1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
use crate::dynamics::{CoefficientCombineRule, MassProperties, RigidBodyHandle};
use crate::geometry::{InteractionGroups, SAPProxyIndex, SharedShape, SolverFlags};
use crate::math::{AngVector, Isometry, Point, Real, Rotation, Vector, DIM};
use crate::parry::transformation::vhacd::VHACDParameters;
use na::Unit;
use parry::bounding_volume::{BoundingVolume, AABB};
use parry::shape::Shape;

bitflags::bitflags! {
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    /// Flags affecting the behavior of the constraints solver for a given contact manifold.
    pub(crate) struct ColliderFlags: u8 {
        const SENSOR = 1 << 0;
        const FRICTION_COMBINE_RULE_01 = 1 << 1;
        const FRICTION_COMBINE_RULE_10 = 1 << 2;
        const RESTITUTION_COMBINE_RULE_01 = 1 << 3;
        const RESTITUTION_COMBINE_RULE_10 = 1 << 4;
    }
}

impl ColliderFlags {
    pub fn is_sensor(self) -> bool {
        self.contains(ColliderFlags::SENSOR)
    }

    pub fn friction_combine_rule_value(self) -> u8 {
        (self.bits & 0b0000_0110) >> 1
    }

    pub fn restitution_combine_rule_value(self) -> u8 {
        (self.bits & 0b0001_1000) >> 3
    }

    pub fn with_friction_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
        self.bits = (self.bits & !0b0000_0110) | ((rule as u8) << 1);
        self
    }

    pub fn with_restitution_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
        self.bits = (self.bits & !0b0001_1000) | ((rule as u8) << 3);
        self
    }
}

#[derive(Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
enum MassInfo {
    /// `MassProperties` are computed with the help of [`SharedShape::mass_properties`].
    Density(Real),
    MassProperties(Box<MassProperties>),
}

bitflags::bitflags! {
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    /// Flags describing how the collider has been modified by the user.
    pub(crate) struct ColliderChanges: u32 {
        const MODIFIED             = 1 << 0;
        const POSITION_WRT_PARENT  = 1 << 1; // => BF & NF updates.
        const POSITION             = 1 << 2; // => BF & NF updates.
        const COLLISION_GROUPS     = 1 << 3; // => NF update.
        const SOLVER_GROUPS        = 1 << 4; // => NF update.
        const SHAPE                = 1 << 5; // => BF & NF update. NF pair workspace invalidation.
        const SENSOR               = 1 << 6; // => NF update. NF pair invalidation.
    }
}

impl ColliderChanges {
    pub fn needs_broad_phase_update(self) -> bool {
        self.intersects(
            ColliderChanges::POSITION_WRT_PARENT
                | ColliderChanges::POSITION
                | ColliderChanges::SHAPE,
        )
    }

    pub fn needs_narrow_phase_update(self) -> bool {
        self.bits() > 1
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone)]
/// A geometric entity that can be attached to a body so it can be affected by contacts and proximity queries.
///
/// To build a new collider, use the `ColliderBuilder` structure.
pub struct Collider {
    shape: SharedShape,
    mass_info: MassInfo,
    pub(crate) flags: ColliderFlags,
    pub(crate) solver_flags: SolverFlags,
    pub(crate) changes: ColliderChanges,
    pub(crate) parent: RigidBodyHandle,
    pub(crate) delta: Isometry<Real>,
    pub(crate) position: Isometry<Real>,
    /// The friction coefficient of this collider.
    pub friction: Real,
    /// The restitution coefficient of this collider.
    pub restitution: Real,
    pub(crate) collision_groups: InteractionGroups,
    pub(crate) solver_groups: InteractionGroups,
    pub(crate) proxy_index: SAPProxyIndex,
    /// User-defined data associated to this rigid-body.
    pub user_data: u128,
}

impl Collider {
    pub(crate) fn reset_internal_references(&mut self) {
        self.parent = RigidBodyHandle::invalid();
        self.proxy_index = crate::INVALID_U32;
        self.changes = ColliderChanges::empty();
    }

    /// The rigid body this collider is attached to.
    pub fn parent(&self) -> RigidBodyHandle {
        self.parent
    }

    /// Is this collider a sensor?
    pub fn is_sensor(&self) -> bool {
        self.flags.is_sensor()
    }

    /// The combine rule used by this collider to combine its friction
    /// coefficient with the friction coefficient of the other collider it
    /// is in contact with.
    pub fn friction_combine_rule(&self) -> CoefficientCombineRule {
        CoefficientCombineRule::from_value(self.flags.friction_combine_rule_value())
    }

    /// Sets the combine rule used by this collider to combine its friction
    /// coefficient with the friction coefficient of the other collider it
    /// is in contact with.
    pub fn set_friction_combine_rule(&mut self, rule: CoefficientCombineRule) {
        self.flags = self.flags.with_friction_combine_rule(rule);
    }

    /// The combine rule used by this collider to combine its restitution
    /// coefficient with the restitution coefficient of the other collider it
    /// is in contact with.
    pub fn restitution_combine_rule(&self) -> CoefficientCombineRule {
        CoefficientCombineRule::from_value(self.flags.restitution_combine_rule_value())
    }

    /// Sets the combine rule used by this collider to combine its restitution
    /// coefficient with the restitution coefficient of the other collider it
    /// is in contact with.
    pub fn set_restitution_combine_rule(&mut self, rule: CoefficientCombineRule) {
        self.flags = self.flags.with_restitution_combine_rule(rule)
    }

    /// Sets whether or not this is a sensor collider.
    pub fn set_sensor(&mut self, is_sensor: bool) {
        if is_sensor != self.is_sensor() {
            self.changes.insert(ColliderChanges::SENSOR);
            self.flags.set(ColliderFlags::SENSOR, is_sensor);
        }
    }

    #[doc(hidden)]
    pub fn set_position_debug(&mut self, position: Isometry<Real>) {
        self.position = position;
    }

    /// The position of this collider expressed in the local-space of the rigid-body it is attached to.
    #[deprecated(note = "use `.position_wrt_parent()` instead.")]
    pub fn delta(&self) -> &Isometry<Real> {
        &self.delta
    }

    /// The world-space position of this collider.
    pub fn position(&self) -> &Isometry<Real> {
        &self.position
    }

    /// Sets the position of this collider wrt. its parent rigid-body.
    pub(crate) fn set_position(&mut self, position: Isometry<Real>) {
        self.changes.insert(ColliderChanges::POSITION);
        self.position = position;
    }

    /// The position of this collider wrt the body it is attached to.
    pub fn position_wrt_parent(&self) -> &Isometry<Real> {
        &self.delta
    }

    /// Sets the position of this collider wrt. its parent rigid-body.
    pub fn set_position_wrt_parent(&mut self, position: Isometry<Real>) {
        self.changes.insert(ColliderChanges::POSITION_WRT_PARENT);
        self.delta = position;
    }

    /// The collision groups used by this collider.
    pub fn collision_groups(&self) -> InteractionGroups {
        self.collision_groups
    }

    /// Sets the collision groups of this collider.
    pub fn set_collision_groups(&mut self, groups: InteractionGroups) {
        if self.collision_groups != groups {
            self.changes.insert(ColliderChanges::COLLISION_GROUPS);
            self.collision_groups = groups;
        }
    }

    /// The solver groups used by this collider.
    pub fn solver_groups(&self) -> InteractionGroups {
        self.solver_groups
    }

    /// Sets the solver groups of this collider.
    pub fn set_solver_groups(&mut self, groups: InteractionGroups) {
        if self.solver_groups != groups {
            self.changes.insert(ColliderChanges::SOLVER_GROUPS);
            self.solver_groups = groups;
        }
    }

    /// The density of this collider, if set.
    pub fn density(&self) -> Option<Real> {
        match &self.mass_info {
            MassInfo::Density(density) => Some(*density),
            MassInfo::MassProperties(_) => None,
        }
    }

    /// The geometric shape of this collider.
    pub fn shape(&self) -> &dyn Shape {
        &*self.shape.0
    }

    /// A mutable reference to the geometric shape of this collider.
    ///
    /// If that shape is shared by multiple colliders, it will be
    /// cloned first so that `self` contains a unique copy of that
    /// shape that you can modify.
    pub fn shape_mut(&mut self) -> &mut dyn Shape {
        self.changes.insert(ColliderChanges::SHAPE);
        self.shape.make_mut()
    }

    /// Sets the shape of this collider.
    pub fn set_shape(&mut self, shape: SharedShape) {
        self.changes.insert(ColliderChanges::SHAPE);
        self.shape = shape;
    }

    /// Compute the axis-aligned bounding box of this collider.
    pub fn compute_aabb(&self) -> AABB {
        self.shape.compute_aabb(&self.position)
    }

    /// Compute the axis-aligned bounding box of this collider.
    pub fn compute_swept_aabb(&self, next_position: &Isometry<Real>) -> AABB {
        let aabb1 = self.shape.compute_aabb(&self.position);
        let aabb2 = self.shape.compute_aabb(next_position);
        aabb1.merged(&aabb2)
    }

    /// Compute the local-space mass properties of this collider.
    pub fn mass_properties(&self) -> MassProperties {
        match &self.mass_info {
            MassInfo::Density(density) => self.shape.mass_properties(*density),
            MassInfo::MassProperties(mass_properties) => **mass_properties,
        }
    }
}

/// A structure responsible for building a new collider.
#[derive(Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct ColliderBuilder {
    /// The shape of the collider to be built.
    pub shape: SharedShape,
    /// The uniform density of the collider to be built.
    density: Option<Real>,
    /// Overrides automatic computation of `MassProperties`.
    /// If None, it will be computed based on shape and density.
    mass_properties: Option<MassProperties>,
    /// The friction coefficient of the collider to be built.
    pub friction: Real,
    /// The rule used to combine two friction coefficients.
    pub friction_combine_rule: CoefficientCombineRule,
    /// The restitution coefficient of the collider to be built.
    pub restitution: Real,
    /// The rule used to combine two restitution coefficients.
    pub restitution_combine_rule: CoefficientCombineRule,
    /// The position of this collider relative to the local frame of the rigid-body it is attached to.
    pub delta: Isometry<Real>,
    /// Is this collider a sensor?
    pub is_sensor: bool,
    /// Do we have to always call the contact modifier
    /// on this collider?
    pub modify_solver_contacts: bool,
    /// The user-data of the collider being built.
    pub user_data: u128,
    /// The collision groups for the collider being built.
    pub collision_groups: InteractionGroups,
    /// The solver groups for the collider being built.
    pub solver_groups: InteractionGroups,
}

impl ColliderBuilder {
    /// Initialize a new collider builder with the given shape.
    pub fn new(shape: SharedShape) -> Self {
        Self {
            shape,
            density: None,
            mass_properties: None,
            friction: Self::default_friction(),
            restitution: 0.0,
            delta: Isometry::identity(),
            is_sensor: false,
            user_data: 0,
            collision_groups: InteractionGroups::all(),
            solver_groups: InteractionGroups::all(),
            friction_combine_rule: CoefficientCombineRule::Average,
            restitution_combine_rule: CoefficientCombineRule::Average,
            modify_solver_contacts: false,
        }
    }

    /// Initialize a new collider builder with a compound shape.
    pub fn compound(shapes: Vec<(Isometry<Real>, SharedShape)>) -> Self {
        Self::new(SharedShape::compound(shapes))
    }

    /// Initialize a new collider builder with a ball shape defined by its radius.
    pub fn ball(radius: Real) -> Self {
        Self::new(SharedShape::ball(radius))
    }

    /// Initialize a new collider build with a half-space shape defined by the outward normal
    /// of its planar boundary.
    pub fn halfspace(outward_normal: Unit<Vector<Real>>) -> Self {
        Self::new(SharedShape::halfspace(outward_normal))
    }

    /// Initialize a new collider builder with a cylindrical shape defined by its half-height
    /// (along along the y axis) and its radius.
    #[cfg(feature = "dim3")]
    pub fn cylinder(half_height: Real, radius: Real) -> Self {
        Self::new(SharedShape::cylinder(half_height, radius))
    }

    /// Initialize a new collider builder with a rounded cylindrical shape defined by its half-height
    /// (along along the y axis), its radius, and its roundedness (the
    /// radius of the sphere used for dilating the cylinder).
    #[cfg(feature = "dim3")]
    pub fn round_cylinder(half_height: Real, radius: Real, border_radius: Real) -> Self {
        Self::new(SharedShape::round_cylinder(
            half_height,
            radius,
            border_radius,
        ))
    }

    /// Initialize a new collider builder with a cone shape defined by its half-height
    /// (along along the y axis) and its basis radius.
    #[cfg(feature = "dim3")]
    pub fn cone(half_height: Real, radius: Real) -> Self {
        Self::new(SharedShape::cone(half_height, radius))
    }

    /// Initialize a new collider builder with a rounded cone shape defined by its half-height
    /// (along along the y axis), its radius, and its roundedness (the
    /// radius of the sphere used for dilating the cylinder).
    #[cfg(feature = "dim3")]
    pub fn round_cone(half_height: Real, radius: Real, border_radius: Real) -> Self {
        Self::new(SharedShape::round_cone(half_height, radius, border_radius))
    }

    /// Initialize a new collider builder with a cuboid shape defined by its half-extents.
    #[cfg(feature = "dim2")]
    pub fn cuboid(hx: Real, hy: Real) -> Self {
        Self::new(SharedShape::cuboid(hx, hy))
    }

    /// Initialize a new collider builder with a round cuboid shape defined by its half-extents
    /// and border radius.
    #[cfg(feature = "dim2")]
    pub fn round_cuboid(hx: Real, hy: Real, border_radius: Real) -> Self {
        Self::new(SharedShape::round_cuboid(hx, hy, border_radius))
    }

    /// Initialize a new collider builder with a capsule shape aligned with the `x` axis.
    pub fn capsule_x(half_height: Real, radius: Real) -> Self {
        let p = Point::from(Vector::x() * half_height);
        Self::new(SharedShape::capsule(-p, p, radius))
    }

    /// Initialize a new collider builder with a capsule shape aligned with the `y` axis.
    pub fn capsule_y(half_height: Real, radius: Real) -> Self {
        let p = Point::from(Vector::y() * half_height);
        Self::new(SharedShape::capsule(-p, p, radius))
    }

    /// Initialize a new collider builder with a capsule shape aligned with the `z` axis.
    #[cfg(feature = "dim3")]
    pub fn capsule_z(half_height: Real, radius: Real) -> Self {
        let p = Point::from(Vector::z() * half_height);
        Self::new(SharedShape::capsule(-p, p, radius))
    }

    /// Initialize a new collider builder with a cuboid shape defined by its half-extents.
    #[cfg(feature = "dim3")]
    pub fn cuboid(hx: Real, hy: Real, hz: Real) -> Self {
        Self::new(SharedShape::cuboid(hx, hy, hz))
    }

    /// Initialize a new collider builder with a round cuboid shape defined by its half-extents
    /// and border radius.
    #[cfg(feature = "dim3")]
    pub fn round_cuboid(hx: Real, hy: Real, hz: Real, border_radius: Real) -> Self {
        Self::new(SharedShape::round_cuboid(hx, hy, hz, border_radius))
    }

    /// Initializes a collider builder with a segment shape.
    pub fn segment(a: Point<Real>, b: Point<Real>) -> Self {
        Self::new(SharedShape::segment(a, b))
    }

    /// Initializes a collider builder with a triangle shape.
    pub fn triangle(a: Point<Real>, b: Point<Real>, c: Point<Real>) -> Self {
        Self::new(SharedShape::triangle(a, b, c))
    }

    /// Initializes a collider builder with a triangle shape with round corners.
    pub fn round_triangle(
        a: Point<Real>,
        b: Point<Real>,
        c: Point<Real>,
        border_radius: Real,
    ) -> Self {
        Self::new(SharedShape::round_triangle(a, b, c, border_radius))
    }

    /// Initializes a collider builder with a polyline shape defined by its vertex and index buffers.
    pub fn polyline(vertices: Vec<Point<Real>>, indices: Option<Vec<[u32; 2]>>) -> Self {
        Self::new(SharedShape::polyline(vertices, indices))
    }

    /// Initializes a collider builder with a triangle mesh shape defined by its vertex and index buffers.
    pub fn trimesh(vertices: Vec<Point<Real>>, indices: Vec<[u32; 3]>) -> Self {
        Self::new(SharedShape::trimesh(vertices, indices))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
    pub fn convex_decomposition(vertices: &[Point<Real>], indices: &[[u32; DIM]]) -> Self {
        Self::new(SharedShape::convex_decomposition(vertices, indices))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
    pub fn round_convex_decomposition(
        vertices: &[Point<Real>],
        indices: &[[u32; DIM]],
        border_radius: Real,
    ) -> Self {
        Self::new(SharedShape::round_convex_decomposition(
            vertices,
            indices,
            border_radius,
        ))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
    pub fn convex_decomposition_with_params(
        vertices: &[Point<Real>],
        indices: &[[u32; DIM]],
        params: &VHACDParameters,
    ) -> Self {
        Self::new(SharedShape::convex_decomposition_with_params(
            vertices, indices, params,
        ))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
    pub fn round_convex_decomposition_with_params(
        vertices: &[Point<Real>],
        indices: &[[u32; DIM]],
        params: &VHACDParameters,
        border_radius: Real,
    ) -> Self {
        Self::new(SharedShape::round_convex_decomposition_with_params(
            vertices,
            indices,
            params,
            border_radius,
        ))
    }

    /// Initializes a new collider builder with a 2D convex polygon or 3D convex polyhedron
    /// obtained after computing the convex-hull of the given points.
    pub fn convex_hull(points: &[Point<Real>]) -> Option<Self> {
        SharedShape::convex_hull(points).map(Self::new)
    }

    /// Initializes a new collider builder with a round 2D convex polygon or 3D convex polyhedron
    /// obtained after computing the convex-hull of the given points. The shape is dilated
    /// by a sphere of radius `border_radius`.
    pub fn round_convex_hull(points: &[Point<Real>], border_radius: Real) -> Option<Self> {
        SharedShape::round_convex_hull(points, border_radius).map(Self::new)
    }

    /// Creates a new collider builder that is a convex polygon formed by the
    /// given polyline assumed to be convex (no convex-hull will be automatically
    /// computed).
    #[cfg(feature = "dim2")]
    pub fn convex_polyline(points: Vec<Point<Real>>) -> Option<Self> {
        SharedShape::convex_polyline(points).map(Self::new)
    }

    /// Creates a new collider builder that is a round convex polygon formed by the
    /// given polyline assumed to be convex (no convex-hull will be automatically
    /// computed). The polygon shape is dilated by a sphere of radius `border_radius`.
    #[cfg(feature = "dim2")]
    pub fn round_convex_polyline(points: Vec<Point<Real>>, border_radius: Real) -> Option<Self> {
        SharedShape::round_convex_polyline(points, border_radius).map(Self::new)
    }

    /// Creates a new collider builder that is a convex polyhedron formed by the
    /// given triangle-mesh assumed to be convex (no convex-hull will be automatically
    /// computed).
    #[cfg(feature = "dim3")]
    pub fn convex_mesh(points: Vec<Point<Real>>, indices: &[[u32; 3]]) -> Option<Self> {
        SharedShape::convex_mesh(points, indices).map(Self::new)
    }

    /// Creates a new collider builder that is a round convex polyhedron formed by the
    /// given triangle-mesh assumed to be convex (no convex-hull will be automatically
    /// computed). The triangle mesh shape is dilated by a sphere of radius `border_radius`.
    #[cfg(feature = "dim3")]
    pub fn round_convex_mesh(
        points: Vec<Point<Real>>,
        indices: &[[u32; 3]],
        border_radius: Real,
    ) -> Option<Self> {
        SharedShape::round_convex_mesh(points, indices, border_radius).map(Self::new)
    }

    /// Initializes a collider builder with a heightfield shape defined by its set of height and a scale
    /// factor along each coordinate axis.
    #[cfg(feature = "dim2")]
    pub fn heightfield(heights: na::DVector<Real>, scale: Vector<Real>) -> Self {
        Self::new(SharedShape::heightfield(heights, scale))
    }

    /// Initializes a collider builder with a heightfield shape defined by its set of height and a scale
    /// factor along each coordinate axis.
    #[cfg(feature = "dim3")]
    pub fn heightfield(heights: na::DMatrix<Real>, scale: Vector<Real>) -> Self {
        Self::new(SharedShape::heightfield(heights, scale))
    }

    /// The default friction coefficient used by the collider builder.
    pub fn default_friction() -> Real {
        0.5
    }

    /// Sets an arbitrary user-defined 128-bit integer associated to the colliders built by this builder.
    pub fn user_data(mut self, data: u128) -> Self {
        self.user_data = data;
        self
    }

    /// Sets the collision groups used by this collider.
    ///
    /// Two colliders will interact iff. their collision groups are compatible.
    /// See [InteractionGroups::test] for details.
    pub fn collision_groups(mut self, groups: InteractionGroups) -> Self {
        self.collision_groups = groups;
        self
    }

    /// Sets the solver groups used by this collider.
    ///
    /// Forces between two colliders in contact will be computed iff their solver groups are
    /// compatible. See [InteractionGroups::test] for details.
    pub fn solver_groups(mut self, groups: InteractionGroups) -> Self {
        self.solver_groups = groups;
        self
    }

    /// Sets whether or not the collider built by this builder is a sensor.
    ///
    /// Sensors will have a default density of zero,
    /// but if you call [`Self::mass_properties`] you can assign a mass to a sensor.
    pub fn sensor(mut self, is_sensor: bool) -> Self {
        self.is_sensor = is_sensor;
        self
    }

    /// If set to `true` then the physics hooks will always run to modify
    /// contacts involving this collider.
    pub fn modify_solver_contacts(mut self, modify_solver_contacts: bool) -> Self {
        self.modify_solver_contacts = modify_solver_contacts;
        self
    }

    /// Sets the friction coefficient of the collider this builder will build.
    pub fn friction(mut self, friction: Real) -> Self {
        self.friction = friction;
        self
    }

    /// Sets the rule to be used to combine two friction coefficients in a contact.
    pub fn friction_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
        self.friction_combine_rule = rule;
        self
    }

    /// Sets the restitution coefficient of the collider this builder will build.
    pub fn restitution(mut self, restitution: Real) -> Self {
        self.restitution = restitution;
        self
    }

    /// Sets the rule to be used to combine two restitution coefficients in a contact.
    pub fn restitution_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
        self.restitution_combine_rule = rule;
        self
    }

    /// Sets the uniform density of the collider this builder will build.
    ///
    /// This will be overridden by a call to [`Self::mass_properties`] so it only makes sense to call
    /// either [`Self::density`] or [`Self::mass_properties`].
    pub fn density(mut self, density: Real) -> Self {
        self.density = Some(density);
        self
    }

    /// Sets the mass properties of the collider this builder will build.
    ///
    /// If this is set, [`Self::density`] will be ignored, so it only makes sense to call
    /// either [`Self::density`] or [`Self::mass_properties`].
    pub fn mass_properties(mut self, mass_properties: MassProperties) -> Self {
        self.mass_properties = Some(mass_properties);
        self
    }

    /// Sets the initial translation of the collider to be created,
    /// relative to the rigid-body it is attached to.
    #[cfg(feature = "dim2")]
    pub fn translation(mut self, x: Real, y: Real) -> Self {
        self.delta.translation.x = x;
        self.delta.translation.y = y;
        self
    }

    /// Sets the initial translation of the collider to be created,
    /// relative to the rigid-body it is attached to.
    #[cfg(feature = "dim3")]
    pub fn translation(mut self, x: Real, y: Real, z: Real) -> Self {
        self.delta.translation.x = x;
        self.delta.translation.y = y;
        self.delta.translation.z = z;
        self
    }

    /// Sets the initial orientation of the collider to be created,
    /// relative to the rigid-body it is attached to.
    pub fn rotation(mut self, angle: AngVector<Real>) -> Self {
        self.delta.rotation = Rotation::new(angle);
        self
    }

    /// Sets the initial position (translation and orientation) of the collider to be created,
    /// relative to the rigid-body it is attached to.
    pub fn position_wrt_parent(mut self, pos: Isometry<Real>) -> Self {
        self.delta = pos;
        self
    }

    /// Sets the initial position (translation and orientation) of the collider to be created,
    /// relative to the rigid-body it is attached to.
    #[deprecated(note = "Use `.position_wrt_parent` instead.")]
    pub fn position(mut self, pos: Isometry<Real>) -> Self {
        self.delta = pos;
        self
    }

    /// Set the position of this collider in the local-space of the rigid-body it is attached to.
    #[deprecated(note = "Use `.position` instead.")]
    pub fn delta(mut self, delta: Isometry<Real>) -> Self {
        self.delta = delta;
        self
    }

    /// Builds a new collider attached to the given rigid-body.
    pub fn build(&self) -> Collider {
        let mass_info = if let Some(mp) = self.mass_properties {
            MassInfo::MassProperties(Box::new(mp))
        } else {
            let default_density = if self.is_sensor { 0.0 } else { 1.0 };
            let density = self.density.unwrap_or(default_density);
            MassInfo::Density(density)
        };

        let mut flags = ColliderFlags::empty();
        flags.set(ColliderFlags::SENSOR, self.is_sensor);
        flags = flags
            .with_friction_combine_rule(self.friction_combine_rule)
            .with_restitution_combine_rule(self.restitution_combine_rule);
        let mut solver_flags = SolverFlags::default();
        solver_flags.set(
            SolverFlags::MODIFY_SOLVER_CONTACTS,
            self.modify_solver_contacts,
        );

        Collider {
            shape: self.shape.clone(),
            mass_info,
            friction: self.friction,
            restitution: self.restitution,
            delta: self.delta,
            flags,
            solver_flags,
            changes: ColliderChanges::all(),
            parent: RigidBodyHandle::invalid(),
            position: Isometry::identity(),
            proxy_index: crate::INVALID_U32,
            collision_groups: self.collision_groups,
            solver_groups: self.solver_groups,
            user_data: self.user_data,
        }
    }
}