1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#![warn(missing_docs)]

use crate::architecture::{
    arm::{
        communication_interface::{
            ApInformation::{MemoryAp, Other},
            ArmProbeInterface, MemoryApInformation,
        },
        core::{debug_core_start, reset_catch_clear, reset_catch_set},
        memory::Component,
        SwoConfig,
    },
    riscv::communication_interface::RiscvCommunicationInterface,
};
use crate::config::{ChipInfo, MemoryRegion, RegistryError, Target, TargetSelector};
use crate::core::{Architecture, CoreState, SpecificCoreState};
use crate::{AttachMethod, Core, CoreType, Error, Probe};
use anyhow::anyhow;
use std::time::Duration;

/// The `Session` struct represents an active debug session.
///
/// ## Creating a session  
/// The session can be created by calling the [Session::auto_attach()] function,
/// which tries to automatically select a probe, and then connect to the target.  
///
/// For more control, the [Probe::attach()] and [Probe::attach_under_reset()]
/// methods can be used to open a `Session` from a specific [Probe].  
///
/// # Usage  
/// The Session is the common handle that gives a user exclusive access to an active probe.  
/// You can create and share a session between threads to enable multiple stakeholders (e.g. GDB and RTT) to access the target taking turns, by using  `Arc<Mutex<Session>>.`  
///
/// If you do so, make sure that both threads sleep in between tasks such that other stakeholders may take their turn.  
///
/// To get access to a single [Core] from the `Session`, the [Session::core()] method can be used.
/// Please see the [Session::core()] method for more usage guidelines.
///

#[derive(Debug)]
pub struct Session {
    target: Target,
    interface: ArchitectureInterface,
    cores: Vec<(SpecificCoreState, CoreState)>,
}

#[derive(Debug)]
enum ArchitectureInterface {
    Arm(Box<dyn ArmProbeInterface + 'static>),
    Riscv(Box<RiscvCommunicationInterface>),
}

impl From<ArchitectureInterface> for Architecture {
    fn from(value: ArchitectureInterface) -> Self {
        match value {
            ArchitectureInterface::Arm(_) => Architecture::Arm,
            ArchitectureInterface::Riscv(_) => Architecture::Riscv,
        }
    }
}

impl ArchitectureInterface {
    fn attach<'probe>(
        &'probe mut self,
        core: &'probe mut SpecificCoreState,
        core_state: &'probe mut CoreState,
    ) -> Result<Core<'probe>, Error> {
        match self {
            ArchitectureInterface::Arm(state) => {
                let memory = state.memory_interface(0.into())?;

                core.attach_arm(core_state, memory)
            }
            ArchitectureInterface::Riscv(state) => core.attach_riscv(core_state, state),
        }
    }

    /// Deassert the target reset line
    ///
    /// When connecting under reset,
    /// initial configuration is done with the reset line
    /// asserted. After initial configuration is done, the
    /// reset line can be deasserted using this method.
    ///
    /// See also [`Probe::target_reset_deassert`].
    fn target_reset_deassert(&mut self) -> Result<(), Error> {
        match self {
            ArchitectureInterface::Arm(arm_interface) => arm_interface.target_reset_deassert()?,

            ArchitectureInterface::Riscv(riscv_interface) => {
                riscv_interface.target_reset_deassert()?
            }
        }

        Ok(())
    }
}

impl Session {
    /// Open a new session with a given debug target.
    pub(crate) fn new(
        probe: Probe,
        target: impl Into<TargetSelector>,
        attach_method: AttachMethod,
    ) -> Result<Self, Error> {
        let (probe, target) = get_target_from_selector(target, probe)?;

        let mut session = match target.architecture() {
            Architecture::Arm => {
                if !probe.has_arm_interface() {
                    return Err(anyhow!(
                        "Debugging ARM based chips is not supported with the connected probe."
                    )
                    .into());
                }

                let core = (
                    SpecificCoreState::from_core_type(target.core_type),
                    Core::create_state(0),
                );

                let interface = probe.try_into_arm_interface().map_err(|(_, err)| err)?;

                let mut session = Session {
                    target,
                    interface: ArchitectureInterface::Arm(interface),
                    cores: vec![core],
                };

                // Enable debug mode
                debug_core_start(&mut session.core(0)?)?;

                if attach_method == AttachMethod::UnderReset {
                    // we need to halt the chip here
                    reset_catch_set(&mut session.core(0)?)?;

                    // Deassert the reset pin
                    session.interface.target_reset_deassert()?;

                    // Wait for the core to be halted
                    let mut core = session.core(0)?;

                    core.wait_for_core_halted(Duration::from_millis(100))?;

                    reset_catch_clear(&mut core)?;
                }

                session
            }
            Architecture::Riscv => {
                // TODO: Handle attach under reset

                let core = (
                    SpecificCoreState::from_core_type(target.core_type),
                    Core::create_state(0),
                );

                let interface = probe
                    .try_into_riscv_interface()
                    .map_err(|(_probe, err)| err)?;

                let mut session = Session {
                    target,
                    interface: ArchitectureInterface::Riscv(Box::new(interface)),
                    cores: vec![core],
                };

                {
                    let mut core = session.core(0)?;

                    core.halt(Duration::from_millis(100))?;
                }

                session
            }
        };

        session.clear_all_hw_breakpoints()?;

        Ok(session)
    }

    /// Automatically creates a session with the first connected probe found.
    pub fn auto_attach(target: impl Into<TargetSelector>) -> Result<Session, Error> {
        // Get a list of all available debug probes.
        let probes = Probe::list_all();

        // Use the first probe found.
        let probe = probes
            .get(0)
            .ok_or(Error::UnableToOpenProbe("No probe was found"))?
            .open()?;

        // Attach to a chip.
        probe.attach(target)
    }

    /// Lists the available cores with their number and their type.
    pub fn list_cores(&self) -> Vec<(usize, CoreType)> {
        self.cores
            .iter()
            .map(|(t, _)| t.core_type())
            .enumerate()
            .collect()
    }

    /// Attaches to the core with the given number.
    ///
    /// ## Usage
    /// Everytime you want to perform an operation on the chip, you need to get the Core handle with the [Session::core() method. This [Core] handle is merely a view into the core. And provides a convenient API surface.
    ///
    /// All the state is stored in the [Session] handle.
    ///
    /// The first time you call [Session::core()] for a specific core, it will run the attach/init sequences and return a handle to the [Core].
    ///
    /// Every subsequent call is a no-op. It simply returns the handle for the user to use in further operations without calling any int sequences again.
    ///
    /// It is strongly advised to never store the [Core] handle for any significant duration! Free it as fast as possible such that other stakeholders can have access to the [Core] too.
    ///
    /// The idea behind this is: You need the smallest common denominator which you can share between threads. Since you sometimes need the [Core], sometimes the [Probe] or sometimes the [Target], the [Session] is the only common ground and the only handle you should actively store in your code.
    ///
    pub fn core(&mut self, n: usize) -> Result<Core<'_>, Error> {
        let (core, core_state) = self.cores.get_mut(n).ok_or(Error::CoreNotFound(n))?;

        self.interface.attach(core, core_state)
    }

    /// Read available data from the SWO interface without waiting.
    ///
    /// This method is only supported for ARM-based targets, and will
    /// return [Error::ArchitectureRequired] otherwise.
    pub fn read_swo(&mut self) -> Result<Vec<u8>, Error> {
        let interface = self.get_arm_interface()?;
        interface.read_swo()
    }

    fn get_arm_interface(&mut self) -> Result<&mut Box<dyn ArmProbeInterface>, Error> {
        let interface = match &mut self.interface {
            ArchitectureInterface::Arm(state) => state,
            _ => return Err(Error::ArchitectureRequired(&["ARMv7", "ARMv8"])),
        };

        Ok(interface)
    }

    /// Reads all the available ARM CoresightComponents of the currently attached target.
    ///
    /// This will recursively parse the Romtable of the attached target
    /// and create a list of all the contained components.
    pub fn get_arm_components(&mut self) -> Result<Vec<Component>, Error> {
        let interface = self.get_arm_interface()?;

        let mut components = Vec::new();

        for ap_index in 0..(interface.num_access_ports() as u8) {
            let ap_information = interface
                .ap_information(ap_index.into())
                .ok_or_else(|| anyhow!("AP {} does not exist on chip.", ap_index))?;

            let component = match ap_information {
                MemoryAp(MemoryApInformation {
                    port_number: _,
                    only_32bit_data_size: _,
                    debug_base_address: 0,
                    supports_hnonsec: _,
                }) => Err(Error::Other(anyhow!("AP has a base address of 0"))),
                MemoryAp(MemoryApInformation {
                    port_number,
                    only_32bit_data_size: _,
                    debug_base_address,
                    supports_hnonsec: _,
                }) => {
                    let access_port_number = *port_number;
                    let base_address = *debug_base_address;

                    let mut memory = interface.memory_interface(access_port_number.into())?;

                    Component::try_parse(&mut memory, base_address)
                        .map_err(Error::architecture_specific)
                }
                Other { port_number } => {
                    // Return an error, only possible to get Component from MemoryAP
                    Err(Error::Other(anyhow!(
                        "AP {} is not a MemoryAP, unable to get ARM component.",
                        port_number
                    )))
                }
            };

            match component {
                Ok(component) => {
                    components.push(component);
                }
                Err(e) => {
                    log::info!("Not counting AP {} because of: {}", ap_index, e);
                }
            }
        }

        Ok(components)
    }

    /// Get the target description of the connected target.
    pub fn target(&self) -> &Target {
        &self.target
    }

    /// Configure the target and probe for serial wire view (SWV) tracing.
    pub fn setup_swv(&mut self, config: &SwoConfig) -> Result<(), Error> {
        // Configure SWO on the probe
        {
            let interface = self.get_arm_interface()?;
            interface.enable_swo(config)?;
        }

        // Enable tracing on the target
        {
            let mut core = self.core(0)?;
            crate::architecture::arm::component::enable_tracing(&mut core)?;
        }

        // Configure SWV on the target
        let components = self.get_arm_components()?;
        let mut core = self.core(0)?;
        crate::architecture::arm::component::setup_swv(&mut core, &components, config)
    }

    /// Configure the target to stop emitting SWV trace data.
    pub fn disable_swv(&mut self) -> Result<(), Error> {
        crate::architecture::arm::component::disable_swv(&mut self.core(0)?)
    }

    /// Begin tracing a memory address over SWV.
    pub fn add_swv_data_trace(&mut self, unit: usize, address: u32) -> Result<(), Error> {
        let components = self.get_arm_components()?;
        let mut core = self.core(0)?;
        crate::architecture::arm::component::add_swv_data_trace(
            &mut core,
            &components,
            unit,
            address,
        )
    }

    /// Stop tracing from a given SWV unit
    pub fn remove_swv_data_trace(&mut self, unit: usize) -> Result<(), Error> {
        let components = self.get_arm_components()?;
        let mut core = self.core(0)?;
        crate::architecture::arm::component::remove_swv_data_trace(&mut core, &components, unit)
    }

    /// Returns the memory map of the target.
    #[deprecated = "Use the Session::target function instead"]
    pub fn memory_map(&self) -> &[MemoryRegion] {
        &self.target.memory_map
    }

    /// Return the `Architecture` of the currently connected chip.
    pub fn architecture(&self) -> Architecture {
        match self.interface {
            ArchitectureInterface::Arm(_) => Architecture::Arm,
            ArchitectureInterface::Riscv(_) => Architecture::Riscv,
        }
    }

    /// Clears all hardware breakpoints on all cores
    pub fn clear_all_hw_breakpoints(&mut self) -> Result<(), Error> {
        { 0..self.cores.len() }.try_for_each(|n| {
            self.core(n)
                .and_then(|mut core| core.clear_all_hw_breakpoints())
        })
    }
}

// This test ensures that [Session] is fully [Send] + [Sync].
static_assertions::assert_impl_all!(Session: Send);

impl Drop for Session {
    fn drop(&mut self) {
        let result = { 0..self.cores.len() }.try_for_each(|i| {
            self.core(i)
                .and_then(|mut core| core.clear_all_hw_breakpoints())
        });

        if let Err(err) = result {
            log::warn!("Could not clear all hardware breakpoints: {:?}", err);
        }
    }
}
/// Determine the [Target] from a [TargetSelector].
///
/// If the selector is [TargetSelector::Unspecified], the target will be looked up in the registry.
/// If it its [TargetSelector::Auto], probe-rs will try to determine the target automatically, based on
/// information read from the chip.
fn get_target_from_selector(
    target: impl Into<TargetSelector>,
    probe: Probe,
) -> Result<(Probe, Target), Error> {
    let mut probe = probe;

    let target = match target.into() {
        TargetSelector::Unspecified(name) => crate::config::get_target_by_name(name)?,
        TargetSelector::Specified(target) => target,
        TargetSelector::Auto => {
            let mut found_chip = None;

            if probe.has_arm_interface() {
                match probe.try_into_arm_interface() {
                    Ok(mut interface) => {
                        //let chip_result = try_arm_autodetect(interface);
                        log::debug!("Autodetect: Trying DAP interface...");

                        let found_arm_chip = interface.read_from_rom_table().unwrap_or_else(|e| {
                            log::info!("Error during auto-detection of ARM chips: {}", e);
                            None
                        });

                        found_chip = found_arm_chip.map(ChipInfo::from);

                        probe = interface.close();
                    }
                    Err((returned_probe, err)) => {
                        probe = returned_probe;
                        log::debug!("Error using ARM interface: {}", err);
                    }
                }
            } else {
                log::debug!("No ARM interface was present. Skipping Riscv autodetect.");
            }

            if found_chip.is_none() && probe.has_riscv_interface() {
                match probe.try_into_riscv_interface() {
                    Ok(mut interface) => {
                        let idcode = interface.read_idcode();

                        log::debug!("ID Code read over JTAG: {:x?}", idcode);

                        probe = interface.close();
                    }
                    Err((returned_probe, err)) => {
                        log::debug!("Error during autodetection of RISCV chips: {}", err);
                        probe = returned_probe;
                    }
                }
            } else {
                log::debug!("No RISCV interface was present. Skipping Riscv autodetect.");
            }

            if let Some(chip) = found_chip {
                crate::config::get_target_by_chip_info(chip)?
            } else {
                return Err(Error::ChipNotFound(RegistryError::ChipAutodetectFailed));
            }
        }
    };

    Ok((probe, target))
}