1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
//! Physics pipeline structures.

use crate::dynamics::{JointSet, RigidBodySet};
use crate::geometry::{
    BroadPhase, BroadPhasePairEvent, ColliderPair, ColliderSet, ContactPairFilter, NarrowPhase,
    ProximityPairFilter,
};
use crate::pipeline::EventHandler;

/// The collision pipeline, responsible for performing collision detection between colliders.
///
/// This structure only contains temporary data buffers. It can be dropped and replaced by a fresh
/// copy at any time. For performance reasons it is recommended to reuse the same physics pipeline
/// instance to benefit from the cached data.
// NOTE: this contains only workspace data, so there is no point in making this serializable.
pub struct CollisionPipeline {
    broadphase_collider_pairs: Vec<ColliderPair>,
    broad_phase_events: Vec<BroadPhasePairEvent>,
    empty_joints: JointSet,
}

#[allow(dead_code)]
fn check_pipeline_send_sync() {
    fn do_test<T: Sync>() {}
    do_test::<CollisionPipeline>();
}

impl CollisionPipeline {
    /// Initializes a new physics pipeline.
    pub fn new() -> CollisionPipeline {
        CollisionPipeline {
            broadphase_collider_pairs: Vec::new(),
            broad_phase_events: Vec::new(),
            empty_joints: JointSet::new(),
        }
    }

    /// Executes one step of the collision detection.
    pub fn step(
        &mut self,
        prediction_distance: f32,
        broad_phase: &mut BroadPhase,
        narrow_phase: &mut NarrowPhase,
        bodies: &mut RigidBodySet,
        colliders: &mut ColliderSet,
        contact_pair_filter: Option<&dyn ContactPairFilter>,
        proximity_pair_filter: Option<&dyn ProximityPairFilter>,
        events: &dyn EventHandler,
    ) {
        bodies.maintain(colliders);
        self.broadphase_collider_pairs.clear();

        broad_phase.update_aabbs(prediction_distance, bodies, colliders);

        self.broad_phase_events.clear();
        broad_phase.find_pairs(&mut self.broad_phase_events);

        narrow_phase.register_pairs(colliders, bodies, &self.broad_phase_events, events);

        narrow_phase.compute_contacts(
            prediction_distance,
            bodies,
            colliders,
            contact_pair_filter,
            events,
        );
        narrow_phase.compute_proximities(
            prediction_distance,
            bodies,
            colliders,
            proximity_pair_filter,
            events,
        );

        bodies.update_active_set_with_contacts(
            colliders,
            narrow_phase,
            self.empty_joints.joint_graph(),
            0,
        );

        // // Update kinematic bodies velocities.
        // bodies.foreach_active_kinematic_body_mut_internal(|_, body| {
        //     body.compute_velocity_from_predicted_position(integration_parameters.inv_dt());
        // });

        // Update colliders positions and kinematic bodies positions.
        bodies.foreach_active_body_mut_internal(|_, rb| {
            if rb.is_kinematic() {
                rb.position = rb.predicted_position;
            } else {
                rb.update_predicted_position(0.0);
            }

            for handle in &rb.colliders {
                let collider = &mut colliders[*handle];
                collider.position = rb.position * collider.delta;
                collider.predicted_position = rb.predicted_position * collider.delta;
            }
        });

        bodies.modified_inactive_set.clear();
    }
}