1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::math::{AngVector, AngularInertia, Isometry, Point, Rotation, Vector};
use crate::utils;
use num::Zero;
use std::ops::{Add, AddAssign};
#[cfg(feature = "dim3")]
use {na::Matrix3, std::ops::MulAssign};

#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// The local mass properties of a rigid-body.
pub struct MassProperties {
    /// The center of mass of a rigid-body expressed in its local-space.
    pub local_com: Point<f32>,
    /// The inverse of the mass of a rigid-body.
    ///
    /// If this is zero, the rigid-body is assumed to have infinite mass.
    pub inv_mass: f32,
    /// The inverse of the principal angular inertia of the rigid-body.
    ///
    /// Components set to zero are assumed to be infinite along the corresponding principal axis.
    pub inv_principal_inertia_sqrt: AngVector<f32>,
    #[cfg(feature = "dim3")]
    /// The principal vectors of the local angular inertia tensor of the rigid-body.
    pub principal_inertia_local_frame: Rotation<f32>,
}

impl MassProperties {
    #[cfg(feature = "dim2")]
    pub(crate) fn new(local_com: Point<f32>, mass: f32, principal_inertia: f32) -> Self {
        let inv_mass = utils::inv(mass);
        let inv_principal_inertia_sqrt = utils::inv(principal_inertia.sqrt());
        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    #[cfg(feature = "dim3")]
    pub(crate) fn new(local_com: Point<f32>, mass: f32, principal_inertia: AngVector<f32>) -> Self {
        Self::with_principal_inertia_frame(local_com, mass, principal_inertia, Rotation::identity())
    }

    #[cfg(feature = "dim3")]
    pub(crate) fn with_principal_inertia_frame(
        local_com: Point<f32>,
        mass: f32,
        principal_inertia: AngVector<f32>,
        principal_inertia_local_frame: Rotation<f32>,
    ) -> Self {
        let inv_mass = utils::inv(mass);
        let inv_principal_inertia_sqrt = principal_inertia.map(|e| utils::inv(e.sqrt()));
        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
            principal_inertia_local_frame,
        }
    }

    /// The world-space center of mass of the rigid-body.
    pub fn world_com(&self, pos: &Isometry<f32>) -> Point<f32> {
        pos * self.local_com
    }

    #[cfg(feature = "dim2")]
    /// The world-space inverse angular inertia tensor of the rigid-body.
    pub fn world_inv_inertia_sqrt(&self, _rot: &Rotation<f32>) -> AngularInertia<f32> {
        self.inv_principal_inertia_sqrt
    }

    #[cfg(feature = "dim3")]
    /// The world-space inverse angular inertia tensor of the rigid-body.
    pub fn world_inv_inertia_sqrt(&self, rot: &Rotation<f32>) -> AngularInertia<f32> {
        if !self.inv_principal_inertia_sqrt.is_zero() {
            let mut lhs = (rot * self.principal_inertia_local_frame)
                .to_rotation_matrix()
                .into_inner();
            let rhs = lhs.transpose();
            lhs.column_mut(0)
                .mul_assign(self.inv_principal_inertia_sqrt.x);
            lhs.column_mut(1)
                .mul_assign(self.inv_principal_inertia_sqrt.y);
            lhs.column_mut(2)
                .mul_assign(self.inv_principal_inertia_sqrt.z);
            let inertia = lhs * rhs;
            AngularInertia::from_sdp_matrix(inertia)
        } else {
            AngularInertia::zero()
        }
    }

    #[cfg(feature = "dim3")]
    /// Reconstructs the angular inertia tensor of the rigid body from its principal inertia values and axii.
    pub fn reconstruct_inertia_matrix(&self) -> Matrix3<f32> {
        let principal_inertia = self.inv_principal_inertia_sqrt.map(|e| utils::inv(e * e));
        self.principal_inertia_local_frame.to_rotation_matrix()
            * Matrix3::from_diagonal(&principal_inertia)
            * self
                .principal_inertia_local_frame
                .inverse()
                .to_rotation_matrix()
    }

    #[cfg(feature = "dim2")]
    pub(crate) fn construct_shifted_inertia_matrix(&self, shift: Vector<f32>) -> f32 {
        if self.inv_mass != 0.0 {
            let mass = 1.0 / self.inv_mass;
            let i = utils::inv(self.inv_principal_inertia_sqrt * self.inv_principal_inertia_sqrt);
            i + shift.norm_squared() * mass
        } else {
            0.0
        }
    }

    #[cfg(feature = "dim3")]
    pub(crate) fn construct_shifted_inertia_matrix(&self, shift: Vector<f32>) -> Matrix3<f32> {
        if self.inv_mass != 0.0 {
            let mass = 1.0 / self.inv_mass;
            let matrix = self.reconstruct_inertia_matrix();
            let diag = shift.norm_squared();
            let diagm = Matrix3::from_diagonal_element(diag);
            matrix + (diagm + shift * shift.transpose()) * mass
        } else {
            Matrix3::zeros()
        }
    }
}

impl Zero for MassProperties {
    fn zero() -> Self {
        Self {
            inv_mass: 0.0,
            inv_principal_inertia_sqrt: na::zero(),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
            local_com: Point::origin(),
        }
    }

    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }
}

impl Add<MassProperties> for MassProperties {
    type Output = Self;

    #[cfg(feature = "dim2")]
    fn add(self, other: MassProperties) -> Self {
        if self.is_zero() {
            return other;
        } else if other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 + m2);
        let local_com = (self.local_com * m1 + other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 + i2;
        let inv_principal_inertia_sqrt = utils::inv(inertia.sqrt());

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    #[cfg(feature = "dim3")]
    fn add(self, other: MassProperties) -> Self {
        if self.is_zero() {
            return other;
        } else if other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 + m2);
        let local_com = (self.local_com * m1 + other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 + i2;
        let eigen = inertia.symmetric_eigen();
        let principal_inertia_local_frame = Rotation::from_matrix(&eigen.eigenvectors);
        let principal_inertia = eigen.eigenvalues;
        let inv_principal_inertia_sqrt = principal_inertia.map(|e| utils::inv(e.sqrt()));

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
            principal_inertia_local_frame,
        }
    }
}

impl AddAssign<MassProperties> for MassProperties {
    fn add_assign(&mut self, rhs: MassProperties) {
        *self = *self + rhs
    }
}