1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
use crate::dynamics::MassProperties;
use crate::geometry::{Collider, ColliderHandle, InteractionGraph, RigidBodyGraphIndex};
use crate::math::{AngVector, AngularInertia, Isometry, Point, Rotation, Translation, Vector};
use crate::utils::{WCross, WDot};
use num::Zero;

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// The status of a body, governing the way it is affected by external forces.
pub enum BodyStatus {
    /// A `BodyStatus::Dynamic` body can be affected by all external forces.
    Dynamic,
    /// A `BodyStatus::Static` body cannot be affected by external forces.
    Static,
    /// A `BodyStatus::Kinematic` body cannot be affected by any external forces but can be controlled
    /// by the user at the position level while keeping realistic one-way interaction with dynamic bodies.
    ///
    /// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
    /// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
    /// modified by the user and is independent from any contact or joint it is involved in.
    Kinematic,
    // Semikinematic, // A kinematic that performs automatic CCD with the static environment toi avoid traversing it?
    // Disabled,
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// A rigid body.
///
/// To create a new rigid-body, use the `RigidBodyBuilder` structure.
#[derive(Debug)]
pub struct RigidBody {
    /// The world-space position of the rigid-body.
    pub position: Isometry<f32>,
    pub(crate) predicted_position: Isometry<f32>,
    /// The local mass properties of the rigid-body.
    pub mass_properties: MassProperties,
    /// The world-space center of mass of the rigid-body.
    pub world_com: Point<f32>,
    /// The square-root of the inverse angular inertia tensor of the rigid-body.
    pub world_inv_inertia_sqrt: AngularInertia<f32>,
    /// The linear velocity of the rigid-body.
    pub linvel: Vector<f32>,
    /// The angular velocity of the rigid-body.
    pub angvel: AngVector<f32>,
    pub(crate) linacc: Vector<f32>,
    pub(crate) angacc: AngVector<f32>,
    pub(crate) colliders: Vec<ColliderHandle>,
    /// Whether or not this rigid-body is sleeping.
    pub activation: ActivationStatus,
    pub(crate) joint_graph_index: RigidBodyGraphIndex,
    pub(crate) active_island_id: usize,
    pub(crate) active_set_id: usize,
    pub(crate) active_set_offset: usize,
    pub(crate) active_set_timestamp: u32,
    /// The status of the body, governing how it is affected by external forces.
    pub body_status: BodyStatus,
    /// User-defined data associated to this rigid-body.
    pub user_data: u128,
}

impl Clone for RigidBody {
    fn clone(&self) -> Self {
        Self {
            colliders: Vec::new(),
            joint_graph_index: RigidBodyGraphIndex::new(crate::INVALID_U32),
            active_island_id: crate::INVALID_USIZE,
            active_set_id: crate::INVALID_USIZE,
            active_set_offset: crate::INVALID_USIZE,
            active_set_timestamp: crate::INVALID_U32,
            ..*self
        }
    }
}

impl RigidBody {
    fn new() -> Self {
        Self {
            position: Isometry::identity(),
            predicted_position: Isometry::identity(),
            mass_properties: MassProperties::zero(),
            world_com: Point::origin(),
            world_inv_inertia_sqrt: AngularInertia::zero(),
            linvel: Vector::zeros(),
            angvel: na::zero(),
            linacc: Vector::zeros(),
            angacc: na::zero(),
            colliders: Vec::new(),
            activation: ActivationStatus::new_active(),
            joint_graph_index: InteractionGraph::<()>::invalid_graph_index(),
            active_island_id: 0,
            active_set_id: 0,
            active_set_offset: 0,
            active_set_timestamp: 0,
            body_status: BodyStatus::Dynamic,
            user_data: 0,
        }
    }

    pub(crate) fn integrate_accelerations(&mut self, dt: f32, gravity: Vector<f32>) {
        if self.mass_properties.inv_mass != 0.0 {
            self.linvel += (gravity + self.linacc) * dt;
            self.angvel += self.angacc * dt;

            // Reset the accelerations.
            self.linacc = na::zero();
            self.angacc = na::zero();
        }
    }

    /// The handles of colliders attached to this rigid body.
    pub fn colliders(&self) -> &[ColliderHandle] {
        &self.colliders[..]
    }

    /// Is this rigid body dynamic?
    ///
    /// A dynamic body can move freely and is affected by forces.
    pub fn is_dynamic(&self) -> bool {
        self.body_status == BodyStatus::Dynamic
    }

    /// Is this rigid body kinematic?
    ///
    /// A kinematic body can move freely but is not affected by forces.
    pub fn is_kinematic(&self) -> bool {
        self.body_status == BodyStatus::Kinematic
    }

    /// Is this rigid body static?
    ///
    /// A static body cannot move and is not affected by forces.
    pub fn is_static(&self) -> bool {
        self.body_status == BodyStatus::Static
    }

    /// The mass of this rigid body.
    ///
    /// Returns zero if this rigid body has an infinite mass.
    pub fn mass(&self) -> f32 {
        crate::utils::inv(self.mass_properties.inv_mass)
    }

    /// The predicted position of this rigid-body.
    ///
    /// If this rigid-body is kinematic this value is set by the `set_next_kinematic_position`
    /// method and is used for estimating the kinematic body velocity at the next timestep.
    /// For non-kinematic bodies, this value is currently unspecified.
    pub fn predicted_position(&self) -> &Isometry<f32> {
        &self.predicted_position
    }

    /// Adds a collider to this rigid-body.
    pub(crate) fn add_collider_internal(&mut self, handle: ColliderHandle, coll: &Collider) {
        let mass_properties = coll
            .mass_properties()
            .transform_by(coll.position_wrt_parent());
        self.colliders.push(handle);
        self.mass_properties += mass_properties;
        self.update_world_mass_properties();
    }

    /// Removes a collider from this rigid-body.
    pub(crate) fn remove_collider_internal(&mut self, handle: ColliderHandle, coll: &Collider) {
        if let Some(i) = self.colliders.iter().position(|e| *e == handle) {
            self.colliders.swap_remove(i);
            let mass_properties = coll
                .mass_properties()
                .transform_by(coll.position_wrt_parent());
            self.mass_properties -= mass_properties;
            self.update_world_mass_properties();
        }
    }

    /// Put this rigid body to sleep.
    ///
    /// A sleeping body no longer moves and is no longer simulated by the physics engine unless
    /// it is waken up. It can be woken manually with `self.wake_up` or automatically due to
    /// external forces like contacts.
    pub fn sleep(&mut self) {
        self.activation.energy = 0.0;
        self.activation.sleeping = true;
        self.linvel = na::zero();
        self.angvel = na::zero();
    }

    /// Wakes up this rigid body if it is sleeping.
    ///
    /// If `strong` is `true` then it is assured that the rigid-body will
    /// remain awake during multiple subsequent timesteps.
    pub fn wake_up(&mut self, strong: bool) {
        self.activation.sleeping = false;

        if (strong || self.activation.energy == 0.0) && self.is_dynamic() {
            self.activation.energy = self.activation.threshold.abs() * 2.0;
        }
    }

    pub(crate) fn update_energy(&mut self) {
        let mix_factor = 0.01;
        let new_energy = (1.0 - mix_factor) * self.activation.energy
            + mix_factor * (self.linvel.norm_squared() + self.angvel.gdot(self.angvel));
        self.activation.energy = new_energy.min(self.activation.threshold.abs() * 4.0);
    }

    /// Is this rigid body sleeping?
    pub fn is_sleeping(&self) -> bool {
        // TODO: should we:
        // - return false for static bodies.
        // - return true for non-sleeping dynamic bodies.
        // - return true only for kinematic bodies with non-zero velocity?
        self.activation.sleeping
    }

    /// Is the velocity of this body not zero?
    pub fn is_moving(&self) -> bool {
        !self.linvel.is_zero() || !self.angvel.is_zero()
    }

    fn integrate_velocity(&self, dt: f32) -> Isometry<f32> {
        let com = &self.position * self.mass_properties.local_com;
        let shift = Translation::from(com.coords);
        shift * Isometry::new(self.linvel * dt, self.angvel * dt) * shift.inverse()
    }

    pub(crate) fn integrate(&mut self, dt: f32) {
        self.position = self.integrate_velocity(dt) * self.position;
    }

    /// Sets the position and `next_kinematic_position` of this rigid body.
    ///
    /// This will teleport the rigid-body to the specified position/orientation,
    /// completely ignoring any physics rule. If this body is kinematic, this will
    /// also set the next kinematic position to the same value, effectively
    /// resetting to zero the next interpolated velocity of the kinematic body.
    pub fn set_position(&mut self, pos: Isometry<f32>) {
        self.position = pos;

        // TODO: update the predicted position for dynamic bodies too?
        if self.is_static() || self.is_kinematic() {
            self.predicted_position = pos;
        }
    }

    /// If this rigid body is kinematic, sets its future position after the next timestep integration.
    pub fn set_next_kinematic_position(&mut self, pos: Isometry<f32>) {
        if self.is_kinematic() {
            self.predicted_position = pos;
        }
    }

    pub(crate) fn compute_velocity_from_predicted_position(&mut self, inv_dt: f32) {
        let dpos = self.predicted_position * self.position.inverse();
        #[cfg(feature = "dim2")]
        {
            self.angvel = dpos.rotation.angle() * inv_dt;
        }
        #[cfg(feature = "dim3")]
        {
            self.angvel = dpos.rotation.scaled_axis() * inv_dt;
        }
        self.linvel = dpos.translation.vector * inv_dt;
    }

    pub(crate) fn update_predicted_position(&mut self, dt: f32) {
        self.predicted_position = self.integrate_velocity(dt) * self.position;
    }

    pub(crate) fn update_world_mass_properties(&mut self) {
        self.world_com = self.mass_properties.world_com(&self.position);
        self.world_inv_inertia_sqrt = self
            .mass_properties
            .world_inv_inertia_sqrt(&self.position.rotation);
    }

    /*
     * Application of forces/impulses.
     */
    /// Applies a force at the center-of-mass of this rigid-body.
    pub fn apply_force(&mut self, force: Vector<f32>) {
        if self.body_status == BodyStatus::Dynamic {
            self.linacc += force * self.mass_properties.inv_mass;
        }
    }

    /// Applies an impulse at the center-of-mass of this rigid-body.
    pub fn apply_impulse(&mut self, impulse: Vector<f32>) {
        if self.body_status == BodyStatus::Dynamic {
            self.linvel += impulse * self.mass_properties.inv_mass;
        }
    }

    /// Applies a torque at the center-of-mass of this rigid-body.
    #[cfg(feature = "dim2")]
    pub fn apply_torque(&mut self, torque: f32) {
        if self.body_status == BodyStatus::Dynamic {
            self.angacc += self.world_inv_inertia_sqrt * (self.world_inv_inertia_sqrt * torque);
        }
    }

    /// Applies a torque at the center-of-mass of this rigid-body.
    #[cfg(feature = "dim3")]
    pub fn apply_torque(&mut self, torque: Vector<f32>) {
        if self.body_status == BodyStatus::Dynamic {
            self.angacc += self.world_inv_inertia_sqrt * (self.world_inv_inertia_sqrt * torque);
        }
    }

    /// Applies an impulsive torque at the center-of-mass of this rigid-body.
    #[cfg(feature = "dim2")]
    pub fn apply_torque_impulse(&mut self, torque_impulse: f32) {
        if self.body_status == BodyStatus::Dynamic {
            self.angvel +=
                self.world_inv_inertia_sqrt * (self.world_inv_inertia_sqrt * torque_impulse);
        }
    }

    /// Applies an impulsive torque at the center-of-mass of this rigid-body.
    #[cfg(feature = "dim3")]
    pub fn apply_torque_impulse(&mut self, torque_impulse: Vector<f32>) {
        if self.body_status == BodyStatus::Dynamic {
            self.angvel +=
                self.world_inv_inertia_sqrt * (self.world_inv_inertia_sqrt * torque_impulse);
        }
    }

    /// Applies a force at the given world-space point of this rigid-body.
    pub fn apply_force_at_point(&mut self, force: Vector<f32>, point: Point<f32>) {
        let torque = (point - self.world_com).gcross(force);
        self.apply_force(force);
        self.apply_torque(torque);
    }

    /// Applies an impulse at the given world-space point of this rigid-body.
    pub fn apply_impulse_at_point(&mut self, impulse: Vector<f32>, point: Point<f32>) {
        let torque_impulse = (point - self.world_com).gcross(impulse);
        self.apply_impulse(impulse);
        self.apply_torque_impulse(torque_impulse);
    }
}

/// A builder for rigid-bodies.
pub struct RigidBodyBuilder {
    position: Isometry<f32>,
    linvel: Vector<f32>,
    angvel: AngVector<f32>,
    body_status: BodyStatus,
    can_sleep: bool,
    user_data: u128,
}

impl RigidBodyBuilder {
    /// Initialize a new builder for a rigid body which is either static, dynamic, or kinematic.
    pub fn new(body_status: BodyStatus) -> Self {
        Self {
            position: Isometry::identity(),
            linvel: Vector::zeros(),
            angvel: na::zero(),
            body_status,
            can_sleep: true,
            user_data: 0,
        }
    }

    /// Initializes the builder of a new static rigid body.
    pub fn new_static() -> Self {
        Self::new(BodyStatus::Static)
    }

    /// Initializes the builder of a new kinematic rigid body.
    pub fn new_kinematic() -> Self {
        Self::new(BodyStatus::Kinematic)
    }

    /// Initializes the builder of a new dynamic rigid body.
    pub fn new_dynamic() -> Self {
        Self::new(BodyStatus::Dynamic)
    }

    /// Sets the initial translation of the rigid-body to be created.
    #[cfg(feature = "dim2")]
    pub fn translation(mut self, x: f32, y: f32) -> Self {
        self.position.translation.x = x;
        self.position.translation.y = y;
        self
    }

    /// Sets the initial translation of the rigid-body to be created.
    #[cfg(feature = "dim3")]
    pub fn translation(mut self, x: f32, y: f32, z: f32) -> Self {
        self.position.translation.x = x;
        self.position.translation.y = y;
        self.position.translation.z = z;
        self
    }

    /// Sets the initial orientation of the rigid-body to be created.
    pub fn rotation(mut self, angle: AngVector<f32>) -> Self {
        self.position.rotation = Rotation::new(angle);
        self
    }

    /// Sets the initial position (translation and orientation) of the rigid-body to be created.
    pub fn position(mut self, pos: Isometry<f32>) -> Self {
        self.position = pos;
        self
    }

    /// An arbitrary user-defined 128-bit integer associated to the rigid-bodies built by this builder.
    pub fn user_data(mut self, data: u128) -> Self {
        self.user_data = data;
        self
    }

    /// Sets the initial linear velocity of the rigid-body to be created.
    #[cfg(feature = "dim2")]
    pub fn linvel(mut self, x: f32, y: f32) -> Self {
        self.linvel = Vector::new(x, y);
        self
    }

    /// Sets the initial linear velocity of the rigid-body to be created.
    #[cfg(feature = "dim3")]
    pub fn linvel(mut self, x: f32, y: f32, z: f32) -> Self {
        self.linvel = Vector::new(x, y, z);
        self
    }

    /// Sets the initial angular velocity of the rigid-body to be created.
    pub fn angvel(mut self, angvel: AngVector<f32>) -> Self {
        self.angvel = angvel;
        self
    }

    /// Sets whether or not the rigid-body to be created can sleep if it reaches a dynamic equilibrium.
    pub fn can_sleep(mut self, can_sleep: bool) -> Self {
        self.can_sleep = can_sleep;
        self
    }

    /// Build a new rigid-body with the parameters configured with this builder.
    pub fn build(&self) -> RigidBody {
        let mut rb = RigidBody::new();
        rb.predicted_position = self.position; // FIXME: compute the correct value?
        rb.set_position(self.position);
        rb.linvel = self.linvel;
        rb.angvel = self.angvel;
        rb.body_status = self.body_status;
        rb.user_data = self.user_data;

        if !self.can_sleep {
            rb.activation.threshold = -1.0;
        }

        rb
    }
}

/// The activation status of a body.
///
/// This controls whether a body is sleeping or not.
/// If the threshold is negative, the body never sleeps.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct ActivationStatus {
    /// The threshold pseudo-kinetic energy bellow which the body can fall asleep.
    pub threshold: f32,
    /// The current pseudo-kinetic energy of the body.
    pub energy: f32,
    /// Is this body already sleeping?
    pub sleeping: bool,
}

impl ActivationStatus {
    /// The default amount of energy bellow which a body can be put to sleep by nphysics.
    pub fn default_threshold() -> f32 {
        0.01
    }

    /// Create a new activation status initialised with the default activation threshold and is active.
    pub fn new_active() -> Self {
        ActivationStatus {
            threshold: Self::default_threshold(),
            energy: Self::default_threshold() * 4.0,
            sleeping: false,
        }
    }

    /// Create a new activation status initialised with the default activation threshold and is inactive.
    pub fn new_inactive() -> Self {
        ActivationStatus {
            threshold: Self::default_threshold(),
            energy: 0.0,
            sleeping: true,
        }
    }

    /// Returns `true` if the body is not asleep.
    #[inline]
    pub fn is_active(&self) -> bool {
        self.energy != 0.0
    }
}