1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
/* 
 * QR Code generator library (Rust)
 * 
 * Copyright (c) Project Nayuki. (MIT License)
 * https://www.nayuki.io/page/qr-code-generator-library
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 * - The above copyright notice and this permission notice shall be included in
 *   all copies or substantial portions of the Software.
 * - The Software is provided "as is", without warranty of any kind, express or
 *   implied, including but not limited to the warranties of merchantability,
 *   fitness for a particular purpose and noninfringement. In no event shall the
 *   authors or copyright holders be liable for any claim, damages or other
 *   liability, whether in an action of contract, tort or otherwise, arising from,
 *   out of or in connection with the Software or the use or other dealings in the
 *   Software.
 */


//! Generates QR Codes from text strings and byte arrays.
//! 
//! This project aims to be the best, clearest QR Code generator library.
//! The primary goals are flexible options and absolute correctness.
//! Secondary goals are compact implementation size and good documentation comments.
//! 
//! Home page with live JavaScript demo, extensive descriptions, and competitor comparisons:
//! [https://www.nayuki.io/page/qr-code-generator-library](https://www.nayuki.io/page/qr-code-generator-library)
//! 
//! # Features
//! 
//! Core features:
//! 
//! - Available in 7 programming languages, all with nearly equal functionality: Java, JavaScript, TypeScript, Python, C++, C, Rust
//! - Significantly shorter code but more documentation comments compared to competing libraries
//! - Supports encoding all 40 versions (sizes) and all 4 error correction levels, as per the QR Code Model 2 standard
//! - Output formats: Raw modules/pixels of the QR symbol, SVG XML string
//! - Encodes numeric and special-alphanumeric text in less space than general text
//! - Open source code under the permissive MIT License
//! 
//! Manual parameters:
//! 
//! - User can specify minimum and maximum version numbers allowed, then library will automatically choose smallest version in the range that fits the data
//! - User can specify mask pattern manually, otherwise library will automatically evaluate all 8 masks and select the optimal one
//! - User can specify absolute error correction level, or allow the library to boost it if it doesn't increase the version number
//! - User can create a list of data segments manually and add ECI segments
//! 
//! # Examples
//! 
//! ```
//! extern crate qrcodegen;
//! use qrcodegen::QrCode;
//! use qrcodegen::QrCodeEcc;
//! use qrcodegen::QrSegment;
//! ```
//! 
//! Simple operation:
//! 
//! ```
//! let qr = QrCode::encode_text("Hello, world!",
//!     QrCodeEcc::Medium).unwrap();
//! let svg = qr.to_svg_string(4);
//! ```
//! 
//! Manual operation:
//! 
//! ```
//! let chrs: Vec<char> = "3141592653589793238462643383".chars().collect();
//! let segs = QrSegment::make_segments(&chrs);
//! let qr = QrCode::encode_segments_advanced(
//!     &segs, QrCodeEcc::High, 5, 5, Some(2), false).unwrap();
//! for y in 0 .. qr.size() {
//!     for x in 0 .. qr.size() {
//!         (... paint qr.get_module(x, y) ...)
//!     }
//! }
//! ```


/*---- QrCode functionality ----*/

/// A QR Code symbol, which is a type of two-dimension barcode.
/// 
/// Invented by Denso Wave and described in the ISO/IEC 18004 standard.
/// 
/// Instances of this struct represent an immutable square grid of black and white cells.
/// The impl provides static factory functions to create a QR Code from text or binary data.
/// The struct and impl cover the QR Code Model 2 specification, supporting all versions
/// (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
/// 
/// Ways to create a QR Code object:
/// 
/// - High level: Take the payload data and call `QrCode::encode_text()` or `QrCode::encode_binary()`.
/// - Mid level: Custom-make the list of segments and call
///   `QrCode::encode_segments()` or `QrCode::encode_segments_advanced()`.
/// - Low level: Custom-make the array of data codeword bytes (including segment
///   headers and final padding, excluding error correction codewords), supply the
///   appropriate version number, and call the `QrCode::encode_codewords()` constructor.
/// 
/// (Note that all ways require supplying the desired error correction level.)
#[derive(Clone)]
pub struct QrCode {
	
	// Scalar parameters:
	
	// The version number of this QR Code, which is between 1 and 40 (inclusive).
	// This determines the size of this barcode.
	version: Version,
	
	// The width and height of this QR Code, measured in modules, between
	// 21 and 177 (inclusive). This is equal to version * 4 + 17.
	size: i32,
	
	// The error correction level used in this QR Code.
	errorcorrectionlevel: QrCodeEcc,
	
	// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
	// Even if a QR Code is created with automatic masking requested (mask = None),
	// the resulting object still has a mask value between 0 and 7.
	mask: Mask,
	
	// Grids of modules/pixels, with dimensions of size*size:
	
	// The modules of this QR Code (false = white, true = black).
	// Immutable after constructor finishes. Accessed through get_module().
	modules: Vec<bool>,
	
	// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
	isfunction: Vec<bool>,
	
}


impl QrCode {
	
	/*---- Static factory functions (high level) ----*/
	
	/// Returns a QR Code representing the given Unicode text string at the given error correction level.
	/// 
	/// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
	/// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible
	/// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
	/// the ecl argument if it can be done without increasing the version.
	/// 
	/// Returns a wrapped `QrCode` if successful, or `None` if the
	/// data is too long to fit in any version at the given ECC level.
	pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Option<Self> {
		let chrs: Vec<char> = text.chars().collect();
		let segs: Vec<QrSegment> = QrSegment::make_segments(&chrs);
		QrCode::encode_segments(&segs, ecl)
	}
	
	
	/// Returns a QR Code representing the given binary data at the given error correction level.
	/// 
	/// This function always encodes using the binary segment mode, not any text mode. The maximum number of
	/// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
	/// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
	/// 
	/// Returns a wrapped `QrCode` if successful, or `None` if the
	/// data is too long to fit in any version at the given ECC level.
	pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Option<Self> {
		let segs: Vec<QrSegment> = vec![QrSegment::make_bytes(data)];
		QrCode::encode_segments(&segs, ecl)
	}
	
	
	/*---- Static factory functions (mid level) ----*/
	
	/// Returns a QR Code representing the given segments at the given error correction level.
	/// 
	/// The smallest possible QR Code version is automatically chosen for the output. The ECC level
	/// of the result may be higher than the ecl argument if it can be done without increasing the version.
	/// 
	/// This function allows the user to create a custom sequence of segments that switches
	/// between modes (such as alphanumeric and byte) to encode text in less space.
	/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
	/// 
	/// Returns a wrapped `QrCode` if successful, or `None` if the
	/// data is too long to fit in any version at the given ECC level.
	pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Option<Self> {
		QrCode::encode_segments_advanced(segs, ecl, QrCode_MIN_VERSION, QrCode_MAX_VERSION, None, true)
	}
	
	
	/// Returns a QR Code representing the given segments with the given encoding parameters.
	/// 
	/// The smallest possible QR Code version within the given range is automatically
	/// chosen for the output. Iff boostecl is `true`, then the ECC level of the result
	/// may be higher than the ecl argument if it can be done without increasing the
	/// version. The mask number is either between 0 to 7 (inclusive) to force that
	/// mask, or `None` to automatically choose an appropriate mask (which may be slow).
	/// 
	/// This function allows the user to create a custom sequence of segments that switches
	/// between modes (such as alphanumeric and byte) to encode text in less space.
	/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
	/// 
	/// Returns a wrapped `QrCode` if successful, or `None` if the data is too
	/// long to fit in any version in the given range at the given ECC level.
	pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc,
			minversion: Version, maxversion: Version, mask: Option<Mask>, boostecl: bool) -> Option<Self> {
		assert!(minversion.value() <= maxversion.value(), "Invalid value");
		
		// Find the minimal version number to use
		let mut version = minversion;
		let datausedbits: usize;
		loop {
			// Number of data bits available
			let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8;
			if let Some(n) = QrSegment::get_total_bits(segs, version) {
				if n <= datacapacitybits {
					datausedbits = n;
					break;  // This version number is found to be suitable
				}
			}
			if version.value() >= maxversion.value() {  // All versions in the range could not fit the given data
				return None;
			}
			version = Version::new(version.value() + 1);
		}
		
		// Increase the error correction level while the data still fits in the current version number
		for newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] {  // From low to high
			if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, *newecl) * 8 {
				ecl = *newecl;
			}
		}
		
		// Concatenate all segments to create the data bit string
		let mut bb = BitBuffer(Vec::new());
		for seg in segs {
			bb.append_bits(seg.mode.mode_bits(), 4);
			bb.append_bits(seg.numchars as u32, seg.mode.num_char_count_bits(version));
			bb.0.extend_from_slice(&seg.data);
		}
		assert_eq!(bb.0.len(), datausedbits);
		
		// Add terminator and pad up to a byte if applicable
		let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8;
		assert!(bb.0.len() <= datacapacitybits);
		let numzerobits = std::cmp::min(4, datacapacitybits - bb.0.len());
		bb.append_bits(0, numzerobits as u8);
		let numzerobits = bb.0.len().wrapping_neg() & 7;
		bb.append_bits(0, numzerobits as u8);
		assert_eq!(bb.0.len() % 8, 0, "Assertion error");
		
		// Pad with alternating bytes until data capacity is reached
		for padbyte in [0xEC, 0x11].iter().cycle() {
			if bb.0.len() >= datacapacitybits {
				break;
			}
			bb.append_bits(*padbyte, 8);
		}
		
		// Pack bits into bytes in big endian
		let mut datacodewords = vec![0u8; bb.0.len() / 8];
		for (i, bit) in bb.0.iter().enumerate() {
			datacodewords[i >> 3] |= (*bit as u8) << (7 - (i & 7));
		}
		
		// Create the QR Code object
		Some(QrCode::encode_codewords(version, ecl, &datacodewords, mask))
	}
	
	
	/*---- Constructor (low level) ----*/
	
	/// Creates a new QR Code with the given version number,
	/// error correction level, data codeword bytes, and mask number.
	/// 
	/// This is a low-level API that most users should not use directly.
	/// A mid-level API is the `encode_segments()` function.
	pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mask: Option<Mask>) -> Self {
		// Initialize fields
		let size: usize = (ver.value() as usize) * 4 + 17;
		let mut result = Self {
			version: ver,
			size: size as i32,
			mask: Mask::new(0),  // Dummy value
			errorcorrectionlevel: ecl,
			modules   : vec![false; size * size],  // Initially all white
			isfunction: vec![false; size * size],
		};
		
		// Compute ECC, draw modules, do masking
		result.draw_function_patterns();
		let allcodewords: Vec<u8> = result.add_ecc_and_interleave(datacodewords);
		result.draw_codewords(&allcodewords);
		result.handle_constructor_masking(mask);
		result.isfunction.clear();
		result.isfunction.shrink_to_fit();
		result
	}
	
	
	/*---- Public methods ----*/
	
	/// Returns this QR Code's version, in the range [1, 40].
	pub fn version(&self) -> Version {
		self.version
	}
	
	
	/// Returns this QR Code's size, in the range [21, 177].
	pub fn size(&self) -> i32 {
		self.size
	}
	
	
	/// Returns this QR Code's error correction level.
	pub fn error_correction_level(&self) -> QrCodeEcc {
		self.errorcorrectionlevel
	}
	
	
	/// Returns this QR Code's mask, in the range [0, 7].
	pub fn mask(&self) -> Mask {
		self.mask
	}
	
	
	/// Returns the color of the module (pixel) at the given coordinates,
	/// which is `false` for white or `true` for black.
	/// 
	/// The top left corner has the coordinates (x=0, y=0). If the given
	/// coordinates are out of bounds, then `false` (white) is returned.
	pub fn get_module(&self, x: i32, y: i32) -> bool {
		0 <= x && x < self.size && 0 <= y && y < self.size && self.module(x, y)
	}
	
	
	// Returns the color of the module at the given coordinates, which must be in bounds.
	fn module(&self, x: i32, y: i32) -> bool {
		self.modules[(y * self.size + x) as usize]
	}
	
	
	// Returns a mutable reference to the module's color at the given coordinates, which must be in bounds.
	fn module_mut(&mut self, x: i32, y: i32) -> &mut bool {
		&mut self.modules[(y * self.size + x) as usize]
	}
	
	
	/// Returns a string of SVG code for an image depicting
	/// this QR Code, with the given number of border modules.
	/// 
	/// The string always uses Unix newlines (\n), regardless of the platform.
	pub fn to_svg_string(&self, border: i32) -> String {
		assert!(border >= 0, "Border must be non-negative");
		let mut result = String::new();
		result += "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
		result += "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n";
		let dimension = self.size.checked_add(border.checked_mul(2).unwrap()).unwrap();
		result += &format!(
			"<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" viewBox=\"0 0 {0} {0}\" stroke=\"none\">\n", dimension);
		result += "\t<rect width=\"100%\" height=\"100%\" fill=\"#FFFFFF\"/>\n";
		result += "\t<path d=\"";
		for y in 0 .. self.size {
			for x in 0 .. self.size {
				if self.get_module(x, y) {
					if x != 0 || y != 0 {
						result += " ";
					}
					result += &format!("M{},{}h1v1h-1z", x + border, y + border);
				}
			}
		}
		result += "\" fill=\"#000000\"/>\n";
		result += "</svg>\n";
		result
	}
	
	
	/*---- Private helper methods for constructor: Drawing function modules ----*/
	
	// Reads this object's version field, and draws and marks all function modules.
	fn draw_function_patterns(&mut self) {
		// Draw horizontal and vertical timing patterns
		let size: i32 = self.size;
		for i in 0 .. size {
			self.set_function_module(6, i, i % 2 == 0);
			self.set_function_module(i, 6, i % 2 == 0);
		}
		
		// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
		self.draw_finder_pattern(3, 3);
		self.draw_finder_pattern(size - 4, 3);
		self.draw_finder_pattern(3, size - 4);
		
		// Draw numerous alignment patterns
		let alignpatpos: Vec<i32> = self.get_alignment_pattern_positions();
		let numalign: usize = alignpatpos.len();
		for i in 0 .. numalign {
			for j in 0 .. numalign {
				// Don't draw on the three finder corners
				if !(i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0) {
					self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]);
				}
			}
		}
		
		// Draw configuration data
		self.draw_format_bits(Mask::new(0));  // Dummy mask value; overwritten later in the constructor
		self.draw_version();
	}
	
	
	// Draws two copies of the format bits (with its own error correction code)
	// based on the given mask and this object's error correction level field.
	fn draw_format_bits(&mut self, mask: Mask) {
		// Calculate error correction code and pack bits
		let size: i32 = self.size;
		// errcorrlvl is uint2, mask is uint3
		let data: u32 = self.errorcorrectionlevel.format_bits() << 3 | (mask.value() as u32);
		let mut rem: u32 = data;
		for _ in 0 .. 10 {
			rem = (rem << 1) ^ ((rem >> 9) * 0x537);
		}
		let bits: u32 = (data << 10 | rem) ^ 0x5412;  // uint15
		assert_eq!(bits >> 15, 0, "Assertion error");
		
		// Draw first copy
		for i in 0 .. 6 {
			self.set_function_module(8, i, get_bit(bits, i));
		}
		self.set_function_module(8, 7, get_bit(bits, 6));
		self.set_function_module(8, 8, get_bit(bits, 7));
		self.set_function_module(7, 8, get_bit(bits, 8));
		for i in 9 .. 15 {
			self.set_function_module(14 - i, 8, get_bit(bits, i));
		}
		
		// Draw second copy
		for i in 0 .. 8 {
			self.set_function_module(size - 1 - i, 8, get_bit(bits, i));
		}
		for i in 8 .. 15 {
			self.set_function_module(8, size - 15 + i, get_bit(bits, i));
		}
		self.set_function_module(8, size - 8, true);  // Always black
	}
	
	
	// Draws two copies of the version bits (with its own error correction code),
	// based on this object's version field, iff 7 <= version <= 40.
	fn draw_version(&mut self) {
		if self.version.value() < 7 {
			return;
		}
		
		// Calculate error correction code and pack bits
		let mut rem: u32 = self.version.value() as u32;  // version is uint6, in the range [7, 40]
		for _ in 0 .. 12 {
			rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
		}
		let bits: u32 = (self.version.value() as u32) << 12 | rem;  // uint18
		assert!(bits >> 18 == 0, "Assertion error");
		
		// Draw two copies
		for i in 0 .. 18 {
			let bit: bool = get_bit(bits, i);
			let a: i32 = self.size - 11 + i % 3;
			let b: i32 = i / 3;
			self.set_function_module(a, b, bit);
			self.set_function_module(b, a, bit);
		}
	}
	
	
	// Draws a 9*9 finder pattern including the border separator,
	// with the center module at (x, y). Modules can be out of bounds.
	fn draw_finder_pattern(&mut self, x: i32, y: i32) {
		for dy in -4 .. 5 {
			for dx in -4 .. 5 {
				let xx: i32 = x + dx;
				let yy: i32 = y + dy;
				if 0 <= xx && xx < self.size && 0 <= yy && yy < self.size {
					let dist: i32 = std::cmp::max(dx.abs(), dy.abs());  // Chebyshev/infinity norm
					self.set_function_module(xx, yy, dist != 2 && dist != 4);
				}
			}
		}
	}
	
	
	// Draws a 5*5 alignment pattern, with the center module
	// at (x, y). All modules must be in bounds.
	fn draw_alignment_pattern(&mut self, x: i32, y: i32) {
		for dy in -2 .. 3 {
			for dx in -2 .. 3 {
				self.set_function_module(x + dx, y + dy, std::cmp::max(dx.abs(), dy.abs()) != 1);
			}
		}
	}
	
	
	// Sets the color of a module and marks it as a function module.
	// Only used by the constructor. Coordinates must be in bounds.
	fn set_function_module(&mut self, x: i32, y: i32, isblack: bool) {
		*self.module_mut(x, y) = isblack;
		self.isfunction[(y * self.size + x) as usize] = true;
	}
	
	
	/*---- Private helper methods for constructor: Codewords and masking ----*/
	
	// Returns a new byte string representing the given data with the appropriate error correction
	// codewords appended to it, based on this object's version and error correction level.
	fn add_ecc_and_interleave(&self, data: &[u8]) -> Vec<u8> {
		let ver = self.version;
		let ecl = self.errorcorrectionlevel;
		assert_eq!(data.len(), QrCode::get_num_data_codewords(ver, ecl), "Illegal argument");
		
		// Calculate parameter numbers
		let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl);
		let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK  , ver, ecl);
		let rawcodewords: usize = QrCode::get_num_raw_data_modules(ver) / 8;
		let numshortblocks: usize = numblocks - rawcodewords % numblocks;
		let shortblocklen: usize = rawcodewords / numblocks;
		
		// Split data into blocks and append ECC to each block
		let mut blocks = Vec::<Vec<u8>>::with_capacity(numblocks);
		let rs = ReedSolomonGenerator::new(blockecclen);
		let mut k: usize = 0;
		for i in 0 .. numblocks {
			let mut dat = data[k .. k + shortblocklen - blockecclen + ((i >= numshortblocks) as usize)].to_vec();
			k += dat.len();
			let ecc: Vec<u8> = rs.get_remainder(&dat);
			if i < numshortblocks {
				dat.push(0);
			}
			dat.extend_from_slice(&ecc);
			blocks.push(dat);
		}
		
		// Interleave (not concatenate) the bytes from every block into a single sequence
		let mut result = Vec::<u8>::with_capacity(rawcodewords);
		for i in 0 .. shortblocklen + 1 {
			for j in 0 .. numblocks {
				// Skip the padding byte in short blocks
				if i != shortblocklen - blockecclen || j >= numshortblocks {
					result.push(blocks[j][i]);
				}
			}
		}
		result
	}
	
	
	// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
	// data area of this QR Code. Function modules need to be marked off before this is called.
	fn draw_codewords(&mut self, data: &[u8]) {
		assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument");
		
		let mut i: usize = 0;  // Bit index into the data
		// Do the funny zigzag scan
		let mut right: i32 = self.size - 1;
		while right >= 1 {  // Index of right column in each column pair
			if right == 6 {
				right = 5;
			}
			for vert in 0 .. self.size {  // Vertical counter
				for j in 0 .. 2 {
					let x: i32 = right - j;  // Actual x coordinate
					let upward: bool = (right + 1) & 2 == 0;
					let y: i32 = if upward { self.size - 1 - vert } else { vert };  // Actual y coordinate
					if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 {
						*self.module_mut(x, y) = get_bit(data[i >> 3] as u32, 7 - ((i & 7) as i32));
						i += 1;
					}
					// If this QR Code has any remainder bits (0 to 7), they were assigned as
					// 0/false/white by the constructor and are left unchanged by this method
				}
			}
			right -= 2;
		}
		assert_eq!(i, data.len() * 8, "Assertion error");
	}
	
	
	// XORs the codeword modules in this QR Code with the given mask pattern.
	// The function modules must be marked and the codeword bits must be drawn
	// before masking. Due to the arithmetic of XOR, calling applyMask() with
	// the same mask value a second time will undo the mask. A final well-formed
	// QR Code needs exactly one (not zero, two, etc.) mask applied.
	fn apply_mask(&mut self, mask: Mask) {
		let mask: u8 = mask.value();
		for y in 0 .. self.size {
			for x in 0 .. self.size {
				let invert: bool = match mask {
					0 => (x + y) % 2 == 0,
					1 => y % 2 == 0,
					2 => x % 3 == 0,
					3 => (x + y) % 3 == 0,
					4 => (x / 3 + y / 2) % 2 == 0,
					5 => x * y % 2 + x * y % 3 == 0,
					6 => (x * y % 2 + x * y % 3) % 2 == 0,
					7 => ((x + y) % 2 + x * y % 3) % 2 == 0,
					_ => unreachable!(),
				};
				*self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize];
			}
		}
	}
	
	
	// A messy helper function for the constructors. This QR Code must be in an unmasked state when this
	// method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed.
	// This method applies and returns the actual mask chosen, from 0 to 7.
	fn handle_constructor_masking(&mut self, mut mask: Option<Mask>) {
		if mask.is_none() {  // Automatically choose best mask
			let mut minpenalty: i32 = std::i32::MAX;
			for i in 0u8 .. 8 {
				let newmask = Mask::new(i);
				self.draw_format_bits(newmask);
				self.apply_mask(newmask);
				let penalty: i32 = self.get_penalty_score();
				if penalty < minpenalty {
					mask = Some(newmask);
					minpenalty = penalty;
				}
				self.apply_mask(newmask);  // Undoes the mask due to XOR
			}
		}
		let msk: Mask = mask.unwrap();
		self.draw_format_bits(msk);  // Overwrite old format bits
		self.apply_mask(msk);  // Apply the final choice of mask
		self.mask = msk;
	}
	
	
	// Calculates and returns the penalty score based on state of this QR Code's current modules.
	// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
	fn get_penalty_score(&self) -> i32 {
		let mut result: i32 = 0;
		let size: i32 = self.size;
		
		// Adjacent modules in row having same color
		for y in 0 .. size {
			let mut colorx = false;
			let mut runx: i32 = 0;
			for x in 0 .. size {
				if x == 0 || self.module(x, y) != colorx {
					colorx = self.module(x, y);
					runx = 1;
				} else {
					runx += 1;
					if runx == 5 {
						result += PENALTY_N1;
					} else if runx > 5 {
						result += 1;
					}
				}
			}
		}
		// Adjacent modules in column having same color
		for x in 0 .. size {
			let mut colory = false;
			let mut runy: i32 = 0;
			for y in 0 .. size {
				if y == 0 || self.module(x, y) != colory {
					colory = self.module(x, y);
					runy = 1;
				} else {
					runy += 1;
					if runy == 5 {
						result += PENALTY_N1;
					} else if runy > 5 {
						result += 1;
					}
				}
			}
		}
		
		// 2*2 blocks of modules having same color
		for y in 0 .. size - 1 {
			for x in 0 .. size - 1 {
				let color: bool = self.module(x, y);
				if color == self.module(x + 1, y) &&
				   color == self.module(x, y + 1) &&
				   color == self.module(x + 1, y + 1) {
					result += PENALTY_N2;
				}
			}
		}
		
		// Finder-like pattern in rows
		for y in 0 .. size {
			let mut bits: u32 = 0;
			for x in 0 .. size {
				bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32);
				if x >= 10 && (bits == 0x05D || bits == 0x5D0) {  // Needs 11 bits accumulated
					result += PENALTY_N3;
				}
			}
		}
		// Finder-like pattern in columns
		for x in 0 .. size {
			let mut bits: u32 = 0;
			for y in 0 .. size {
				bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32);
				if y >= 10 && (bits == 0x05D || bits == 0x5D0) {  // Needs 11 bits accumulated
					result += PENALTY_N3;
				}
			}
		}
		
		// Balance of black and white modules
		let mut black: i32 = 0;
		for color in &self.modules {
			black += *color as i32;
		}
		let total: i32 = size * size;  // Note that size is odd, so black/total != 1/2
		// Compute the smallest integer k >= 0 such that (45-5k)% <= black/total <= (55+5k)%
		let k: i32 = ((black * 20 - total * 10).abs() + total - 1) / total - 1;
		result += k * PENALTY_N4;
		result
	}
	
	
	/*---- Private helper functions ----*/
	
	// Returns an ascending list of positions of alignment patterns for this version number.
	// Each position is in the range [0,177), and are used on both the x and y axes.
	// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
	fn get_alignment_pattern_positions(&self) -> Vec<i32> {
		let ver = self.version.value();
		if ver == 1 {
			vec![]
		} else {
			let numalign: i32 = (ver as i32) / 7 + 2;
			let step: i32 = if ver == 32 { 26 } else
				{((ver as i32)*4 + numalign*2 + 1) / (numalign*2 - 2) * 2};
			let mut result: Vec<i32> = (0 .. numalign - 1).map(
				|i| self.size - 7 - i * step).collect();
			result.push(6);
			result.reverse();
			result
		}
	}
	
	
	// Returns the number of data bits that can be stored in a QR Code of the given version number, after
	// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
	// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
	fn get_num_raw_data_modules(ver: Version) -> usize {
		let ver = ver.value() as usize;
		let mut result: usize = (16 * ver + 128) * ver + 64;
		if ver >= 2 {
			let numalign: usize = ver / 7 + 2;
			result -= (25 * numalign - 10) * numalign - 55;
			if ver >= 7 {
				result -= 36;
			}
		}
		result
	}
	
	
	// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
	// QR Code of the given version number and error correction level, with remainder bits discarded.
	// This stateless pure function could be implemented as a (40*4)-cell lookup table.
	fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize {
		QrCode::get_num_raw_data_modules(ver) / 8
			- QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK    , ver, ecl)
			* QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl)
	}
	
	
	// Returns an entry from the given table based on the given values.
	fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize {
		table[ecl.ordinal()][ver.value() as usize] as usize
	}
	
}


/*---- Cconstants and tables ----*/

/// The minimum version number supported in the QR Code Model 2 standard.
pub const QrCode_MIN_VERSION: Version = Version( 1);

/// The maximum version number supported in the QR Code Model 2 standard.
pub const QrCode_MAX_VERSION: Version = Version(40);


// For use in get_penalty_score(), when evaluating which mask is best.
const PENALTY_N1: i32 =  3;
const PENALTY_N2: i32 =  3;
const PENALTY_N3: i32 = 40;
const PENALTY_N4: i32 = 10;


static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [
	// Version: (note that index 0 is for padding, and is set to an illegal value)
	//0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
	[-1,  7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // Low
	[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28],  // Medium
	[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // Quartile
	[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],  // High
];

static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [
	// Version: (note that index 0 is for padding, and is set to an illegal value)
	//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
	[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4,  4,  4,  4,  4,  6,  6,  6,  6,  7,  8,  8,  9,  9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25],  // Low
	[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5,  5,  8,  9,  9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49],  // Medium
	[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8,  8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68],  // Quartile
	[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81],  // High
];



/*---- QrCodeEcc functionality ----*/

/// The error correction level in a QR Code symbol.
#[derive(Clone, Copy)]
pub enum QrCodeEcc {
	/// The QR Code can tolerate about  7% erroneous codewords.
	Low     ,
	/// The QR Code can tolerate about 15% erroneous codewords.
	Medium  ,
	/// The QR Code can tolerate about 25% erroneous codewords.
	Quartile,
	/// The QR Code can tolerate about 30% erroneous codewords.
	High    ,
}


impl QrCodeEcc {
	
	// Returns an unsigned 2-bit integer (in the range 0 to 3).
	fn ordinal(&self) -> usize {
		use QrCodeEcc::*;
		match *self {
			Low      => 0,
			Medium   => 1,
			Quartile => 2,
			High     => 3,
		}
	}
	
	
	// Returns an unsigned 2-bit integer (in the range 0 to 3).
	fn format_bits(&self) -> u32 {
		use QrCodeEcc::*;
		match *self {
			Low      => 1,
			Medium   => 0,
			Quartile => 3,
			High     => 2,
		}
	}
	
}



/*---- ReedSolomonGenerator functionality ----*/

// Computes the Reed-Solomon error correction codewords for a sequence of data codewords
// at a given degree. Objects are immutable, and the state only depends on the degree.
// This struct and impl exist because each data block in a QR Code shares the same the divisor polynomial.
struct ReedSolomonGenerator {
	
	// Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which
	// is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
	coefficients: Vec<u8>,
	
}


impl ReedSolomonGenerator {
	
	// Creates a Reed-Solomon ECC generator for the given degree. This could be implemented
	// as a lookup table over all possible parameter values, instead of as an algorithm.
	fn new(degree: usize) -> Self {
		assert!(1 <= degree && degree <= 255, "Degree out of range");
		// Start with the monomial x^0
		let mut coefs = vec![0u8; degree - 1];
		coefs.push(1);
		
		// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
		// drop the highest term, and store the rest of the coefficients in order of descending powers.
		// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
		let mut root: u8 = 1;
		for _ in 0 .. degree {  // Unused variable i
			// Multiply the current product by (x - r^i)
			for j in 0 .. degree {
				coefs[j] = ReedSolomonGenerator::multiply(coefs[j], root);
				if j + 1 < coefs.len() {
					coefs[j] ^= coefs[j + 1];
				}
			}
			root = ReedSolomonGenerator::multiply(root, 0x02);
		}
		Self { coefficients: coefs }
	}
	
	
	// Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords.
	fn get_remainder(&self, data: &[u8]) -> Vec<u8> {
		// Compute the remainder by performing polynomial division
		let mut result = vec![0u8; self.coefficients.len()];
		for b in data {
			let factor: u8 = b ^ result.remove(0);
			result.push(0);
			for (x, y) in result.iter_mut().zip(self.coefficients.iter()) {
				*x ^= ReedSolomonGenerator::multiply(*y, factor);
			}
		}
		result
	}
	
	
	// Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
	// are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
	fn multiply(x: u8, y: u8) -> u8 {
		// Russian peasant multiplication
		let mut z: u8 = 0;
		for i in (0 .. 8).rev() {
			z = (z << 1) ^ ((z >> 7) * 0x1D);
			z ^= ((y >> i) & 1) * x;
		}
		z
	}
	
}



/*---- QrSegment functionality ----*/

/// A segment of character/binary/control data in a QR Code symbol.
/// 
/// Instances of this struct are immutable.
/// 
/// The mid-level way to create a segment is to take the payload data
/// and call a static factory function such as `QrSegment::make_numeric()`.
/// The low-level way to create a segment is to custom-make the bit buffer
/// and call the `QrSegment::new()` constructor with appropriate values.
/// 
/// This segment struct imposes no length restrictions, but QR Codes have restrictions.
/// Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
/// Any segment longer than this is meaningless for the purpose of generating QR Codes.
#[derive(Clone)]
pub struct QrSegment {
	
	// The mode indicator of this segment. Accessed through mode().
	mode: QrSegmentMode,
	
	// The length of this segment's unencoded data. Measured in characters for
	// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
	// Not the same as the data's bit length. Accessed through num_chars().
	numchars: usize,
	
	// The data bits of this segment. Accessed through data().
	data: Vec<bool>,
	
}


impl QrSegment {
	
	/*---- Static factory functions (mid level) ----*/
	
	/// Returns a segment representing the given binary data encoded in byte mode.
	/// 
	/// All input byte slices are acceptable.
	/// 
	/// Any text string can be converted to UTF-8 bytes and encoded as a byte mode segment.
	pub fn make_bytes(data: &[u8]) -> Self {
		let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8));
		for b in data {
			bb.append_bits(*b as u32, 8);
		}
		QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0)
	}
	
	
	/// Returns a segment representing the given string of decimal digits encoded in numeric mode.
	/// 
	/// Panics if the string contains non-digit characters.
	pub fn make_numeric(text: &[char]) -> Self {
		let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3));
		let mut accumdata: u32 = 0;
		let mut accumcount: u8 = 0;
		for c in text {
			assert!('0' <= *c && *c <= '9', "String contains non-numeric characters");
			accumdata = accumdata * 10 + ((*c as u32) - ('0' as u32));
			accumcount += 1;
			if accumcount == 3 {
				bb.append_bits(accumdata, 10);
				accumdata = 0;
				accumcount = 0;
			}
		}
		if accumcount > 0 {  // 1 or 2 digits remaining
			bb.append_bits(accumdata, accumcount * 3 + 1);
		}
		QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0)
	}
	
	
	/// Returns a segment representing the given text string encoded in alphanumeric mode.
	/// 
	/// The characters allowed are: 0 to 9, A to Z (uppercase only), space,
	/// dollar, percent, asterisk, plus, hyphen, period, slash, colon.
	/// 
	/// Panics if the string contains non-encodable characters.
	pub fn make_alphanumeric(text: &[char]) -> Self {
		let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2));
		let mut accumdata: u32 = 0;
		let mut accumcount: u32 = 0;
		for c in text {
			let i = ALPHANUMERIC_CHARSET.iter().position(|x| *x == *c)
				.expect("String contains unencodable characters in alphanumeric mode");
			accumdata = accumdata * 45 + (i as u32);
			accumcount += 1;
			if accumcount == 2 {
				bb.append_bits(accumdata, 11);
				accumdata = 0;
				accumcount = 0;
			}
		}
		if accumcount > 0 {  // 1 character remaining
			bb.append_bits(accumdata, 6);
		}
		QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0)
	}
	
	
	/// Returns a list of zero or more segments to represent the given Unicode text string.
	/// 
	/// The result may use various segment modes and switch
	/// modes to optimize the length of the bit stream.
	pub fn make_segments(text: &[char]) -> Vec<Self> {
		if text.is_empty() {
			vec![]
		} else if QrSegment::is_numeric(text) {
			vec![QrSegment::make_numeric(text)]
		} else if QrSegment::is_alphanumeric(text) {
			vec![QrSegment::make_alphanumeric(text)]
		} else {
			let s: String = text.iter().cloned().collect();
			vec![QrSegment::make_bytes(s.as_bytes())]
		}
	}
	
	
	/// Returns a segment representing an Extended Channel Interpretation
	/// (ECI) designator with the given assignment value.
	pub fn make_eci(assignval: u32) -> Self {
		let mut bb = BitBuffer(Vec::with_capacity(24));
		if assignval < (1 << 7) {
			bb.append_bits(assignval, 8);
		} else if assignval < (1 << 14) {
			bb.append_bits(2, 2);
			bb.append_bits(assignval, 14);
		} else if assignval < 1_000_000 {
			bb.append_bits(6, 3);
			bb.append_bits(assignval, 21);
		} else {
			panic!("ECI assignment value out of range");
		}
		QrSegment::new(QrSegmentMode::Eci, 0, bb.0)
	}
	
	
	/*---- Constructor (low level) ----*/
	
	/// Creates a new QR Code segment with the given attributes and data.
	/// 
	/// The character count (numchars) must agree with the mode and
	/// the bit buffer length, but the constraint isn't checked.
	pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec<bool>) -> Self {
		Self {
			mode: mode,
			numchars: numchars,
			data: data,
		}
	}
	
	
	/*---- Instance field getters ----*/
	
	/// Returns the mode indicator of this segment.
	pub fn mode(&self) -> QrSegmentMode {
		self.mode
	}
	
	
	/// Returns the character count field of this segment.
	pub fn num_chars(&self) -> usize {
		self.numchars
	}
	
	
	/// Returns the data bits of this segment.
	pub fn data(&self) -> &Vec<bool> {
		&self.data
	}
	
	
	/*---- Other static functions ----*/
	
	// Calculates and returns the number of bits needed to encode the given
	// segments at the given version. The result is None if a segment has too many
	// characters to fit its length field, or the total bits exceeds usize::MAX.
	fn get_total_bits(segs: &[Self], version: Version) -> Option<usize> {
		let mut result: usize = 0;
		for seg in segs {
			let ccbits = seg.mode.num_char_count_bits(version);
			if seg.numchars >= 1 << ccbits {
				return None;  // The segment's length doesn't fit the field's bit width
			}
			match result.checked_add(4 + (ccbits as usize) + seg.data.len()) {
				None => return None,  // The sum will overflow a usize type
				Some(val) => result = val,
			}
		}
		Some(result)
	}
	
	
	// Tests whether the given string can be encoded as a segment in alphanumeric mode.
	// A string is encodable iff each character is in the following set: 0 to 9, A to Z
	// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
	fn is_alphanumeric(text: &[char]) -> bool {
		text.iter().all(|c| ALPHANUMERIC_CHARSET.contains(c))
	}
	
	
	// Tests whether the given string can be encoded as a segment in numeric mode.
	// A string is encodable iff each character is in the range 0 to 9.
	fn is_numeric(text: &[char]) -> bool {
		text.iter().all(|c| '0' <= *c && *c <= '9')
	}
	
}


// The set of all legal characters in alphanumeric mode,
// where each character value maps to the index in the string.
static ALPHANUMERIC_CHARSET: [char; 45] = ['0','1','2','3','4','5','6','7','8','9',
	'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
	' ','$','%','*','+','-','.','/',':'];



/*---- QrSegmentMode functionality ----*/

/// Describes how a segment's data bits are interpreted.
#[derive(Clone, Copy)]
pub enum QrSegmentMode {
	Numeric,
	Alphanumeric,
	Byte,
	Kanji,
	Eci,
}


impl QrSegmentMode {
	
	// Returns an unsigned 4-bit integer value (range 0 to 15)
	// representing the mode indicator bits for this mode object.
	fn mode_bits(&self) -> u32 {
		use QrSegmentMode::*;
		match *self {
			Numeric      => 0x1,
			Alphanumeric => 0x2,
			Byte         => 0x4,
			Kanji        => 0x8,
			Eci          => 0x7,
		}
	}
	
	
	// Returns the bit width of the character count field for a segment in this mode
	// in a QR Code at the given version number. The result is in the range [0, 16].
	pub fn num_char_count_bits(&self, ver: Version) -> u8 {
		use QrSegmentMode::*;
		(match *self {
			Numeric      => [10, 12, 14],
			Alphanumeric => [ 9, 11, 13],
			Byte         => [ 8, 16, 16],
			Kanji        => [ 8, 10, 12],
			Eci          => [ 0,  0,  0],
		})[((ver.value() + 7) / 17) as usize]
	}
	
}



/*---- Bit buffer functionality ----*/

/// An appendable sequence of bits (0s and 1s).
/// 
/// Mainly used by QrSegment.
pub struct BitBuffer(pub Vec<bool>);


impl BitBuffer {
	/// Appends the given number of low-order bits of the given value to this buffer.
	/// 
	/// Requires len &#x2264; 31 and val &lt; 2<sup>len</sup>.
	pub fn append_bits(&mut self, val: u32, len: u8) {
		assert!(len <= 31 && (val >> len) == 0, "Value out of range");
		self.0.extend((0 .. len as i32).rev().map(|i| get_bit(val, i)));  // Append bit by bit
	}
}



/*---- Miscellaneous values ----*/

/// A number between 1 and 40 (inclusive).
#[derive(Copy, Clone)]
pub struct Version(u8);

impl Version {
	/// Creates a version object from the given number.
	/// 
	/// Panics if the number is outside the range [1, 40].
	pub fn new(ver: u8) -> Self {
		assert!(QrCode_MIN_VERSION.value() <= ver && ver <= QrCode_MAX_VERSION.value(), "Version number out of range");
		Version(ver)
	}
	
	/// Returns the value, which is in the range [1, 40].
	pub fn value(&self) -> u8 {
		self.0
	}
}


/// A number between 0 and 7 (inclusive).
#[derive(Copy, Clone)]
pub struct Mask(u8);

impl Mask {
	/// Creates a mask object from the given number.
	/// 
	/// Panics if the number is outside the range [0, 7].
	pub fn new(mask: u8) -> Self {
		assert!(mask <= 7, "Mask value out of range");
		Mask(mask)
	}
	
	/// Returns the value, which is in the range [0, 7].
	pub fn value(&self) -> u8 {
		self.0
	}
}


// Returns true iff the i'th bit of x is set to 1.
fn get_bit(x: u32, i: i32) -> bool {
	(x >> i) & 1 != 0
}