1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
//! RISCV Support

#![allow(clippy::inconsistent_digit_grouping)]

use crate::core::Architecture;
use crate::CoreInterface;
use communication_interface::{
    AbstractCommandErrorKind, AccessRegisterCommand, DebugRegister, RiscvCommunicationInterface,
    RiscvError,
};

use crate::core::{CoreInformation, RegisterFile};
use crate::CoreRegisterAddress;
use bitfield::bitfield;
use register::RISCV_REGISTERS;

#[macro_use]
mod register;

pub mod communication_interface;

#[derive(Clone)]
pub struct Riscv32 {
    interface: RiscvCommunicationInterface,
}

impl Riscv32 {
    pub fn new(interface: RiscvCommunicationInterface) -> Self {
        Self { interface }
    }

    fn read_csr(&self, address: u16) -> Result<u32, RiscvError> {
        let s0 = self.interface.abstract_cmd_register_read(&register::S0)?;

        // We need to perform the csrr instruction, which reads a CSR.
        // This is a pseudo instruction, which actually is encoded as a
        // csrrs instruction, with the rs1 register being x0,
        // so no bits are changed in the CSR, but the CSR is read into rd, i.e. s0.
        //
        // csrrs,
        // with rd  = s0
        //      rs1 = x0
        //      csr = address

        let mut csrrs_cmd: u32 = 0b_00000_010_01000_1110011;
        csrrs_cmd |= ((address as u32) & 0xfff) << 20;
        let ebreak_cmd = 0b000000000001_00000_000_00000_1110011;

        // write progbuf0: csrr xxxxxx s0, (address) // lookup correct command
        self.interface.write_dm_register(Progbuf0(csrrs_cmd))?;

        // write progbuf1: ebreak
        self.interface.write_dm_register(Progbuf1(ebreak_cmd))?;

        // command: postexec
        let mut postexec_cmd = AccessRegisterCommand(0);
        postexec_cmd.set_postexec(true);

        self.interface.execute_abstract_command(postexec_cmd.0)?;

        // read the s0 value
        let reg_value = self.interface.abstract_cmd_register_read(&register::S0)?;

        // restore original value in s0
        self.interface
            .abstract_cmd_register_write(&register::S0, s0)?;

        Ok(reg_value)
    }

    fn write_csr(&self, address: u16, value: u32) -> Result<(), RiscvError> {
        // Backup register s0
        let s0 = self.interface.abstract_cmd_register_read(&register::S0)?;

        // We need to perform the csrw instruction, which writes a CSR.
        // This is a pseudo instruction, which actually is encoded as a
        // csrrw instruction, with the destination register being x0,
        // so the read is ignored.
        //
        // csrrw,
        // with rd  = x0
        //      rs1 = s0
        //      csr = address

        // Write value into s0
        self.interface
            .abstract_cmd_register_write(&register::S0, value)?;

        let mut csrrw_cmd: u32 = 0b_01000_001_00000_1110011;
        csrrw_cmd |= ((address as u32) & 0xfff) << 20;
        let ebreak_cmd = 0b000000000001_00000_000_00000_1110011;

        // write progbuf0: csrr xxxxxx s0, (address) // lookup correct command
        self.interface.write_dm_register(Progbuf0(csrrw_cmd))?;

        // write progbuf1: ebreak
        self.interface.write_dm_register(Progbuf1(ebreak_cmd))?;

        // command: postexec
        let mut postexec_cmd = AccessRegisterCommand(0);
        postexec_cmd.set_postexec(true);

        self.interface.execute_abstract_command(postexec_cmd.0)?;

        // command: transfer, regno = 0x1008
        // restore original value in s0
        self.interface
            .abstract_cmd_register_write(&register::S0, s0)?;

        Ok(())
    }
}

impl CoreInterface for Riscv32 {
    fn wait_for_core_halted(&self) -> Result<(), crate::Error> {
        // poll the
        let num_retries = 10;

        for _ in 0..num_retries {
            let dmstatus: Dmstatus = self.interface.read_dm_register()?;

            log::trace!("{:?}", dmstatus);

            if dmstatus.allhalted() {
                return Ok(());
            }
        }

        Err(RiscvError::Timeout.into())
    }

    fn core_halted(&self) -> Result<bool, crate::Error> {
        let dmstatus: Dmstatus = self.interface.read_dm_register()?;

        Ok(dmstatus.allhalted())
    }

    fn halt(&self) -> Result<CoreInformation, crate::Error> {
        // write 1 to the haltreq register, which is part
        // of the dmcontrol register

        // read the current dmcontrol register
        let current_dmcontrol: Dmcontrol = self.interface.read_dm_register()?;
        log::debug!("{:?}", current_dmcontrol);

        let mut dmcontrol = Dmcontrol(0);

        dmcontrol.set_haltreq(true);
        dmcontrol.set_dmactive(true);

        self.interface.write_dm_register(dmcontrol)?;

        self.wait_for_core_halted()?;

        // clear the halt request
        let mut dmcontrol = Dmcontrol(0);

        dmcontrol.set_dmactive(true);

        self.interface.write_dm_register(dmcontrol)?;

        let pc = self.read_core_reg(CoreRegisterAddress(0x7b1))?;

        Ok(CoreInformation { pc })
    }

    fn run(&self) -> Result<(), crate::Error> {
        // TODO: test if core halted?

        // set resume request
        let mut dmcontrol = Dmcontrol(0);
        dmcontrol.set_dmactive(true);
        dmcontrol.set_resumereq(true);

        self.interface.write_dm_register(dmcontrol)?;

        // check if request has been acknowleged
        let status: Dmstatus = self.interface.read_dm_register()?;

        if !status.allresumeack() {
            return Err(RiscvError::RequestNotAcknowledged.into());
        };

        // clear resume request
        let mut dmcontrol = Dmcontrol(0);
        dmcontrol.set_dmactive(true);

        self.interface.write_dm_register(dmcontrol)?;

        Ok(())
    }

    fn reset(&self) -> Result<(), crate::Error> {
        log::debug!("Resetting core, setting hartreset bit");

        let mut dmcontrol = Dmcontrol(0);
        dmcontrol.set_dmactive(true);
        dmcontrol.set_hartreset(true);

        self.interface.write_dm_register(dmcontrol)?;

        // Read back register to verify reset is supported
        let readback: Dmcontrol = self.interface.read_dm_register()?;

        if readback.hartreset() {
            log::debug!("Clearing hartreset bit");
            // Reset is performed by setting the bit high, and then low again
            let mut dmcontrol = Dmcontrol(0);
            dmcontrol.set_dmactive(true);
            dmcontrol.set_hartreset(false);

            self.interface.write_dm_register(dmcontrol)?;
        } else {
            // Hartreset is not supported, whole core needs to be reset
            //
            // TODO: Cache this
            log::debug!("Hartreset bit not supported, using ndmreset");
            let mut dmcontrol = Dmcontrol(0);
            dmcontrol.set_dmactive(true);
            dmcontrol.set_ndmreset(true);

            self.interface.write_dm_register(dmcontrol)?;

            log::debug!("Clearing ndmreset bit");
            let mut dmcontrol = Dmcontrol(0);
            dmcontrol.set_dmactive(true);
            dmcontrol.set_ndmreset(false);

            self.interface.write_dm_register(dmcontrol)?;
        }

        // check that cores have reset

        let readback: Dmstatus = self.interface.read_dm_register()?;

        if !readback.allhavereset() {
            log::warn!("Dmstatue: {:?}", readback);
            return Err(RiscvError::RequestNotAcknowledged.into());
        }

        // acknowledge the reset
        let mut dmcontrol = Dmcontrol(0);
        dmcontrol.set_dmactive(true);
        dmcontrol.set_ackhavereset(true);

        self.interface.write_dm_register(dmcontrol)?;

        Ok(())
    }

    fn reset_and_halt(&self) -> Result<crate::core::CoreInformation, crate::Error> {
        log::debug!("Resetting core, setting hartreset bit");

        let mut dmcontrol = Dmcontrol(0);
        dmcontrol.set_dmactive(true);
        dmcontrol.set_hartreset(true);
        dmcontrol.set_haltreq(true);

        self.interface.write_dm_register(dmcontrol)?;

        // Read back register to verify reset is supported
        let readback: Dmcontrol = self.interface.read_dm_register()?;

        if readback.hartreset() {
            log::debug!("Clearing hartreset bit");
            // Reset is performed by setting the bit high, and then low again
            let mut dmcontrol = Dmcontrol(0);
            dmcontrol.set_dmactive(true);
            dmcontrol.set_haltreq(true);
            dmcontrol.set_hartreset(false);

            self.interface.write_dm_register(dmcontrol)?;
        } else {
            // Hartreset is not supported, whole core needs to be reset
            //
            // TODO: Cache this
            log::debug!("Hartreset bit not supported, using ndmreset");
            let mut dmcontrol = Dmcontrol(0);
            dmcontrol.set_dmactive(true);
            dmcontrol.set_ndmreset(true);
            dmcontrol.set_haltreq(true);

            self.interface.write_dm_register(dmcontrol)?;

            log::debug!("Clearing ndmreset bit");
            let mut dmcontrol = Dmcontrol(0);
            dmcontrol.set_dmactive(true);
            dmcontrol.set_ndmreset(false);
            dmcontrol.set_haltreq(true);

            self.interface.write_dm_register(dmcontrol)?;
        }

        // check that cores have reset
        let readback: Dmstatus = self.interface.read_dm_register()?;

        if !(readback.allhavereset() && readback.allhalted()) {
            return Err(RiscvError::RequestNotAcknowledged.into());
        }

        // acknowledge the reset, clear the halt request
        let mut dmcontrol = Dmcontrol(0);
        dmcontrol.set_dmactive(true);
        dmcontrol.set_ackhavereset(true);

        self.interface.write_dm_register(dmcontrol)?;

        let pc = self.read_core_reg(CoreRegisterAddress(0x7b1))?;

        Ok(CoreInformation { pc })
    }

    fn step(&self) -> Result<crate::core::CoreInformation, crate::Error> {
        let mut dcsr = Dcsr(self.read_core_reg(CoreRegisterAddress(0x7b0))?);

        dcsr.set_step(true);

        self.write_csr(0x7b0, dcsr.0)?;

        self.run()?;

        self.wait_for_core_halted()?;

        let pc = self.read_core_reg(CoreRegisterAddress(0x7b1))?;

        // clear step request
        let mut dcsr = Dcsr(self.read_core_reg(CoreRegisterAddress(0x7b0))?);

        dcsr.set_step(false);

        self.write_csr(0x7b0, dcsr.0)?;

        Ok(CoreInformation { pc })
    }

    fn read_core_reg(&self, address: crate::CoreRegisterAddress) -> Result<u32, crate::Error> {
        // We need to sue the "Access Register Command",
        // which has cmdtype 0

        // write needs to be clear
        // transfer has to be set

        log::debug!("Reading core register at address {:#x}", address.0);

        // if it is a gpr (general purpose register) read using an abstract command,
        // otherwise, use the program buffer
        if address.0 >= 0x1000 && address.0 <= 0x101f {
            let value = self.interface.abstract_cmd_register_read(address)?;
            Ok(value)
        } else {
            let reg_value = self.read_csr(address.0)?;
            Ok(reg_value)
        }
    }

    fn write_core_reg(
        &self,
        address: crate::CoreRegisterAddress,
        value: u32,
    ) -> Result<(), crate::Error> {
        if address.0 >= 0x1000 && address.0 <= 0x101f {
            self.interface.abstract_cmd_register_write(address, value)?;
        } else {
            self.write_csr(address.0, value)?;
        }
        Ok(())
    }

    fn get_available_breakpoint_units(&self) -> Result<u32, crate::Error> {
        // TODO: This should probably only be done once, when initialising

        log::debug!("Determining number of HW breakpoints supported");

        let tselect = 0x7a0;
        let tdata1 = 0x7a1;
        let tinfo = 0x7a4;

        let mut tselect_index = 0;

        // These steps follow the debug specification 0.13, section 5.1 Enumeration
        loop {
            log::debug!("Trying tselect={}", tselect_index);
            if let Err(e) = self.write_csr(tselect, tselect_index) {
                match e {
                    RiscvError::AbstractCommand(AbstractCommandErrorKind::Exception) => break,
                    other_error => return Err(other_error.into()),
                }
            }

            let readback = self.read_csr(tselect)?;

            if readback != tselect_index {
                break;
            }

            match self.read_csr(tinfo) {
                Ok(tinfo_val) => {
                    if tinfo_val & 0xffff == 1 {
                        // Trigger doesn't exist, break the loop
                        break;
                    } else {
                        log::info!(
                            "Discovered trigger with index {} and type {}",
                            tselect_index,
                            tinfo_val & 0xffff
                        );
                    }
                }
                Err(RiscvError::AbstractCommand(AbstractCommandErrorKind::Exception)) => {
                    // An exception means we have to read tdata1 to discover the type
                    let tdata_val = self.read_csr(tdata1)?;

                    // TODO: Proper handle xlen
                    let xlen = 32;

                    let trigger_type = tdata_val >> (xlen - 4);

                    if trigger_type == 0 {
                        break;
                    }

                    log::info!(
                        "Discovered trigger with index {} and type {}",
                        tselect_index,
                        trigger_type,
                    );
                }
                Err(other) => return Err(other.into()),
            }

            tselect_index += 1;
        }

        Ok(tselect_index)
    }

    fn enable_breakpoints(&mut self, _state: bool) -> Result<(), crate::Error> {
        // seems not needed on RISCV
        Ok(())
    }

    fn set_breakpoint(&self, bp_unit_index: usize, addr: u32) -> Result<(), crate::Error> {
        // select requested trigger
        let tselect = 0x7a0;
        let tdata1 = 0x7a1;
        let tdata2 = 0x7a2;

        self.write_csr(tselect, bp_unit_index as u32)?;

        // verify the trigger has the correct type

        let tdata_value = Mcontrol(self.read_csr(tdata1)?);

        // This should not happen
        assert_eq!(
            tdata_value.type_(),
            2,
            "Error: Incorrect trigger type for address breakpoint"
        );

        // Setup the trigger

        let mut instruction_breakpoint = Mcontrol(0);
        instruction_breakpoint.set_action(1);
        instruction_breakpoint.set_match(0);

        instruction_breakpoint.set_m(true);
        instruction_breakpoint.set_s(true);
        instruction_breakpoint.set_u(true);

        instruction_breakpoint.set_execute(true);

        instruction_breakpoint.set_dmode(true);

        self.write_csr(tdata1, instruction_breakpoint.0)?;
        self.write_csr(tdata2, addr)?;

        Ok(())
    }

    fn clear_breakpoint(&self, unit_index: usize) -> Result<(), crate::Error> {
        let tselect = 0x7a0;
        let tdata1 = 0x7a1;
        let tdata2 = 0x7a2;

        self.write_csr(tselect, unit_index as u32)?;
        self.write_csr(tdata1, 0)?;
        self.write_csr(tdata2, 0)?;

        Ok(())
    }

    fn registers(&self) -> &'static RegisterFile {
        &RISCV_REGISTERS
    }

    fn memory(&self) -> crate::Memory {
        self.interface.memory()
    }

    fn hw_breakpoints_enabled(&self) -> bool {
        // No special enable on RISCV
        true
    }

    fn architecture(&self) -> Architecture {
        Architecture::RISCV
    }
}

bitfield! {
    // `dmcontrol` register, located at
    // address 0x10
    pub struct Dmcontrol(u32);
    impl Debug;

    _, set_haltreq: 31;
    _, set_resumereq: 30;
    hartreset, set_hartreset: 29;
    _, set_ackhavereset: 28;
    hasel, set_hasel: 26;
    hartsello, set_hartsello: 25, 16;
    hartselhi, set_hartselhi: 15, 6;
    _, set_resethaltreq: 3;
    _, set_clrresethaltreq: 2;
    ndmreset, set_ndmreset: 1;
    dmactive, set_dmactive: 0;
}

impl DebugRegister for Dmcontrol {
    const ADDRESS: u8 = 0x10;
    const NAME: &'static str = "dmcontrol";
}

impl From<Dmcontrol> for u32 {
    fn from(register: Dmcontrol) -> Self {
        register.0
    }
}

impl From<u32> for Dmcontrol {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

bitfield! {
    /// Readonly `dmstatus` register.
    ///
    /// Located at address 0x11
    pub struct Dmstatus(u32);
    impl Debug;

    impebreak, _: 22;
    allhavereset, _: 19;
    anyhavereset, _: 18;
    allresumeack, _: 17;
    anyresumeack, _: 16;
    allnonexistent, _: 15;
    anynonexistent, _: 14;
    allunavail, _: 13;
    anyunavail, _: 12;
    allrunning, _: 11;
    anyrunning, _: 10;
    allhalted, _: 9;
    anyhalted, _: 8;
    authenticated, _: 7;
    authbusy, _: 6;
    hasresethaltreq, _: 5;
    confstrptrvalid, _: 4;
    version, _: 3, 0;
}

impl DebugRegister for Dmstatus {
    const ADDRESS: u8 = 0x11;
    const NAME: &'static str = "dmstatus";
}

impl From<u32> for Dmstatus {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

impl From<Dmstatus> for u32 {
    fn from(register: Dmstatus) -> Self {
        register.0
    }
}

bitfield! {
        struct Dcsr(u32);
        impl Debug;

        xdebugver, _: 31, 28;
        ebreakm, set_ebreakm: 15;
        ebreaks, set_ebreaks: 13;
        ebreaku, set_ebreaku: 12;
        stepie, set_stepie: 11;
        stopcount, set_stopcount: 10;
        stoptime, set_stoptime: 9;
        cause, _: 8, 6;
        mprven, set_mprven: 4;
        nmip, _: 3;
        step, set_step: 2;
        prv, set_prv: 1,0;
}

bitfield! {
    pub struct Abstractcs(u32);
    impl Debug;

    progbufsize, _: 28, 24;
    busy, _: 12;
    cmderr, set_cmderr: 10, 8;
    datacount, _: 3, 0;
}

impl DebugRegister for Abstractcs {
    const ADDRESS: u8 = 0x16;
    const NAME: &'static str = "abstractcs";
}

impl From<Abstractcs> for u32 {
    fn from(register: Abstractcs) -> Self {
        register.0
    }
}

impl From<u32> for Abstractcs {
    fn from(value: u32) -> Self {
        Self(value)
    }
}

data_register! { pub Data0, 0x04, "data0" }
data_register! { pub Data1, 0x05, "data1" }
data_register! { pub Data2, 0x05, "data2" }
data_register! { pub Data3, 0x05, "data3" }
data_register! { pub Data4, 0x05, "data4" }
data_register! { pub Data5, 0x05, "data5" }
data_register! { pub Data6, 0x05, "data6" }
data_register! { pub Data7, 0x05, "data7" }
data_register! { pub Data8, 0x05, "data8" }
data_register! { pub Data9, 0x05, "data9" }
data_register! { pub Data10, 0x05, "data10" }
data_register! { pub Data11, 0x0f, "data11" }

data_register! { Command, 0x17, "command" }

data_register! { pub Progbuf0, 0x20, "progbuf0" }
data_register! { pub Progbuf1, 0x21, "progbuf1" }

bitfield! {
    struct Mcontrol(u32);
    impl Debug;

    type_, set_type: 31, 28;
    dmode, set_dmode: 27;
    maskmax, _: 26, 21;
    hit, set_hit: 20;
    select, set_select: 19;
    timing, set_timing: 18;
    sizelo, set_sizelo: 17, 16;
    action, set_action: 15, 12;
    chain, set_chain: 11;
    match_, set_match: 10, 7;
    m, set_m: 6;
    s, set_s: 4;
    u, set_u: 3;
    execute, set_execute: 2;
    store, set_store: 1;
    load, set_load: 0;
}