1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
//! Radixal provides the [`IntoDigits`](trait.IntoDigits.html) trait to simplify treating unsigned
//! integer types as a sequence of digits under a specified radix.
#![cfg_attr(not(feature = "std"), no_std)]

pub mod digits_iterator;

use core::num::Wrapping;
use digits_iterator::{DigitsIterator, RadixError};
use num_traits::{Unsigned, WrappingAdd, WrappingMul};

/// An extension trait on unsigned integer types (`u8`, `u16`, `u32`, `u64`, `u128` and `usize`)
/// and the corresponding `Wrapping` type.
pub trait IntoDigits: Copy + PartialOrd + Ord + WrappingAdd + WrappingMul + Unsigned {
    #[doc(hidden)]
    const BINARY_RADIX: Self;

    #[doc(hidden)]
    const DECIMAL_RADIX: Self;

    /// Creates a `DigitsIterator` with a given `radix`.
    ///
    /// Returns `Err(RadixError)` if the radix is 0 or 1.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let mut digits = 123_u32.into_digits(10).unwrap();
    ///
    /// assert_eq!(digits.next(), Some(1));
    /// assert_eq!(digits.next(), Some(2));
    /// assert_eq!(digits.next(), Some(3));
    /// assert_eq!(digits.next(), None);
    /// ```
    fn into_digits(self, radix: Self) -> Result<DigitsIterator<Self>, RadixError> {
        DigitsIterator::new(self, radix)
    }

    /// Creates a `DigitsIterator` with a binary radix.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let mut digits = 12_u32.into_binary_digits();
    ///
    /// assert_eq!(digits.next(), Some(1));
    /// assert_eq!(digits.next(), Some(1));
    /// assert_eq!(digits.next(), Some(0));
    /// assert_eq!(digits.next(), Some(0));
    /// assert_eq!(digits.next(), None);
    /// ```
    fn into_binary_digits(self) -> DigitsIterator<Self> {
        self.into_digits(Self::BINARY_RADIX).unwrap()
    }

    /// Creates a `DigitsIterator` with a decimal radix.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let mut digits = 12_u32.into_decimal_digits();
    ///
    /// assert_eq!(digits.next(), Some(1));
    /// assert_eq!(digits.next(), Some(2));
    /// assert_eq!(digits.next(), None);
    /// ```
    fn into_decimal_digits(self) -> DigitsIterator<Self> {
        self.into_digits(Self::DECIMAL_RADIX).unwrap()
    }

    /// Counts the number of digits for a given `radix`.
    ///
    /// Returns `Err(RadixError)` if the radix is 0 or 1.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 123_u32;
    /// assert_eq!(n.nbr_digits(10).unwrap(), 3);
    /// ```
    fn nbr_digits(self, radix: Self) -> Result<usize, RadixError> {
        self.into_digits(radix).map(DigitsIterator::count)
    }

    /// Counts the number of binary digits.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 12_u32;
    /// assert_eq!(n.nbr_binary_digits(), 4);
    /// ```
    fn nbr_binary_digits(self) -> usize {
        self.nbr_digits(Self::BINARY_RADIX).unwrap()
    }

    /// Counts the number of decimal digits.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 123_u32;
    ///
    /// assert_eq!(n.nbr_decimal_digits(), 3);
    /// ```
    fn nbr_decimal_digits(self) -> usize {
        self.nbr_digits(Self::DECIMAL_RADIX).unwrap()
    }

    /// Checks if it is a palindrome for a given `radix`.
    ///
    /// Returns `Err(RadixError)` if the radix is 0 or 1.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 123_u32;
    /// assert!(!n.is_palindrome(10).unwrap());
    /// let n = 121_u32;
    /// assert!(n.is_palindrome(10).unwrap());
    /// ```
    fn is_palindrome(self, radix: Self) -> Result<bool, RadixError> {
        let mut iter = self.into_digits(radix)?;

        while iter.len() > 1 {
            if iter.next() != iter.next_back() {
                return Ok(false);
            }
        }

        Ok(true)
    }

    /// Checks if it is a palindrome under a binary number system.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 12_u32;
    /// assert!(!n.is_binary_palindrome());
    /// let n = 9_u32;
    /// assert!(n.is_binary_palindrome());
    /// ```
    fn is_binary_palindrome(self) -> bool {
        self.is_palindrome(Self::BINARY_RADIX).unwrap()
    }

    /// Checks if it is a palindrome under a decimal number system.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 123_u32;
    /// assert!(!n.is_decimal_palindrome());
    /// let n = 121_u32;
    /// assert!(n.is_decimal_palindrome());
    /// ```
    fn is_decimal_palindrome(self) -> bool {
        self.is_palindrome(Self::DECIMAL_RADIX).unwrap()
    }

    /// Reverses the digits, returning a new number with the digits reversed, using wrapping
    /// semantics if necessary.
    ///
    /// Since trailing zeroes are not conserved, this operation is not reversible.
    ///
    /// Returns `Err(RadixError)` if the radix is 0 or 1.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 123_u32;
    /// let reversed = n.reverse_digits(10).unwrap();
    /// assert_eq!(reversed, 321);
    ///
    /// /// Wrapping on overflow.
    /// let n = 255_u8;
    /// let reversed = n.reverse_digits(10).unwrap();
    /// assert_ne!(reversed, n);
    /// assert_eq!(reversed, 40);
    ///
    /// /// Trailing zeroes lead to irreversibility.
    /// let n = 1230_u32;
    /// let twice_reversed = n.reverse_digits(10).unwrap().reverse_digits(10).unwrap();
    /// assert_ne!(twice_reversed, n);
    /// assert_eq!(twice_reversed, 123);
    /// ```
    fn reverse_digits(self, radix: Self) -> Result<Self, RadixError> {
        if radix == Self::zero() {
            return Err(RadixError::Radix0);
        } else if radix == Self::one() {
            return Err(RadixError::Radix1);
        }

        let mut n = self;
        let mut result = Self::zero();

        while n > Self::zero() {
            result = result.wrapping_mul(&radix).wrapping_add(&(n % radix));
            n = n / radix;
        }

        Ok(result)
    }

    /// Reverse the digits under a binary number system.
    ///
    /// Since trailing zeroes are not conserved, this operation is not reversible.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 0b1100_u32;
    /// let m = n.reverse_binary_digits();
    ///
    /// assert_eq!(m, 0b11);
    /// ```
    fn reverse_binary_digits(self) -> Self {
        self.reverse_digits(Self::BINARY_RADIX).unwrap()
    }

    /// Reverses the digits under a decimal number system, using wrapping semantics if necessary.
    ///
    /// Since trailing zeroes are not conserved, this operation is not reversible.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 123_u32;
    /// let reversed = n.reverse_decimal_digits();
    /// assert_eq!(reversed, 321);
    /// ```
    fn reverse_decimal_digits(self) -> Self {
        self.reverse_digits(Self::DECIMAL_RADIX).unwrap()
    }

    /// Tests if `self` and `other` are composed of the same digits under a given radix.
    ///
    /// Since any number can be left-padded with `0`'s, these are ignored when doing the
    /// comparison.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 120_u32;
    /// let m = 2100_u32;
    ///
    /// assert!(n.is_permutation(m, 10).unwrap());
    /// ```
    #[cfg(feature = "std")]
    fn is_permutation(self, other: Self, radix: Self) -> Result<bool, RadixError> {
        // This is reasonably efficient, but can be improved by short-circuiting.
        let mut a: Vec<Self> = self.into_digits(radix)?.filter(|&n| !n.is_zero()).collect();
        let mut b: Vec<Self> = other
            .into_digits(radix)?
            .filter(|&n| !n.is_zero())
            .collect();

        if a.len() != b.len() {
            return Ok(false);
        }

        a.sort();
        b.sort();
        Ok(a == b)
    }

    /// Tests if `self` and `other` are composed of the same digits under a decimal radix.
    ///
    /// Since any number can be left-padded with `0`'s, these are ignored when doing the
    /// comparison.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 120_u32;
    /// let m = 2100_u32;
    ///
    /// assert!(n.is_decimal_permutation(m).unwrap());
    /// ```
    #[cfg(feature = "std")]
    fn is_decimal_permutation(self, other: Self) -> Result<bool, RadixError> {
        // This is reasonably efficient, but can be improved by short-circuiting.
        let mut a: Vec<Self> = self
            .into_decimal_digits()
            .filter(|&n| !n.is_zero())
            .collect();
        let mut b: Vec<Self> = other
            .into_decimal_digits()
            .filter(|&n| !n.is_zero())
            .collect();

        if a.len() != b.len() {
            return Ok(false);
        }

        a.sort();
        b.sort();
        Ok(a == b)
    }

    /// Tests if `self` and `other` are composed of the same digits under a binary radix.
    ///
    /// Since any number can be left-padded with `0`'s, these are ignored when doing the
    /// comparison.
    ///
    /// This convenience function is offered for the sake of completeness; consider using the
    /// `count_ones` method instead.
    ///
    /// # Example
    ///
    /// ```
    /// use radixal::IntoDigits;
    ///
    /// let n = 12_u32;
    /// let m = 17_u32;
    ///
    /// assert!(n.is_binary_permutation(m).unwrap());
    /// ```
    #[cfg(feature = "std")]
    fn is_binary_permutation(self, other: Self) -> Result<bool, RadixError> {
        // This is reasonably efficient, but can be improved by short-circuiting.
        let mut a: Vec<Self> = self
            .into_binary_digits()
            .filter(|&n| !n.is_zero())
            .collect();
        let mut b: Vec<Self> = other
            .into_binary_digits()
            .filter(|&n| !n.is_zero())
            .collect();

        if a.len() != b.len() {
            return Ok(false);
        }

        a.sort();
        b.sort();
        Ok(a == b)
    }
}

macro_rules! impl_digits {
    ( $($t:ty)* ) => {
        $(
            impl IntoDigits for $t {
                const BINARY_RADIX: Self = 2;
                const DECIMAL_RADIX: Self = 10;
            }
            impl IntoDigits for Wrapping<$t> {
                const BINARY_RADIX: Self = Wrapping(2);
                const DECIMAL_RADIX: Self = Wrapping(10);
            }
        )*
    };
}

impl_digits!(u8 u16 u32 u64 u128 usize);