1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright (c) 2017-present PyO3 Project and Contributors
//! Python type object information

use crate::internal_tricks::extract_cstr_or_leak_cstring;
use crate::once_cell::GILOnceCell;
use crate::pyclass::create_type_object;
use crate::pyclass::PyClass;
use crate::types::{PyAny, PyType};
use crate::{conversion::IntoPyPointer, PyMethodDefType};
use crate::{ffi, AsPyPointer, PyErr, PyNativeType, PyObject, PyResult, Python};
use parking_lot::{const_mutex, Mutex};
use std::thread::{self, ThreadId};

/// `T: PyLayout<U>` represents that `T` is a concrete representation of `U` in the Python heap.
/// E.g., `PyCell` is a concrete representaion of all `pyclass`es, and `ffi::PyObject`
/// is of `PyAny`.
///
/// This trait is intended to be used internally.
pub unsafe trait PyLayout<T> {}

/// `T: PySizedLayout<U>` represents that `T` is not a instance of
/// [`PyVarObject`](https://docs.python.org/3.8/c-api/structures.html?highlight=pyvarobject#c.PyVarObject).
/// In addition, that `T` is a concrete representaion of `U`.
pub trait PySizedLayout<T>: PyLayout<T> + Sized {}

/// Python type information.
/// All Python native types (e.g., `PyDict`) and `#[pyclass]` structs implement this trait.
///
/// This trait is marked unsafe because:
///  - specifying the incorrect layout can lead to memory errors
///  - the return value of type_object must always point to the same PyTypeObject instance
///
/// It is safely implemented by the `pyclass` macro.
pub unsafe trait PyTypeInfo: Sized {
    /// Class name.
    const NAME: &'static str;

    /// Module name, if any.
    const MODULE: Option<&'static str>;

    /// Utility type to make Py::as_ref work.
    type AsRefTarget: crate::PyNativeType;

    /// PyTypeObject instance for this type.
    fn type_object_raw(py: Python) -> *mut ffi::PyTypeObject;

    /// Checks if `object` is an instance of this type or a subclass of this type.
    fn is_type_of(object: &PyAny) -> bool {
        unsafe { ffi::PyObject_TypeCheck(object.as_ptr(), Self::type_object_raw(object.py())) != 0 }
    }

    /// Checks if `object` is an instance of this type.
    fn is_exact_type_of(object: &PyAny) -> bool {
        unsafe { ffi::Py_TYPE(object.as_ptr()) == Self::type_object_raw(object.py()) }
    }
}

/// Python object types that have a corresponding type object.
///
/// This trait is marked unsafe because not fulfilling the contract for type_object
/// leads to UB.
///
/// See also [PyTypeInfo::type_object_raw](trait.PyTypeInfo.html#tymethod.type_object_raw).
pub unsafe trait PyTypeObject {
    /// Returns the safe abstraction over the type object.
    fn type_object(py: Python) -> &PyType;
}

unsafe impl<T> PyTypeObject for T
where
    T: PyTypeInfo,
{
    fn type_object(py: Python) -> &PyType {
        unsafe { py.from_borrowed_ptr(Self::type_object_raw(py) as _) }
    }
}

/// Lazy type object for PyClass.
#[doc(hidden)]
pub struct LazyStaticType {
    // Boxed because Python expects the type object to have a stable address.
    value: GILOnceCell<*mut ffi::PyTypeObject>,
    // Threads which have begun initialization of the `tp_dict`. Used for
    // reentrant initialization detection.
    initializing_threads: Mutex<Vec<ThreadId>>,
    tp_dict_filled: GILOnceCell<PyResult<()>>,
}

impl LazyStaticType {
    pub const fn new() -> Self {
        LazyStaticType {
            value: GILOnceCell::new(),
            initializing_threads: const_mutex(Vec::new()),
            tp_dict_filled: GILOnceCell::new(),
        }
    }

    pub fn get_or_init<T: PyClass>(&self, py: Python) -> *mut ffi::PyTypeObject {
        let type_object = *self.value.get_or_init(py, || {
            create_type_object::<T>(py, T::MODULE).unwrap_or_else(|e| {
                e.print(py);
                panic!("An error occurred while initializing class {}", T::NAME)
            })
        });

        self.ensure_init(py, type_object, T::NAME, &T::for_each_method_def);
        type_object
    }

    fn ensure_init(
        &self,
        py: Python,
        type_object: *mut ffi::PyTypeObject,
        name: &str,
        for_each_method_def: &dyn Fn(&mut dyn FnMut(&[PyMethodDefType])),
    ) {
        // We might want to fill the `tp_dict` with python instances of `T`
        // itself. In order to do so, we must first initialize the type object
        // with an empty `tp_dict`: now we can create instances of `T`.
        //
        // Then we fill the `tp_dict`. Multiple threads may try to fill it at
        // the same time, but only one of them will succeed.
        //
        // More importantly, if a thread is performing initialization of the
        // `tp_dict`, it can still request the type object through `get_or_init`,
        // but the `tp_dict` may appear empty of course.

        if self.tp_dict_filled.get(py).is_some() {
            // `tp_dict` is already filled: ok.
            return;
        }

        {
            let thread_id = thread::current().id();
            let mut threads = self.initializing_threads.lock();
            if threads.contains(&thread_id) {
                // Reentrant call: just return the type object, even if the
                // `tp_dict` is not filled yet.
                return;
            }
            threads.push(thread_id);
        }

        // Pre-compute the class attribute objects: this can temporarily
        // release the GIL since we're calling into arbitrary user code. It
        // means that another thread can continue the initialization in the
        // meantime: at worst, we'll just make a useless computation.
        let mut items = vec![];
        for_each_method_def(&mut |method_defs| {
            items.extend(method_defs.iter().filter_map(|def| {
                if let PyMethodDefType::ClassAttribute(attr) = def {
                    let key = extract_cstr_or_leak_cstring(
                        attr.name,
                        "class attribute name cannot contain nul bytes",
                    )
                    .unwrap();

                    let val = (attr.meth.0)(py);
                    Some((key, val))
                } else {
                    None
                }
            }));
        });

        // Now we hold the GIL and we can assume it won't be released until we
        // return from the function.
        let result = self.tp_dict_filled.get_or_init(py, move || {
            let result = initialize_tp_dict(py, type_object as *mut ffi::PyObject, items);

            // Initialization successfully complete, can clear the thread list.
            // (No further calls to get_or_init() will try to init, on any thread.)
            *self.initializing_threads.lock() = Vec::new();
            result
        });

        if let Err(err) = result {
            err.clone_ref(py).print(py);
            panic!("An error occured while initializing `{}.__dict__`", name);
        }
    }
}

fn initialize_tp_dict(
    py: Python,
    type_object: *mut ffi::PyObject,
    items: Vec<(&'static std::ffi::CStr, PyObject)>,
) -> PyResult<()> {
    // We hold the GIL: the dictionary update can be considered atomic from
    // the POV of other threads.
    for (key, val) in items {
        let ret = unsafe { ffi::PyObject_SetAttrString(type_object, key.as_ptr(), val.into_ptr()) };
        if ret < 0 {
            return Err(PyErr::fetch(py));
        }
    }
    Ok(())
}

// This is necessary for making static `LazyStaticType`s
unsafe impl Sync for LazyStaticType {}

#[inline]
pub(crate) unsafe fn get_tp_alloc(tp: *mut ffi::PyTypeObject) -> Option<ffi::allocfunc> {
    #[cfg(not(Py_LIMITED_API))]
    {
        (*tp).tp_alloc
    }

    #[cfg(Py_LIMITED_API)]
    {
        let ptr = ffi::PyType_GetSlot(tp, ffi::Py_tp_alloc);
        std::mem::transmute(ptr)
    }
}

#[inline]
pub(crate) unsafe fn get_tp_free(tp: *mut ffi::PyTypeObject) -> ffi::freefunc {
    #[cfg(not(Py_LIMITED_API))]
    {
        (*tp).tp_free.unwrap()
    }

    #[cfg(Py_LIMITED_API)]
    {
        let ptr = ffi::PyType_GetSlot(tp, ffi::Py_tp_free);
        debug_assert_ne!(ptr, std::ptr::null_mut());
        std::mem::transmute(ptr)
    }
}