1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright © 2021 HQS Quantum Simulations GmbH. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
// express or implied. See the License for the specific language governing permissions and
// limitations under the License.

//! qoqo-macros
//!
//! Attribute proc-macros for the traits of qoqo [qoqo].

use proc_macro2::TokenStream;
use quote::{format_ident, quote};
use std::collections::HashSet;
use syn::parse::{Parse, ParseStream};
use syn::punctuated::Punctuated;
use syn::{
    parse2, parse_macro_input, DataStruct, DeriveInput, Fields, GenericArgument, Ident, ItemStruct,
    PathArguments, Token, Type, TypePath,
};
mod operate;
// mod operate_unitary;

/// Array of field names that are reserved for use with specific traits
const RESERVED_FIELDS: &[&str; 11] = &[
    "qubit",
    "control",
    "target",
    "theta",
    "qubits",
    "global_phase",
    "alpha_r",
    "alpha_i",
    "beta_r",
    "beta_i",
    "name",
];

// Struct for parsed derive macro arguments. Used to identify structs belonging to enums
#[derive(Debug)]
struct AttributeMacroArguments(HashSet<String>);

impl AttributeMacroArguments {
    pub fn contains(&self, st: &str) -> bool {
        self.0.contains(st)
    }
    pub fn _ids(&self) -> Vec<Ident> {
        self.0
            .clone()
            .into_iter()
            .map(|s| format_ident!("Wrap{}", s))
            .collect()
    }
}

impl Parse for AttributeMacroArguments {
    fn parse(input: ParseStream) -> syn::parse::Result<Self> {
        // Parse arguments as comma separated list of idents
        let arguments = Punctuated::<Ident, Token![,]>::parse_terminated(input)?;
        Ok(Self(
            arguments.into_iter().map(|id| id.to_string()).collect(),
        ))
    }
}

/// Attribute macro for constructing the pyo3 wrappers for operation structs
#[proc_macro_attribute]
pub fn wrap(
    metadata: proc_macro::TokenStream,
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let attribute_arguments = parse_macro_input!(metadata as AttributeMacroArguments);
    let input2: TokenStream = input.clone().into();
    let parsed_input = parse_macro_input!(input as ItemStruct);
    let ident = parsed_input.ident;
    let struct_attributes = parsed_input.attrs;
    let str_ident = ident.to_string();
    let wrapper_ident = format_ident!("{}Wrapper", ident.to_string());
    let operate_quote = if attribute_arguments.contains("Operate") {
        derive_wrap_operate(input2)
    } else {
        TokenStream::new()
    };
    let rotate_quote = if attribute_arguments.contains("Rotate") {
        quote! {
            /// Returns angle of rotation
            pub fn theta(&self) -> CalculatorFloatWrapper{
                CalculatorFloatWrapper{cf_internal: self.internal.theta().clone()}
            }
            /// Returns Rotated gate raised to power
            ///
            /// Args:
            ///     power(CalculatorFloat):
            pub fn powercf(&self, power: CalculatorFloatWrapper) -> Self{
                Self{internal: self.internal.powercf(power.cf_internal)}
            }
            #[cfg(feature = "overrotate")]
            /// Returns clone of the gate with one parameter statistically overrotated.
            fn overrotate(&self, amplitude: &f64, variance: &f64) -> Self {
                Self{internal: self.internal.overrotate(amplitude, variance)}

            }
        }
    } else {
        TokenStream::new()
    };
    let operate_pragma_quote = if attribute_arguments.contains("OperatePragma") {
        quote! {}
    } else {
        TokenStream::new()
    };
    let operate_pragma_noise_quote = if attribute_arguments.contains("OperatePragmaNoise") {
        quote! {
            /// Return the superoperator defining the evolution of the density matrix under the noise gate
            ///
            /// Returns:
            ///     np.ndarray
            pub fn superoperator(&self) -> PyResult<Py<PyArray2<f64>>>{
                let gil = Python::acquire_gil();
                let py = gil.python();
                Ok(self.internal.superoperator().unwrap().to_pyarray(py).to_owned())
            }
            /// Return the power of the noise gate
            ///
            /// Args:
            /// power (CalculatorFloat): exponent in the power operation of the noise gate
            ///
            /// Returns:
            ///     Self
            pub fn powercf(&self, power: CalculatorFloatWrapper) -> Self{
                Self{internal: self.internal.powercf(power.cf_internal)}
            }
        }
    } else {
        TokenStream::new()
    };
    let operate_pragma_noise_proba_quote =
        if attribute_arguments.contains("OperatePragmaNoiseProba") {
            quote! {
                /// Returns the probability associated with the noise operation
                ///
                /// Returns:
                ///     CalculatorFloat
                pub fn probability(&self) -> CalculatorFloatWrapper{
                    CalculatorFloatWrapper{cf_internal: self.internal.probability().clone()}
                }
            }
        } else {
            TokenStream::new()
        };
    let operate_single_qubit_quote = if attribute_arguments.contains("OperateSingleQubit") {
        quote! {
            /// Return the qubit the operation acts on
            ///
            /// Returns:
            ///     int
            pub fn qubit(&self) -> usize{
                self.internal.qubit().clone()
            }
        }
    } else {
        TokenStream::new()
    };
    let operate_single_qubit_gate_quote = if attribute_arguments.contains("OperateSingleQubitGate")
    {
        quote! {
            /// Return the global phase :math:`g` of a unitary gate acting on one qubit
            ///
            /// Here global_phase is defined by
            ///
            /// .. math::
            ///     U =e^{i \cdot g}\begin{pmatrix}
            ///     \alpha_r+i \alpha_i & -\beta_r+i \beta_i \\\\
            ///     \beta_r+i \beta_i & \alpha_r-i\alpha_i
            ///     \end{pmatrix}
            ///
            /// Returns:
            ///     CalculatorFloat
            pub fn global_phase(&self) -> CalculatorFloatWrapper{
                CalculatorFloatWrapper{cf_internal: self.internal.global_phase().clone()}
            }
            /// Return the property alpha_r :math:`\alpha_r` of a unitary gate acting on one qubit
            ///
            /// Here alpha_r is defined by
            ///
            /// .. math::
            ///     U =e^{i \cdot g}\begin{pmatrix}
            ///     \alpha_r+i \alpha_i & -\beta_r+i \beta_i \\\\
            ///     \beta_r+i \beta_i & \alpha_r-i\alpha_i
            ///     \end{pmatrix}
            ///
            /// Returns:
            ///     CalculatorFloat
            pub fn alpha_r(&self) -> CalculatorFloatWrapper{
                CalculatorFloatWrapper{cf_internal: self.internal.alpha_r().clone()}
            }
            /// Return the property alpha_i :math:`\alpha_i` of a unitary gate acting on one qubit
            ///
            /// .. math::
            ///     U =e^{i \cdot g}\begin{pmatrix}
            ///     \alpha_r+i \alpha_i & -\beta_r+i \beta_i \\\\
            ///     \beta_r+i \beta_i & \alpha_r-i\alpha_i
            ///     \end{pmatrix}
            ///
            /// Returns:
            ///     CalculatorFloat
            pub fn alpha_i(&self) -> CalculatorFloatWrapper{
                CalculatorFloatWrapper{cf_internal: self.internal.alpha_i().clone()}
            }
            /// Return the property beta_r :math:`\beta_r` of a unitary gate acting on one qubit
            ///
            /// Here beta_r is defined by
            ///
            /// .. math::
            ///     U =e^{i \cdot g}\begin{pmatrix}
            ///     \alpha_r+i \alpha_i & -\beta_r+i \beta_i \\\\
            ///     \beta_r+i \beta_i & \alpha_r-i\alpha_i
            ///     \end{pmatrix}
            ///
            /// Returns:
            ///     CalculatorFloat
            pub fn beta_r(&self) -> CalculatorFloatWrapper{
                CalculatorFloatWrapper{cf_internal: self.internal.beta_r().clone()}
            }
            /// Returns the property beta_i :math:`\beta_i` of a unitary gate acting on one qubit
            ///
            /// Here beta_i is defined by
            ///
            /// .. math::
            ///     U =e^{i \cdot g}\begin{pmatrix}
            ///     \alpha_r+i \alpha_i & -\beta_r+i \beta_i \\\\
            ///     \beta_r+i \beta_i & \alpha_r-i\alpha_i
            ///     \end{pmatrix}
            ///
            ///
            /// Returns:
            ///     CalculatorFloat
            pub fn beta_i(&self) -> CalculatorFloatWrapper{
                CalculatorFloatWrapper{cf_internal: self.internal.beta_i().clone()}
            }
        }
    } else {
        TokenStream::new()
    };
    let operate_two_qubit_quote = if attribute_arguments.contains("OperateTwoQubit") {
        quote! {
            /// Returns contol qubit of the two-qubit operation
            pub fn control(&self) -> usize{
                self.internal.control().clone()
            }
            /// Returns target qubit of the two-qubit operation
            pub fn target(&self) -> usize{
                self.internal.target().clone()
            }
        }
    } else {
        TokenStream::new()
    };
    // let operate_two_qubit_gate_quote = if attribute_arguments.contains("OperateTwoQubitGate") {
    //     quote! {
    //         /// Returns kak decomposition of the two-qubit-gate operation
    //         pub fn kak_decomposition(&self) -> KakDecompositionWrapper {
    //             KakDecompositionWrapper{internal: self.internal.kak_decomposition().clone()}
    //         }
    //     }
    // } else {
    //     TokenStream::new()
    // };
    let operate_gate_quote = if attribute_arguments.contains("OperateGate") {
        quote! {
            /// Return unitary matrix of gate.
            ///
            /// Returns:
            ///     np.ndarray
            ///
            /// Raises:
            ///     ValueError: Error symbolic operation cannot return float unitary matrix
            pub fn unitary_matrix(&self) -> PyResult<Py<PyArray2<Complex64>>>{
                let gil = Python::acquire_gil();
                let py = gil.python();
                Ok(self.internal.unitary_matrix().map_err(|x| PyValueError::new_err(format!("Error symbolic operation cannot return float unitary matrix {:?}",x)))?.to_pyarray(py).to_owned())
            }
        }
    } else {
        TokenStream::new()
    };
    let operate_multi_qubit_quote = if attribute_arguments.contains("OperateMultiQubit") {
        quote! {
            /// Return list of qubits of the multi qubit operation in order of descending significance
            ///
            /// Returns:
            ///     list[int]
            pub fn qubits(&self) -> Vec<usize>{
                self.internal.qubits().clone()
            }
        }
    } else {
        TokenStream::new()
    };
    let operate_multi_qubit_gate_quote = if attribute_arguments.contains("OperateMultiQubitGate") {
        quote! {
            /// Return circuit implementing MultiQubitGateOperation
            ///
            /// Returns:
            ///     Circuit
            pub fn circuit(&self) -> CircuitWrapper{
                CircuitWrapper { internal: self.internal.circuit().clone() }
            }
        }
    } else {
        TokenStream::new()
    };
    let define_quote = if attribute_arguments.contains("Define") {
        quote! {
        /// Return name of definition operation.
        ///
        /// Returns:
        ///     str
        pub fn name(&self) -> String {
                self.internal.name().clone()
            }
        }
    } else {
        TokenStream::new()
    };
    let operate_constant_gate_quote = if attribute_arguments.contains("OperateConstantGate") {
        quote! {
        /// Return inverse of GateOperation:
        ///
        /// Returns:
        ///     GateOperation
        pub fn inverse(&self) -> GateOperationWrapper {
                GateOperationWrapper { internal: self.internal.inverse().clone() }
            }
        }
    } else {
        TokenStream::new()
    };
    let msg = format!("Internal storage of {} object", ident);
    let q = quote! {
        #[automatically_derived]
        #[pyclass(name=#str_ident)]
        #(#struct_attributes)*
        #[derive(Debug, Clone, PartialEq)]
        pub struct #wrapper_ident{
            #[doc = #msg]
            pub internal: #ident
        }
        #[automatically_derived]
        #[pymethods]
        impl #wrapper_ident{
            #operate_quote
            #operate_single_qubit_quote
            #operate_single_qubit_gate_quote
            #operate_two_qubit_quote
            // #operate_two_qubit_gate_quote
            #operate_multi_qubit_quote
            #operate_multi_qubit_gate_quote
            #operate_gate_quote
            #rotate_quote
            #operate_pragma_quote
            #operate_pragma_noise_quote
            #operate_pragma_noise_proba_quote
            #define_quote
            #operate_constant_gate_quote
            fn __format__(&self, _format_spec: &str) -> PyResult<String> {
                Ok(format!("{:?}", self.internal))
            }
    }
        #[pyproto]
        impl PyObjectProtocol for #wrapper_ident {
            fn __repr__(&self) -> PyResult<String> {
                Ok(format!("{:?}", self.internal))
            }



        /// Returns the __richcmp__ magic method to perform rich comparison
        /// operations on Operation.
        ///
        /// # Arguments
        ///
        /// * `&self` - the OperationWrapper object
        /// * `other` - the object to compare self to
        /// * `op` - equal or not equal
        ///
        /// # Returns
        ///
        /// `PyResult<bool>` - whether the two operations compared evaluated to True or False
        ///
        fn __richcmp__(&self, other: Py<PyAny>, op: pyo3::class::basic::CompareOp) -> PyResult<bool> {
            let gil = pyo3::Python::acquire_gil();
            let py = gil.python();
            let other_ref = other.as_ref(py);
            let other: Operation = crate::operations::convert_pyany_to_operation(other_ref).map_err(|x| {
                pyo3::exceptions::PyTypeError::new_err(format!("Right hand side can not be converted to Operation {:?}",x))
            })?;
            match op {
                pyo3::class::basic::CompareOp::Eq => Ok(Operation::from(self.internal.clone()) == other),
                pyo3::class::basic::CompareOp::Ne => Ok(Operation::from(self.internal.clone()) != other),
                _ => Err(pyo3::exceptions::PyNotImplementedError::new_err(
                    "Other comparison not implemented.",
                )),
            }
        }

        }
    };
    q.into()
}

fn derive_wrap_operate(input: TokenStream) -> TokenStream {
    let parsed_input: DeriveInput = parse2(input).unwrap();
    operate::dispatch_struct(parsed_input)
}

/// Macro for injecting code to convert PyAny to Operation
#[proc_macro]
pub fn insert_pyany_to_operation(_input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    proc_macro::TokenStream::from(quote! {})
}

/// Macro for injecting code to convert PyAny to Operation
#[proc_macro]
pub fn insert_operation_to_pyobject(_input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    proc_macro::TokenStream::from(quote! {})
}

/// Extrats the identifier of fields of a named struct
/// together with the optional cast of the type to string form (where the type is a simple path) and the type as a syn object
fn extract_fields_with_types(ds: DataStruct) -> Vec<(Ident, Option<String>, Type)> {
    let fields = match ds {
        DataStruct {
            fields: Fields::Named(fields),
            ..
        } => fields,
        _ => panic!("Trait can only be derived on structs with named fields"),
    };
    fields.named.into_iter().map(|f| {
        let id = f
            .ident
            .expect("Operate can only be derived on structs with named fields");
        let ty = f.ty;
        let type_path =match &ty {
            Type::Path(TypePath{path:p,..}) => p,
            _ => panic!("Trait  only supports fields with normal types of form path (e.g. CalculatorFloat, qoqo_calculator::CalculatorFloat)")
        };
        let mut type_string = match type_path.get_ident(){
            Some(ident_path) => Some(ident_path.to_string()),
            _ => type_path
            .segments
            .last().map(|segment|{segment.ident.to_string()})
        };
        if let Some(ref x) = type_string{
            if x.as_str() == "Option"{
           let inner_type = match &type_path.segments.iter().next().unwrap().arguments{
               PathArguments::AngleBracketed(angle_argumnets) =>  match angle_argumnets.args.iter().next().unwrap() {
               GenericArgument::Type(Type::Path(TypePath{path:innerty,..})) => match innerty.get_ident(){
                   Some(ident_path) => Some(ident_path.to_string()),
                   _ =>innerty
                   .segments
                   .last().map(|segment|{segment.ident.to_string()})
               },
               _ => panic!("Expected GenericArgument")
           },
           _ => panic!("Expected AngleBracketed")
       };
       if let Some(s) = inner_type { if s.as_str() == "Circuit"{ 
           type_string = Some("Option<Circuit>".to_string())
       }}}
   }
        (id, type_string, ty)
    }).collect()
}