1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
use geo_types::Point;
use libc::c_int;
use libc::{c_char, c_double};
use num_traits::Float;
use proj_sys::{
    proj_area_create, proj_area_destroy, proj_area_set_bbox, proj_context_create,
    proj_context_destroy, proj_create, proj_create_crs_to_crs, proj_destroy, proj_errno_string,
    proj_pj_info, proj_trans, proj_trans_array, PJconsts, PJ_AREA, PJ_CONTEXT, PJ_COORD,
    PJ_DIRECTION_PJ_FWD, PJ_DIRECTION_PJ_INV, PJ_LP, PJ_XY,
};
use proj_sys::{proj_errno, proj_errno_reset};
use std::ffi::CStr;
use std::ffi::CString;
use std::str;
use thiserror::Error;

/// Errors originating in PROJ which can occur during projection and conversion
#[derive(Error, Debug)]
pub enum ProjError {
    #[error("The projection failed with the following error: {0}")]
    Projection(String),
    #[error("The conversion failed with the following error: {0}")]
    Conversion(String),
}

/// The bounding box of an area of use
///
/// In the case of an area of use crossing the antimeridian (longitude +/- 180 degrees),
/// `west` must be greater than `east`.
pub struct Area {
    north: f64,
    south: f64,
    east: f64,
    west: f64,
}

impl Area {
    /// Create a new Area
    ///
    /// **Note**: In the case of an area of use crossing the antimeridian (longitude +/- 180 degrees),
    /// `west` must be greater than `east`.
    pub fn new(west: f64, south: f64, east: f64, north: f64) -> Self {
        Area {
            west,
            south,
            east,
            north,
        }
    }
}

/// Easily get a String from the external library
fn _string(raw_ptr: *const c_char) -> String {
    let c_str = unsafe { CStr::from_ptr(raw_ptr) };
    str::from_utf8(c_str.to_bytes()).unwrap().to_string()
}

/// Look up an error message using the error code
fn error_message(code: c_int) -> String {
    let rv = unsafe { proj_errno_string(code) };
    _string(rv)
}

/// Set the bounding box of the area of use
fn area_set_bbox(parea: *mut proj_sys::PJ_AREA, new_area: Option<Area>) {
    // if a bounding box has been passed, modify the proj area object
    if let Some(narea) = new_area {
        unsafe {
            proj_area_set_bbox(parea, narea.west, narea.south, narea.east, narea.north);
        }
    }
}

/// A `PROJ` instance
pub struct Proj {
    c_proj: *mut PJconsts,
    ctx: *mut PJ_CONTEXT,
    area: Option<*mut PJ_AREA>,
}

impl Proj {
    /// Try to instantiate a new `PROJ` instance
    ///
    /// **Note:** for projection operations, `definition` specifies
    /// the **output** projection; input coordinates
    /// are assumed to be geodetic in radians, unless an inverse projection is intended.
    ///
    /// For conversion operations, `definition` defines input, output, and
    /// any intermediate steps that are required. See the `convert` example for more details.
    ///
    /// # Safety
    /// This method contains unsafe code.

    // In contrast to proj v4.x, the type of transformation
    // is signalled by the choice of enum used as input to the PJ_COORD union
    // PJ_LP signals projection of geodetic coordinates, with output being PJ_XY
    // and vice versa, or using PJ_XY for conversion operations
    pub fn new(definition: &str) -> Option<Proj> {
        let c_definition = CString::new(definition.as_bytes()).unwrap();
        let ctx = unsafe { proj_context_create() };
        let new_c_proj = unsafe { proj_create(ctx, c_definition.as_ptr()) };
        // check for unexpected returned object type
        // let return_code: i32 = unsafe { proj_get_type(new_c_proj) };
        if new_c_proj.is_null() {
            None
        } else {
            Some(Proj {
                c_proj: new_c_proj,
                ctx,
                area: None,
            })
        }
    }

    /// Create a transformation object that is a pipeline between two known coordinate reference systems.
    /// `from` and `to` can be:
    ///
    /// - an `"AUTHORITY:CODE"`, like `"EPSG:25832"`. When using that syntax for a source CRS, the created pipeline will expect that the values passed to [`project()`](struct.Proj.html#method.project) or [`convert()`](struct.Proj.html#method.convert) respect the axis order and axis unit of the official definition ( so for example, for EPSG:4326, with latitude first and longitude next, in degrees). Similarly, when using that syntax for a target CRS, output values will be emitted according to the official definition of this CRS.
    /// - a PROJ string, like `"+proj=longlat +datum=WGS84"`. When using that syntax, the axis order and unit for geographic CRS will be longitude, latitude, and the unit degrees.
    /// - the name of a CRS as found in the PROJ database, e.g `"WGS84"`, `"NAD27"`, etc.
    /// - more generally, any string accepted by [`new()`](struct.Proj.html#method.new)
    ///
    /// If you wish to alter the particular area of use, you may do so using [`area_set_bbox()`](struct.Proj.html#method.area_set_bbox)
    ///```rust
    /// # use assert_approx_eq::assert_approx_eq;
    /// extern crate proj;
    /// use proj::Proj;
    ///
    /// extern crate geo_types;
    /// use geo_types::Point;
    ///
    /// let from = "EPSG:2230";
    /// let to = "EPSG:26946";
    /// let nad_ft_to_m = Proj::new_known_crs(&from, &to, None).unwrap();
    /// let result = nad_ft_to_m
    ///     .convert(Point::new(4760096.421921f64, 3744293.729449f64))
    ///     .unwrap();
    /// assert_approx_eq!(result.x(), 1450880.29f64, 1.0e-2);
    /// assert_approx_eq!(result.y(), 1141263.01f64, 1.0e-2);
    ///```
    ///
    /// # Safety
    /// This method contains unsafe code.
    pub fn new_known_crs(from: &str, to: &str, area: Option<Area>) -> Option<Proj> {
        let from_c = CString::new(from.as_bytes()).unwrap();
        let to_c = CString::new(to.as_bytes()).unwrap();
        let ctx = unsafe { proj_context_create() };
        let proj_area = unsafe { proj_area_create() };
        area_set_bbox(proj_area, area);
        let new_c_proj =
            unsafe { proj_create_crs_to_crs(ctx, from_c.as_ptr(), to_c.as_ptr(), proj_area) };
        if new_c_proj.is_null() {
            None
        } else {
            Some(Proj {
                c_proj: new_c_proj,
                ctx,
                area: Some(proj_area),
            })
        }
    }

    /// Set the bounding box of the area of use
    ///
    /// This bounding box will be used to specify the area of use
    /// for the choice of relevant coordinate operations.
    /// In the case of an area of use crossing the antimeridian (longitude +/- 180 degrees),
    /// `west` **must** be greater than `east`.
    ///
    /// # Safety
    /// This method contains unsafe code.
    // calling this on a non-CRS-to-CRS instance of Proj will be harmless, because self.area will be None
    pub fn area_set_bbox(&mut self, new_bbox: Area) {
        if let Some(new_area) = self.area {
            unsafe {
                proj_area_set_bbox(
                    new_area,
                    new_bbox.west,
                    new_bbox.south,
                    new_bbox.east,
                    new_bbox.north,
                );
            }
        }
    }

    /// Get the current definition from `PROJ`
    ///
    /// # Safety
    /// This method contains unsafe code.
    pub fn def(&self) -> String {
        let rv = unsafe { proj_pj_info(self.c_proj) };
        _string(rv.definition)
    }
    /// Project geodetic coordinates (in radians) into the projection specified by `definition`
    ///
    /// **Note:** specifying `inverse` as `true` carries out an inverse projection *to* geodetic coordinates
    /// (in radians) from the projection specified by `definition`.
    ///
    /// # Safety
    /// This method contains unsafe code.
    pub fn project<T, U>(&self, point: T, inverse: bool) -> Result<Point<U>, ProjError>
    where
        T: Into<Point<U>>,
        U: Float,
    {
        let inv = if inverse {
            PJ_DIRECTION_PJ_INV
        } else {
            PJ_DIRECTION_PJ_FWD
        };
        let _point: Point<U> = point.into();
        let c_x: c_double = _point.x().to_f64().unwrap();
        let c_y: c_double = _point.y().to_f64().unwrap();
        let new_x;
        let new_y;
        let err;
        // Input coords are defined in terms of lambda & phi, using the PJ_LP struct.
        // This signals that we wish to project geodetic coordinates.
        // For conversion (i.e. between projected coordinates) you should use
        // PJ_XY {x: , y: }
        let coords = PJ_LP { lam: c_x, phi: c_y };
        unsafe {
            proj_errno_reset(self.c_proj);
            // PJ_DIRECTION_* determines a forward or inverse projection
            let trans = proj_trans(self.c_proj, inv, PJ_COORD { lp: coords });
            // output of coordinates uses the PJ_XY struct
            new_x = trans.xy.x;
            new_y = trans.xy.y;
            err = proj_errno(self.c_proj);
        }
        if err == 0 {
            Ok(Point::new(U::from(new_x).unwrap(), U::from(new_y).unwrap()))
        } else {
            Err(ProjError::Projection(error_message(err)))
        }
    }

    /// Convert coordinates using the PROJ `pipeline` operator
    ///
    /// This method makes use of the [`pipeline`](http://proj4.org/operations/pipeline.html)
    /// functionality available since v5.0.0, which differs significantly from the v4.x series
    ///
    /// It has the advantage of being able to chain an arbitrary combination of projection, conversion,
    /// and transformation steps, allowing for extremely complex operations.
    ///
    /// The following example converts from NAD83 US Survey Feet (EPSG 2230) to NAD83 Metres (EPSG 26946)
    /// Note the steps:
    ///
    /// - define the operation as a `pipeline` operation
    /// - define `step` 1 as an `inv`erse transform, yielding geodetic coordinates
    /// - define `step` 2 as a forward transform to projected coordinates, yielding metres.
    ///
    /// ```rust
    /// # use assert_approx_eq::assert_approx_eq;
    /// extern crate proj;
    /// use proj::Proj;
    ///
    /// extern crate geo_types;
    /// use geo_types::Point;
    ///
    /// let nad_ft_to_m = Proj::new("
    ///     +proj=pipeline
    ///     +step +inv +proj=lcc +lat_1=33.88333333333333
    ///     +lat_2=32.78333333333333 +lat_0=32.16666666666666
    ///     +lon_0=-116.25 +x_0=2000000.0001016 +y_0=500000.0001016001 +ellps=GRS80
    ///     +towgs84=0,0,0,0,0,0,0 +units=us-ft +no_defs
    ///     +step +proj=lcc +lat_1=33.88333333333333 +lat_2=32.78333333333333 +lat_0=32.16666666666666
    ///     +lon_0=-116.25 +x_0=2000000 +y_0=500000
    ///     +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
    /// ").unwrap();
    /// let result = nad_ft_to_m.convert(Point::new(4760096.421921f64, 3744293.729449f64)).unwrap();
    /// assert_approx_eq!(result.x(), 1450880.29f64, 1.0e-2);
    /// assert_approx_eq!(result.y(), 1141263.01f64, 1.0e-2);
    ///
    /// ```
    ///
    /// # Safety
    /// This method contains unsafe code.
    pub fn convert<T, U>(&self, point: T) -> Result<Point<U>, ProjError>
    where
        T: Into<Point<U>>,
        U: Float,
    {
        let _point: Point<U> = point.into();
        let c_x: c_double = _point.x().to_f64().unwrap();
        let c_y: c_double = _point.y().to_f64().unwrap();
        let new_x;
        let new_y;
        let err;
        let coords = PJ_XY { x: c_x, y: c_y };
        unsafe {
            proj_errno_reset(self.c_proj);
            let trans = proj_trans(self.c_proj, PJ_DIRECTION_PJ_FWD, PJ_COORD { xy: coords });
            new_x = trans.xy.x;
            new_y = trans.xy.y;
            err = proj_errno(self.c_proj);
        }
        if err == 0 {
            Ok(Point::new(U::from(new_x).unwrap(), U::from(new_y).unwrap()))
        } else {
            Err(ProjError::Conversion(error_message(err)))
        }
    }

    /// Convert a mutable slice (or anything that can deref into a mutable slice) of coordinates  
    /// The following example converts from NAD83 US Survey Feet (EPSG 2230) to NAD83 Metres (EPSG 26946)
    ///
    /// ```rust
    /// use proj::Proj;
    /// extern crate geo_types;
    /// use geo_types::Point;
    /// # use assert_approx_eq::assert_approx_eq;
    /// let from = "EPSG:2230";
    /// let to = "EPSG:26946";
    /// let ft_to_m = Proj::new_known_crs(&from, &to, None).unwrap();
    /// let mut v = vec![Point::new(4760096.421921, 3744293.729449), Point::new(4760197.421921, 3744394.729449)];
    /// ft_to_m.convert_array(&mut v);
    /// assert_approx_eq!(v[0].x(), 1450880.2910605003f64);
    /// assert_approx_eq!(v[1].y(), 1141293.7960220212f64);
    /// ```
    ///
    /// # Safety
    /// This method contains unsafe code.
    // TODO: there may be a way of avoiding some allocations, but transmute won't work because
    // PJ_COORD and Point<T> are different sizes
    pub fn convert_array<'a, T>(
        &self,
        points: &'a mut [Point<T>],
    ) -> Result<&'a mut [Point<T>], ProjError>
    where
        T: Float,
    {
        let err;
        let trans;
        // we need PJ_COORD to convert
        let mut pj = points
            .iter()
            .map(|point| {
                let c_x: c_double = point.x().to_f64().unwrap();
                let c_y: c_double = point.y().to_f64().unwrap();
                PJ_COORD {
                    xy: PJ_XY { x: c_x, y: c_y },
                }
            })
            .collect::<Vec<_>>();
        pj.shrink_to_fit();
        unsafe {
            proj_errno_reset(self.c_proj);
            trans = proj_trans_array(self.c_proj, PJ_DIRECTION_PJ_FWD, pj.len(), pj.as_mut_ptr());
            err = proj_errno(self.c_proj);
        }
        if err == 0 && trans == 0 {
            unsafe {
                // re-fill original slice with Points
                // feels a bit clunky, but we're guaranteed that pj and points have the same length
                pj.iter().enumerate().for_each(|(i, coord)| {
                    points[i] =
                        Point::new(T::from(coord.xy.x).unwrap(), T::from(coord.xy.y).unwrap())
                });
                Ok(points)
            }
        } else {
            Err(ProjError::Projection(error_message(err)))
        }
    }
}

impl Drop for Proj {
    fn drop(&mut self) {
        unsafe {
            proj_destroy(self.c_proj);
            proj_context_destroy(self.ctx);
            if let Some(area) = self.area {
                proj_area_destroy(area)
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::Proj;
    use geo_types::Point;

    fn assert_almost_eq(a: f64, b: f64) {
        let f: f64 = a / b;
        assert!(f < 1.00001);
        assert!(f > 0.99999);
    }
    #[test]
    fn test_definition() {
        let wgs84 = "+proj=longlat +datum=WGS84 +no_defs";
        let proj = Proj::new(wgs84).unwrap();
        assert_eq!(
            proj.def(),
            "proj=longlat datum=WGS84 no_defs ellps=WGS84 towgs84=0,0,0"
        );
    }
    #[test]
    fn test_from_crs() {
        let from = "EPSG:2230";
        let to = "EPSG:26946";
        let proj = Proj::new_known_crs(&from, &to, None).unwrap();
        let t = proj
            .convert(Point::new(4760096.421921, 3744293.729449))
            .unwrap();
        assert_almost_eq(t.x(), 1450880.29);
        assert_almost_eq(t.y(), 1141263.01);
    }
    #[test]
    // Carry out a projection from geodetic coordinates
    fn test_projection() {
        let stereo70 = Proj::new(
            "+proj=sterea +lat_0=46 +lon_0=25 +k=0.99975 +x_0=500000 +y_0=500000
            +ellps=krass +towgs84=33.4,-146.6,-76.3,-0.359,-0.053,0.844,-0.84 +units=m +no_defs",
        )
        .unwrap();
        // Geodetic -> Pulkovo 1942(58) / Stereo70 (EPSG 3844)
        let t = stereo70
            .project(Point::new(0.436332, 0.802851), false)
            .unwrap();
        assert_almost_eq(t.x(), 500119.70352012233);
        assert_almost_eq(t.y(), 500027.77896348457);
    }
    #[test]
    // Carry out an inverse projection to geodetic coordinates
    fn test_inverse_projection() {
        let stereo70 = Proj::new(
            "+proj=sterea +lat_0=46 +lon_0=25 +k=0.99975 +x_0=500000 +y_0=500000
            +ellps=krass +towgs84=33.4,-146.6,-76.3,-0.359,-0.053,0.844,-0.84 +units=m +no_defs",
        )
        .unwrap();
        // Pulkovo 1942(58) / Stereo70 (EPSG 3844) -> Geodetic
        let t = stereo70
            .project(Point::new(500119.70352012233, 500027.77896348457), true)
            .unwrap();
        assert_almost_eq(t.x(), 0.436332);
        assert_almost_eq(t.y(), 0.802851);
    }
    #[test]
    // Carry out an inverse projection to geodetic coordinates
    fn test_london_inverse() {
        let osgb36 = Proj::new(
            "
            +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy
            +towgs84=446.448,-125.157,542.06,0.15,0.247,0.842,-20.489 +units=m +no_defs
            ",
        )
        .unwrap();
        // OSGB36 (EPSG 27700) -> Geodetic
        let t = osgb36
            .project(Point::new(548295.39, 182498.46), true)
            .unwrap();
        assert_almost_eq(t.x(), 0.0023755864848281206);
        assert_almost_eq(t.y(), 0.8992274896304518);
    }
    #[test]
    // Carry out a conversion from NAD83 feet (EPSG 2230) to NAD83 metres (EPSG 26946)
    fn test_conversion() {
        let nad83_m = Proj::new("
            +proj=pipeline
            +step +inv +proj=lcc +lat_1=33.88333333333333
            +lat_2=32.78333333333333 +lat_0=32.16666666666666
            +lon_0=-116.25 +x_0=2000000.0001016 +y_0=500000.0001016001 +ellps=GRS80
            +towgs84=0,0,0,0,0,0,0 +units=us-ft +no_defs
            +step +proj=lcc +lat_1=33.88333333333333 +lat_2=32.78333333333333 +lat_0=32.16666666666666
            +lon_0=-116.25 +x_0=2000000 +y_0=500000
            +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
        ").unwrap();
        // Presidio, San Francisco
        let t = nad83_m
            .convert(Point::new(4760096.421921, 3744293.729449))
            .unwrap();
        assert_almost_eq(t.x(), 1450880.29);
        assert_almost_eq(t.y(), 1141263.01);
    }
    #[test]
    // Test that instantiation fails wth bad proj string input
    fn test_init_error() {
        assert!(Proj::new("🦀").is_none());
    }
    #[test]
    fn test_conversion_error() {
        // because step 1 isn't an inverse conversion, it's expecting lon lat input
        let nad83_m = Proj::new(
            "+proj=geos +lon_0=0.00 +lat_0=0.00 +a=6378169.00 +b=6356583.80 +h=35785831.0",
        )
        .unwrap();
        let err = nad83_m
            .convert(Point::new(4760096.421921, 3744293.729449))
            .unwrap_err();
        assert_eq!(
            "The conversion failed with the following error: latitude or longitude exceeded limits",
            err.to_string()
        );
    }

    #[test]
    fn test_error_recovery() {
        let nad83_m = Proj::new(
            "+proj=geos +lon_0=0.00 +lat_0=0.00 +a=6378169.00 +b=6356583.80 +h=35785831.0",
        )
        .unwrap();

        // we expect this first conversion to fail (copied from above test case)
        assert!(nad83_m
            .convert(Point::new(4760096.421921, 3744293.729449))
            .is_err());

        // but a subsequent valid conversion should still be successful
        assert!(nad83_m.convert(Point::new(0.0, 0.0)).is_ok());

        // also test with project() function
        assert!(nad83_m
            .project(Point::new(99999.0, 99999.0), false)
            .is_err());
        assert!(nad83_m.project(Point::new(0.0, 0.0), false).is_ok());
    }

    #[test]
    fn test_array_convert() {
        let from = "EPSG:2230";
        let to = "EPSG:26946";
        let ft_to_m = Proj::new_known_crs(&from, &to, None).unwrap();
        let mut v = vec![
            Point::new(4760096.421921, 3744293.729449),
            Point::new(4760197.421921, 3744394.729449),
        ];
        ft_to_m.convert_array(&mut v).unwrap();
        assert_almost_eq(v[0].x(), 1450880.2910605003f64);
        assert_almost_eq(v[1].y(), 1141293.7960220212f64);
    }
}