1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
// Copyright 2019 statiolake <statiolake@gmail.com>
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be copied, modified, or
// distributed except according to those terms.

//! Easy IO library for competitive programming.
//!
//! `proconio` provides an easy way to read values from stdin (or other source).  The main is
//! `input!` macro.
//!
//! # Examples
//!
//! The macro's user interface is basically the same with [tanakh's input
//! macro](https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8).
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! # let source = AutoSource::from("32 54 -23");
//!
//! input! {
//! #   from source,
//!     n: u8,
//!     m: u32,
//!     l: i32,
//! }
//!
//! // now you can use n, m and l as variable.
//! println!("{} {} {}", n, m, l);
//! # assert_eq!(n, 32);
//! # assert_eq!(m, 54);
//! # assert_eq!(l, -23);
//! ```
//!
//! In above code, variables n, m and l are declared and stored values are read from stdin.
//!
//! You can declare mutable variables like below:
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! # let source = AutoSource::from("32 54");
//!
//! input! {
//! #   from source,
//!     n: u32,
//!     mut m: u32,
//! }
//!
//! m += n; // OK: m is mutable
//! # assert_eq!(n, 32);
//! # assert_eq!(m, 86);
//! ```
//!
//! You can read an array or a matrix like this:
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! # let source = AutoSource::from("5 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5");
//!
//! input! {
//! #    from source,
//!     n: usize,
//!     m: usize,
//!     a: [[i32; n]; m] // `a` is Vec<Vec<i32>>, (n, m)-matrix.
//! }
//! # assert_eq!(
//! #     a,
//! #     [
//! #         [1, 2, 3, 4, 5],
//! #         [1, 2, 3, 4, 5],
//! #         [1, 2, 3, 4, 5],
//! #         [1, 2, 3, 4, 5]
//! #     ]
//! # );
//! ```
//!
//! If the first input is the length of the array, you can omit the length.  This is the only way
//! to read jagged array (an array of arrays of which the member arrays can be of different sizes)
//! at once.  (Of course you can use `input!` multiple times in for-loop to read such an array
//! since `input!` can be used multiple times.)
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! # let source = AutoSource::from("3 3 1 2 3 0 2 1 2");
//!
//! input! {
//! #   from source,
//!     n: usize,
//!     a: [[i32]; n],
//! }
//!
//! // if you enter "3  3 1 2 3  0  2 1 2" to the stdin, the result is as follows.
//! assert_eq!(
//!     a,
//!     vec![
//!         vec![1, 2, 3],
//!         vec![],
//!         vec![1, 2],
//!     ]
//! );
//! ```
//!
//! Strings can be read as various types:
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! use proconio::types::{Bytes, Chars};
//! # let source = AutoSource::from("  string   chars\nbytes");
//!
//! input! {
//! #     from source,
//!     string: String, // read as String
//!     chars: Chars,   // read as Vec<char>
//!     bytes: Bytes,   // read as Vec<u8>
//! }
//!
//! // if you enter "string chars bytes" to the stdin, they are like this.
//! assert_eq!(string, "string");
//! assert_eq!(chars, ['c', 'h', 'a', 'r', 's']);
//! assert_eq!(bytes, b"bytes");
//! ```
//!
//! You can read tuples:
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! # let source = AutoSource::from("1 2 3 4 5");
//!
//! input! {
//! #   from source,
//!     t: (i32, i32, i32, i32, i32),
//! }
//!
//! // if you enter "1 2 3 4 5" to the stdin, `t` is like this.
//! assert_eq!(t, (1, 2, 3, 4, 5));
//! ```
//!
//! And you can freely combine these types.
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! # let source = AutoSource::from("4 3 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5");
//!
//! input! {
//! #   from source,
//!     n: usize,
//!     m: usize,
//!     t: [([u32; m], i32); n],
//! }
//! # assert_eq!(
//! #     t,
//! #     [
//! #         (vec![1,1,1],1),
//! #         (vec![2,2,2],2),
//! #         (vec![3,3,3],3),
//! #         (vec![4,4,4],4),
//! #     ]
//! # );
//! ```
//!
//! You can use `input!` macro multiple times.  For the second time, `input!` macro reads rest of
//! input.  It works even if the first input stops at the middle of a line.  The subsequent reads
//! will be started at the rest of the line.  This may be helpful for problems where multiple
//! datasets are given once.
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! # let mut source = AutoSource::from("4 2 1 2 2 3 4 2 1 2 2 3 4");
//!
//! input! {
//! #   from &mut source,
//!     n: usize,
//! }
//!
//! for i in 0..n {
//!     input! {
//! #       from &mut source,
//!         m: usize,
//!         a: [i32; m],
//!     }
//! #   assert_eq!(a[0], if i % 2 == 0 { 1 } else { 3 });
//! #   assert_eq!(a[1], if i % 2 == 0 { 2 } else { 4 });
//! }
//! ```
//!
//! Some special types exists.  `Usize1` and `Isize1` are.  They are read as `usize` and `isize`
//! respectively, but the read value is decremented.  It enables us to automatically convert
//! 1-indexed vertices numbers to 0-indexed array indices.
//!
//! ```
//! # extern crate proconio;
//! # use proconio::source::auto::AutoSource;
//! use proconio::input;
//! use proconio::types::Usize1;
//! # let mut source = AutoSource::from("4   1 3   3 4   6 1   5 3");
//!
//! input! {
//! #   from &mut source,
//!     n: usize,
//!     edges: [(Usize1, Usize1); n],
//! }
//!
//! // if you enter "4   1 3   3 4   6 1   5 3", the decremented value is stored.
//! assert_eq!(edges[0], (0, 2));
//! assert_eq!(edges[1], (2, 3));
//! assert_eq!(edges[2], (5, 0));
//! assert_eq!(edges[3], (4, 2));
//! ```
//!
//! `Usize1` and `Isize1` is a simple unit struct.  This type is only used to tell "how to read the
//! value".  It can be defined by `Readable` trait.  This trait doesn't require the output type to
//! be the same with the implementor.  `Usize1` is implementing `Readable` trait, and there it
//! defines the type of read value is `usize`.  You can implement `Readable` for your own type to
//! read values in customized way.
//!
//! Finally, you can make your own types `Readable` using `#[derive_readable]` attribute.  Types
//! used in the struct are automatically translated to their output types, so a member declared as
//! `Usize1` has type `usize` as real struct.
//!
//! ```
//! # extern crate proconio;
//! # extern crate proconio_derive;
//! use proconio::input;
//! # use proconio::source::auto::AutoSource;
//! use proconio_derive::derive_readable;
//!
//! // Unit struct can derive readable.  This generates a no-op for the reading.  Not ignoring
//! // the read value, but simply skip reading process.  You cannot use it to discard the input.
//! #[derive_readable]
//! #[derive(PartialEq, Debug)]
//! struct Weight;
//!
//! #[derive_readable]
//! #[derive(PartialEq, Debug)]
//! struct Cost(i32);
//!
//! #[derive_readable]
//! #[derive(Debug)]
//! struct Edge {
//!     from: usize,
//!     to: proconio::types::Usize1, // The real Edge::to has type usize.
//!     weight: Weight,
//!     cost: Cost,
//! }
//!
//! fn main() {
//! #   let source = AutoSource::from("12 32 35");
//!     input! {
//! #       from source,
//!         edge: Edge,
//!     }
//!
//!     // if you enter "12 32 35" to the stdin, the values are as follows.
//!     assert_eq!(edge.from, 12);
//!     assert_eq!(edge.to, 31);
//!     assert_eq!(edge.weight, Weight);
//!     assert_eq!(edge.cost, Cost(35));
//! }
//! ```
//!
//! # `#[fastout]`
//!
//! If you import `proconio_derive::fastout`, you can use `#[fastout]` attribute.  Adding this
//! attribute to your `main()`, your `print!` and `println!` become faster.
//!
//! ```
//! # extern crate proconio_derive;
//! use proconio_derive::fastout;
//!
//! #[fastout]
//! fn main() {
//!     print!("{}{}, ", 'h', "ello"); // "hello"       (no newline)
//!     println!("{}!", "world");      // "world!\n"
//!     println!("{}", 123456789);     // "123456789\n"
//! }
//! ```
//!
//! ## Closures having `print!` or `println!` in `#[fastout]` function
//!
//! You cannot create a closure containing `print!` or `println!` in `#[fastout]` function.  This
//! is because the closure becomes thread-unsafe since the closure refers the unlocked stdout
//! introduced by `#[fastout]` attribute.  If this were not prohibited, an invalid usage of such a
//! closure would produce a very complex error messages.  For example, `std::thread::spawn()`,
//! which requires its argument closure to be thread-safe, causes a confusing error.
//!
//! Yes, it is too conservative to make all of such closures compilation error because it is
//! actually no problem to use such a closure only inside a single thread.  This is related to a
//! limitation in `#[fastout]` implementation.
//!
//! For more technical details, see documentation for `#[fastout]` in `proconio-derive`.
//!
//! ### How to resolve this error
//!
//! Consider you want to run this code:
//!
//! ```compile_fail
//! use proconio_derive::fastout;
//!
//! #[fastout]
//! fn main() {
//!     let thread = std::thread::spawn(|| {
//!         let x = 3;
//!         let y = x * x;
//!         println!("{}", y);
//!     });
//!
//!     thread.join().unwrap();
//! }
//! ```
//!
//! You will get an error like below.
//!
//! ```text
//! error: Closures in a #[fastout] function cannot contain `print!` or `println!` macro
//!
//! note: If you want to run your entire logic in a thread having extended size of stack, you can
//! define a new function instead.  See documentation (https://.....) for more details.
//!
//! note: This is because if you use this closure with `std::thread::spawn()` or any other
//! functions requiring `Send` for an argument closure, the compiler emits an error about thread
//! unsafety for our internal implementations.  If you are using the closure just in a single
//! thread, it's actually no problem, but we cannot check the trait bounds at the macro-expansion
//! time.  So for now, all closures having `print!` or `println!` is prohibited regardless of the
//! `Send` requirements.
//!  --> src/test.rs:10:9
//!    |
//! 10 |         println!("{}", y);
//!    |         ^^^^^^^
//! ```
//!
//! If your `print!` is relying on the calculation in the thread, you can instead return the result
//! from the thread.
//!
//! ```
//! use proconio_derive::fastout;
//!
//! #[fastout]
//! fn main() {
//!     let thread = std::thread::spawn(|| {
//!         let x = 3;
//!         x * x
//!     });
//!
//!     let y = thread.join().unwrap();
//! #   assert_eq!(y, 9);
//!     println!("{}", y);
//! }
//! ```
//!
//! If you are doing so complex job that it's too difficult to returning the results from your
//! closure...
//!
//! ```compile_fail
//! use proconio_derive::fastout;
//!
//! # fn some_function(_: String) -> impl Iterator<Item = String> { vec!["hello".to_string(), "world".to_string()].into_iter() }
//! # fn some_proc(x: &str) -> &str { x }
//!
//! #[fastout]
//! fn main() {
//!     let context = "some context".to_string();
//!     let thread = std::thread::spawn(move || {
//!         // Use many println! and the order is very important
//!         // It's possible to aggregate the result and print it later, but it's not easy to read
//!         // and seems ugly.
//!         println!("this is header.");
//!         for (i, item) in some_function(context).enumerate() {
//!             print!("Item #{}: ", i);
//!             print!("{}", some_proc(&item));
//!             println!("({})", item);
//!         }
//!     });
//!
//!     thread.join().unwrap();
//! }
//! ```
//!
//! ...you can use a function instead.
//!
//! ```
//! use proconio_derive::fastout;
//!
//! # fn some_function(_: String) -> impl Iterator<Item = String> { vec!["hello".to_string(), "world".to_string()].into_iter() }
//! # fn some_proc(x: &str) -> &str { x }
//!
//! // You can add #[fastout] here
//! #[fastout]
//! fn process(context: String) {
//!     // It's completely OK since this #[fastout] is a thing inside `process()`
//!     println!("this is header.");
//!     for (i, item) in some_function(context).enumerate() {
//!         print!("Item #{}: ", i);
//!         print!("{}", some_proc(&item));
//!         println!("({})", item);
//!     }
//! }
//!
//! // You must not add #[fastout] here!  It causes deadlock.
//! // #[fastout]
//! fn main() {
//!     let context = "some context".to_string();
//!     let thread = std::thread::spawn(move || process(context));
//!     thread.join().unwrap();
//! }
//! ```
//!
//! **Important Note:** If you call another function annotated with `#[fastout]`, you must not add
//! `#[fastout]` to the caller.  If you add `#[fastout]` in caller too, then the caller has the
//! lock for the stdout, and so callee cannot acquire the lock forever --- deadlock.  We cannot
//! warn about this kind of deadlock since we don't know annotations attached to the function to be
//! called.  (In the above example, we can't know whether the function `process()` has `#[fastout]`
//! attribute or not.)
//!
//! If your code is so complex that you cannot avoid deadlock, you should give up using
//! `#[fastout]` and simply use `println!` or manually handle your stdout in usual Rust way.
//!
//! ## Issues of printing order
//!
//! `#[fastout]` enables buffering to stdout, so if you print something in other functions between
//! two prints in main, the order of printing may differ.  In other words, the below example
//!
//! ```
//! # use proconio_derive::fastout;
//! fn foo() { println!("between"); }
//! #[fastout]
//! fn main() {
//!     println!("hello");
//!     foo();
//!     println!("world");
//! }
//! ```
//!
//! *likely* prints like
//!
//! ```text
//! between
//! hello
//! world
//! ```
//!
//! If you don't like this behavior, you can remove #[fastout] from your `main()`.
//!

pub mod read;
pub mod source;
pub mod types;

use crate::source::auto::AutoSource;
use lazy_static::lazy_static;
use std::io;
use std::io::{BufReader, Stdin};
use std::sync::Mutex;

lazy_static! {
    #[doc(hidden)]
    pub static ref STDIN_SOURCE: Mutex<AutoSource<BufReader<Stdin>>> =
        Mutex::new(AutoSource::new(BufReader::new(io::stdin())));
}

/// read input from stdin.
///
/// basic syntax is:
/// ```text
/// input! {
///     from source,          // optional: if you omitted, stdin is used by default.
///     (mut) variable: type, // mut is optional: mut makes the variable mutable.
///     ...
/// }
/// ```
/// the trailing comma is optional.  `source` can be anything implementing `Source`.  This macro
/// moves out the specified source.  If you want to prevent moving, you can use `&mut source` since
/// `&mut S` where `S: Source` also implements `Source`.
///
/// **Note:** for macro matcher's limitation, only a single token tree (`i32`, `[T; n]`, `(T, U)` or
/// etc) is accepted by `type`. This means you can't use generics `YourType<T>` as the type.  To
/// use such a type, you can alias it like `type YourTypeT = YourType<T>` to make it a single token
/// tree.  (This is why `Chars` and `Bytes` exists.  They are simply alias of `Vec<char>` and
/// `Vec<u8>`.)
#[macro_export]
macro_rules! input {
    (from $source:expr $(,)?) => {};
    (from $source:expr, mut $var:ident: $kind:tt $($rest:tt)*) => {
        let mut s = $source;
        let mut $var = $crate::read_value!($kind; &mut s);
        input!(from &mut s $($rest)*);
    };
    (from $source:expr, $var:ident: $kind:tt $($rest:tt)*) => {
        let mut s = $source;
        let $var = $crate::read_value!($kind; &mut s);
        input!(from &mut s $($rest)*);
    };
    ($($rest:tt)*) => {
        let mut locked_stdin = $crate::STDIN_SOURCE.lock().expect("failed to lock the stdin");
        input! {
            from &mut *locked_stdin,
            $($rest)*
        };
        drop(locked_stdin); // release the lock
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! read_value {
    // variable length array (first item is a length)
    ([$kind:tt]; $source:expr) => {{
        let len = <usize as $crate::source::Readable>::read($source);
        $crate::read_value!([$kind; len]; $source)
    }};

    // array
    ([$kind:tt; $len:expr]; $source:expr) => {{
        let mut res = Vec::new();
        res.reserve($len);
        for _ in 0..$len {
            res.push($crate::read_value!($kind; $source));
        }
        res
    }};

    // tuple
    (($($kind:tt),*); $source:expr) => {
        (
            $($crate::read_value!($kind; $source),)*
        )
    };

    // normal other
    ($ty:tt; $source:expr) => {
        $crate::read_value!(@ty $ty; $source);
    };

    // actual reading
    (@ty $ty:ty; $source:expr) => {
        <$ty as $crate::source::Readable>::read($source)
    }
}

/// Checks if some of tokens are left on stdin.
///
/// This is useful when the number of test cases is not specified like ICPC problems.
///
/// ```text
/// loop {
///     if is_stdin_empty() {
///         break;
///     }
///
///     // do the normal logic
///     input! { ... }
/// }
/// ```
pub fn is_stdin_empty() -> bool {
    use crate::source::Source;
    let mut lock = STDIN_SOURCE.lock().expect("failed to lock stdin");
    lock.is_empty()
}

#[cfg(test)]
mod tests {
    use crate::source::auto::AutoSource;

    #[test]
    fn input_number() {
        let source = AutoSource::from("    32   54 -23\r\r\n\nfalse");

        input! {
            from source,
            n: u8,
            m: u32,
            l: i32,
        }

        assert_eq!(n, 32);
        assert_eq!(m, 54);
        assert_eq!(l, -23);
    }

    #[test]
    fn input_str() {
        use crate::types::{Bytes, Chars};
        let source = AutoSource::from("  string   chars\nbytes");

        input! {
            from source,
            string: String,
            chars: Chars,
            bytes: Bytes,
        }

        assert_eq!(string, "string");
        assert_eq!(chars, ['c', 'h', 'a', 'r', 's']);
        assert_eq!(bytes, b"bytes");
    }

    #[test]
    fn input_array() {
        let source = AutoSource::from("5 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5");

        input! {
            from source,
            n: usize,
            m: usize,
            a: [[i32; n]; m] // no trailing comma is OK
        }

        assert_eq!(
            a,
            [
                [1, 2, 3, 4, 5],
                [1, 2, 3, 4, 5],
                [1, 2, 3, 4, 5],
                [1, 2, 3, 4, 5]
            ]
        );
    }

    #[test]
    fn input_vla() {
        let source = AutoSource::from("5 3 1 2 3 2 1 2 4 1 2 3 4 0 6 1 2 3 4 5 6");

        input! {
            from source,
            n: usize,
            a: [[i32]; n],
        }

        assert_eq!(
            a,
            vec![
                vec![1, 2, 3],
                vec![1, 2],
                vec![1, 2, 3, 4],
                vec![],
                vec![1, 2, 3, 4, 5, 6],
            ]
        );
    }

    #[test]
    fn input_tuple() {
        let source = AutoSource::from("4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5");

        input! {
            from source,
            n: usize,
            t: [(i32, i32, i32, i32, i32); n],
        }

        assert_eq!(
            t,
            [
                (1, 2, 3, 4, 5),
                (1, 2, 3, 4, 5),
                (1, 2, 3, 4, 5),
                (1, 2, 3, 4, 5)
            ]
        );
    }

    #[test]
    fn input_multiple_times() {
        let mut source = AutoSource::from("4 1 2 3 4\n1 2\r\n\r\r\n3 4");

        input! {
            from &mut source,
            n: usize,
        }

        for i in 0..n {
            input! {
                from &mut source,
                j: i32, k: i32,
            }

            assert_eq!(j, if i % 2 == 0 { 1 } else { 3 });
            assert_eq!(k, if i % 2 == 0 { 2 } else { 4 });
        }
    }

    #[test]
    fn input_iusize1() {
        use crate::types::Usize1;

        let mut source = AutoSource::from("4 1 2 3 4 5 6 7 8");

        input! {
            from &mut source,
            n: usize,
        }

        for i in 0..n {
            input! {
                from &mut source,
                from: Usize1, to: Usize1
            }

            assert_eq!(from, i * 2);
            assert_eq!(to, i * 2 + 1);
        }
    }

    #[test]
    fn input_mut() {
        let mut source = AutoSource::from("8 1 2 3 4 5 6 7 8");

        input! {
            from &mut source,
            mut n: usize,
        }

        let mut sum = 0;
        while n > 0 {
            input!(from &mut source, x: u32);
            sum += x;
            n -= 1;
        }
        assert_eq!(sum, 36);
    }
}