m: &Isometry<f32>, _ray: &Ray, _max_toi: f32) -> bool {
        // TODO
        false
    }
}

#[cfg(feature = "dim3")]
impl RayCast<f32> for Trimesh {
    fn toi_and_normal_with_ray(
        &self,
        m: &Isometry<f32>,
        ray: &Ray,
        max_toi: f32,
        solid: bool,
    ) -> Option<RayIntersection> {
        // FIXME: do a best-first search.
        let mut intersections = Vec::new();
        let ls_ray = ray.inverse_transform_by(m);
        self.wquadtree
            .cast_ray(&ls_ray, max_toi, &mut intersections);
        let mut best: Option<RayIntersection> = None;

        for inter in intersections {
            let tri = self.triangle(inter);
            if let Some(inter) = tri.toi_and_normal_with_ray(m, ray, max_toi, solid) {
                if let Some(curr) = &mut best {
                    if curr.toi > inter.toi {
                        *curr = inter;
                    }
                } else {
                    best = Some(inter);
                }
            }
        }

        best
    }

    fn intersects_ray(&self, m: &Isometry<f32>, ray: &Ray, max_toi: f32) -> bool {
        // FIXME: do a best-first search.
        let mut intersections = Vec::new();
        let ls_ray = ray.inverse_transform_by(m);
        self.wquadtree
            .cast_ray(&ls_ray, max_toi, &mut intersections);

        for inter in intersections {
            let tri = self.triangle(inter);
            if tri.intersects_ray(m, ray, max_toi) {
                return true;
            }
        }

        false
    }
}