1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
// SPDX-License-Identifier: MPL-2.0

//! A collection of data types.

use crate::field::FieldElement;
use crate::pcp::gadgets::{MeanVarUnsigned, Mul, PolyEval};
use crate::pcp::{Gadget, PcpError, Value};
use crate::polynomial::poly_range_check;

use std::convert::TryFrom;
use std::mem::size_of;

/// Errors propagated by methods in this module.
#[derive(Debug, PartialEq, thiserror::Error)]
pub enum TypeError {
    /// Encountered an error while trying to construct an instance of some type.
    #[error("failed to instantiate type: {0}")]
    Instantiate(&'static str),
}

/// Values of this type encode a simple boolean (either `true` or `false`).
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Boolean<F: FieldElement> {
    data: Vec<F>,  // The encoded input
    range: Vec<F>, // A range check polynomial for [0, 2)
}

impl<F: FieldElement> Boolean<F> {
    /// Encodes a boolean as a value of this type.
    pub fn new(b: bool) -> Self {
        Self {
            range: poly_range_check(0, 2),
            data: vec![match b {
                true => F::one(),
                false => F::zero(),
            }],
        }
    }
}

impl<F: FieldElement> Value for Boolean<F> {
    type Field = F;
    type Param = ();

    fn valid(&self, g: &mut Vec<Box<dyn Gadget<F>>>, rand: &[F]) -> Result<F, PcpError> {
        if rand.len() != self.joint_rand_len() {
            return Err(PcpError::ValidRandLen);
        }

        if self.data.len() != 1 {
            return Err(PcpError::CircuitInLen);
        }

        let mut inp = [self.data[0], self.data[0]];
        let mut v = self.range[0];
        for c in &self.range[1..] {
            v += *c * inp[0];
            inp[0] = g[0].call(&inp)?;
        }

        Ok(v)
    }

    fn valid_gadget_calls(&self) -> Vec<usize> {
        vec![2]
    }

    fn joint_rand_len(&self) -> usize {
        0
    }

    fn prove_rand_len(&self) -> usize {
        2
    }

    fn query_rand_len(&self) -> usize {
        1
    }

    fn gadget(&self) -> Vec<Box<dyn Gadget<F>>> {
        vec![Box::new(Mul::new(2))]
    }

    fn as_slice(&self) -> &[F] {
        &self.data
    }

    fn param(&self) -> Self::Param {}
}

impl<F: FieldElement> TryFrom<((), &[F])> for Boolean<F> {
    type Error = TypeError;

    fn try_from(val: ((), &[F])) -> Result<Self, TypeError> {
        Ok(Self {
            data: val.1.to_vec(),
            range: poly_range_check(0, 2),
        })
    }
}

/// This type represents vectors for which `poly(x) == 0` holds for some polynomial `poly` and each
/// vector element `x`.
///
/// This type is "generic" in that it can be used to construct high level types. For example, a
/// boolean vector can be represented as follows:
///
/// ```
/// use prio::field::{Field64, FieldElement};
/// use prio::pcp::types::PolyCheckedVector;
///
/// let data = vec![Field64::zero(), Field64::one(), Field64::zero()];
/// let x = PolyCheckedVector::new_range_checked(data, 0, 2);
/// ```
/// The proof technique is based on the SIMD circuit construction of
/// \[[BBG+19](https://eprint.iacr.org/2019/188), Theorem 5.3\].
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct PolyCheckedVector<F: FieldElement> {
    data: Vec<F>,
    poly: Vec<F>,
}

impl<F: FieldElement> PolyCheckedVector<F> {
    /// Returns a `poly`-checked vector where `poly(x) == 0` if and only if `x` is in range
    /// `[start, end)`. The degree of `poly` is equal to `end`.
    pub fn new_range_checked(data: Vec<F>, start: usize, end: usize) -> Self {
        Self {
            data,
            poly: poly_range_check(start, end),
        }
    }
}

impl<F: FieldElement> Value for PolyCheckedVector<F> {
    type Field = F;
    type Param = Vec<F>; // A polynomial

    fn valid(&self, g: &mut Vec<Box<dyn Gadget<F>>>, rand: &[F]) -> Result<F, PcpError> {
        if rand.len() != self.joint_rand_len() {
            return Err(PcpError::ValidRandLen);
        }

        let mut outp = F::zero();
        let mut r = rand[0];
        for chunk in self.data.chunks(1) {
            outp += r * g[0].call(chunk)?;
            r *= rand[0];
        }

        Ok(outp)
    }

    fn valid_gadget_calls(&self) -> Vec<usize> {
        vec![self.data.len()]
    }

    fn joint_rand_len(&self) -> usize {
        1
    }

    fn prove_rand_len(&self) -> usize {
        1
    }

    fn query_rand_len(&self) -> usize {
        1
    }

    fn gadget(&self) -> Vec<Box<dyn Gadget<F>>> {
        vec![Box::new(PolyEval::new(self.poly.clone(), self.data.len()))]
    }

    fn as_slice(&self) -> &[F] {
        &self.data
    }

    fn param(&self) -> Self::Param {
        self.poly.clone()
    }
}

impl<F: FieldElement> TryFrom<(Vec<F>, &[F])> for PolyCheckedVector<F> {
    type Error = TypeError;

    fn try_from(val: (Vec<F>, &[F])) -> Result<Self, TypeError> {
        Ok(Self {
            data: val.1.to_vec(),
            poly: val.0,
        })
    }
}

/// This type is used to compute the mean and variance of a sequence of integers in range `[0,
/// 2^bits)` for some length parameter `bits`.
///
/// Each integer is encoded using `bits + 1` field elements. The encoding has two parts: `x_vec`,
/// the representation of the integer as a boolean vector (i.e., a sequence of 0s and 1s); and
/// `xx`, which is the integer raised to the power of two. The validity circuit checks that the
/// integer represented by `x_vec` is the square root of `xx`. It is based on the SIMD circuit of
/// \[BBG+19, Theorem 5.3\].
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MeanVarUnsignedVector<F: FieldElement> {
    data: Vec<F>,
    /// The maximum length of each integer.
    bits: usize,
    /// The number of integers encoded by `data`.
    len: usize,
    /// Whether `data` corresponds to the leader's share.
    is_leader: bool,
}

impl<F: FieldElement> MeanVarUnsignedVector<F> {
    /// Encodes `measurement` as an instance of the MeanVarUnsignedVector type. `bits` specifies
    /// the maximum length of each integer in bits.
    pub fn new(bits: usize, measurement: &[F::Integer]) -> Result<Self, TypeError> {
        if bits > (size_of::<F::Integer>() << 3) {
            return Err(TypeError::Instantiate(
                "MeanVarUnsignedVector: bits exceeds bit length of the field's integer representation",
            ));
        }

        let one = F::Integer::try_from(1).unwrap();
        let max = F::Integer::try_from(1 << bits).unwrap();
        let mut data: Vec<F> = Vec::with_capacity((bits + 1) * measurement.len());
        for &int in measurement {
            if int >= max {
                return Err(TypeError::Instantiate(
                    "MeanVarUnsignedVector: input overflow",
                ));
            }

            for l in 0..bits {
                let l = F::Integer::try_from(l).unwrap();
                let w = F::from((int >> l) & one);
                data.push(w);
            }

            let x = F::from(int);
            data.push(x * x);
        }

        Ok(Self {
            data,
            bits,
            len: measurement.len(),
            is_leader: true,
        })
    }
}

impl<F: FieldElement> Value for MeanVarUnsignedVector<F> {
    type Field = F;
    type Param = usize; // Length of each integer in bits

    fn valid(&self, g: &mut Vec<Box<dyn Gadget<F>>>, rand: &[F]) -> Result<F, PcpError> {
        let bits = self.bits;
        let mut inp = vec![F::zero(); 2 * bits + 1];
        let mut outp = F::zero();

        let r = rand[0];
        let mut pr = r;
        for chunk in self.data.chunks(bits + 1) {
            if chunk.len() < bits + 1 {
                return Err(PcpError::Valid(
                    "MeanVarUnsignedVector: length of data not divisible by chunk size",
                ));
            }

            let x_vec = &chunk[..bits];
            let xx = chunk[bits];

            // Sets `x` to the `bits`-bit integer encoded by `x_vec`.
            let mut x = F::zero();
            for (l, bit) in x_vec.iter().enumerate() {
                let w = F::from(F::Integer::try_from(1 << l).unwrap());
                x += w * *bit;
            }

            // The first `bits` inputs to the gadget are are `r, r^2, ..., r^bits`.
            #[allow(clippy::needless_range_loop)]
            for l in 0..bits {
                // The prover and verifier use joint randomness to generate and verify the proof.
                // In order to ensure the gadget inputs are the same in the distributed setting,
                // only the leader will use the joint randomness here.
                inp[l] = if self.is_leader { pr } else { F::zero() };
                pr *= r;
            }

            // The next `bits` inputs to the gadget comprise the bit-vector representation of `x`.
            inp[bits..2 * bits].clone_from_slice(x_vec);

            // The last input to the gadget is `x`.
            inp[2 * bits] = x;

            // Sets `yy = x^2` if `x_vec` is a bit vector. Otherwise, if `x_vec` is not a bit
            // vector, then `yy != x^2` with high probability.
            let yy = g[0].call(&inp)?;

            outp += pr * (yy - xx);
            pr *= r;
        }

        Ok(outp)
    }

    fn valid_gadget_calls(&self) -> Vec<usize> {
        vec![self.len]
    }

    fn joint_rand_len(&self) -> usize {
        1
    }

    fn prove_rand_len(&self) -> usize {
        2 * self.bits + 1
    }

    fn query_rand_len(&self) -> usize {
        1
    }

    fn gadget(&self) -> Vec<Box<dyn Gadget<F>>> {
        vec![Box::new(MeanVarUnsigned::new(self.bits, self.len))]
    }

    fn as_slice(&self) -> &[F] {
        &self.data
    }

    fn param(&self) -> Self::Param {
        self.bits
    }

    fn set_leader(&mut self, is_leader: bool) {
        self.is_leader = is_leader;
    }
}

impl<F: FieldElement> TryFrom<(usize, &[F])> for MeanVarUnsignedVector<F> {
    type Error = TypeError;

    fn try_from(val: (usize, &[F])) -> Result<Self, TypeError> {
        let bits = val.0;
        let data = val.1.to_vec();
        let len = data.len() / (bits + 1);

        if data.len() % (bits + 1) != 0 {
            return Err(TypeError::Instantiate(
                "MeanVarUnsignedVector: length of data not divisible by chunk size",
            ));
        }

        Ok(Self {
            data,
            bits,
            len,
            is_leader: true,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::field::{random_vector, split_vector, Field64 as TestField};
    use crate::pcp::{decide, prove, query, Proof, Value, Verifier};

    use assert_matches::assert_matches;

    // Number of shares to split input and proofs into in `pcp_test`.
    const NUM_SHARES: usize = 3;

    struct ValidityTestCase {
        expect_valid: bool,
        expected_proof_len: usize,
    }

    #[test]
    fn test_boolean() {
        // Test PCP on valid input.
        pcp_validity_test(
            &Boolean::<TestField>::new(true),
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 9,
            },
        );
        pcp_validity_test(
            &Boolean::<TestField>::new(false),
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 9,
            },
        );

        // Test PCP on invalid input.
        pcp_validity_test(
            &Boolean {
                data: vec![TestField::from(1337)],
                range: poly_range_check(0, 2),
            },
            &ValidityTestCase {
                expect_valid: false,
                expected_proof_len: 9,
            },
        );

        // Try running the validity circuit on an input that's too short.
        let malformed_x = Boolean::<TestField> {
            data: vec![],
            range: poly_range_check(0, 2),
        };
        assert_matches!(
            malformed_x.valid(&mut malformed_x.gadget(), &[]),
            Err(PcpError::CircuitInLen)
        );

        // Try running the validity circuit on an input that's too large.
        let malformed_x = Boolean::<TestField> {
            data: vec![TestField::zero(), TestField::zero()],
            range: poly_range_check(0, 2),
        };
        assert_matches!(
            malformed_x.valid(&mut malformed_x.gadget(), &[]),
            Err(PcpError::CircuitInLen)
        );
    }

    #[test]
    fn test_poly_checked_vec() {
        let zero = TestField::zero();
        let one = TestField::one();
        let nine = TestField::from(9);

        // Test PCP on valid input.
        pcp_validity_test(
            &PolyCheckedVector::<TestField>::new_range_checked(
                vec![nine, one, one, one, one, one, one, one, one, one, one],
                1,
                10,
            ),
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 137,
            },
        );
        pcp_validity_test(
            &PolyCheckedVector::<TestField> {
                data: vec![],
                poly: poly_range_check(0, 2),
            },
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 2,
            },
        );
        pcp_validity_test(
            &PolyCheckedVector::<TestField> {
                data: vec![one],
                poly: poly_range_check(0, 2),
            },
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 4,
            },
        );
        pcp_validity_test(
            &PolyCheckedVector::<TestField> {
                data: vec![one, zero, one, one, zero, one, one, one, zero],
                poly: poly_range_check(0, 2),
            },
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 32,
            },
        );

        // Test PCP on invalid input.
        pcp_validity_test(
            &PolyCheckedVector::<TestField> {
                data: vec![one, nine, zero],
                poly: poly_range_check(0, 2),
            },
            &ValidityTestCase {
                expect_valid: false,
                expected_proof_len: 8,
            },
        );
        pcp_validity_test(
            &PolyCheckedVector::<TestField> {
                data: vec![zero, zero, zero, zero, nine],
                poly: poly_range_check(0, 2),
            },
            &ValidityTestCase {
                expect_valid: false,
                expected_proof_len: 16,
            },
        );
    }

    #[test]
    fn test_mean_var_uint_vec() {
        let zero = TestField::zero();
        let one = TestField::one();
        let nine = TestField::from(9);

        // Can't encode an integer that is larger than 2^bits.
        assert!(MeanVarUnsignedVector::<TestField>::new(8, &[256]).is_err());

        // Can't instantiate this type if bits > 64.
        assert!(MeanVarUnsignedVector::<TestField>::new(65, &[]).is_err());

        let bits = 7;
        let ints = [1, 61, 27, 17, 0];
        let x: MeanVarUnsignedVector<TestField> = MeanVarUnsignedVector::new(bits, &ints).unwrap();
        assert_eq!(x.data.len(), ints.len() * (1 + bits));
        for chunk in x.data.chunks(1 + bits) {
            let x_vec = &chunk[..bits];
            let xx = chunk[bits];

            let mut x = TestField::zero();
            for (l, bit) in x_vec.iter().enumerate() {
                x += TestField::from(1 << l) * *bit;
            }
            assert_eq!(x * x, xx);
        }

        // Test PCP on valid input.
        pcp_validity_test(
            &x,
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 37,
            },
        );
        pcp_validity_test(
            &MeanVarUnsignedVector::<TestField>::new(bits, &[]).unwrap(),
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 16,
            },
        );
        pcp_validity_test(
            &MeanVarUnsignedVector::<TestField>::new(bits, &[0]).unwrap(),
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 19,
            },
        );
        pcp_validity_test(
            &MeanVarUnsignedVector::<TestField>::new(bits, &vec![61; 100]).unwrap(),
            &ValidityTestCase {
                expect_valid: true,
                expected_proof_len: 397,
            },
        );

        // Test PCP on invalid input.
        pcp_validity_test(
            &MeanVarUnsignedVector::<TestField> {
                // x_vec is incorrect
                data: vec![/* x_vec */ one, zero, one, /* xx */ one],
                len: 1,
                bits: 3,
                is_leader: true,
            },
            &ValidityTestCase {
                expect_valid: false,
                expected_proof_len: 11,
            },
        );
        pcp_validity_test(
            &MeanVarUnsignedVector::<TestField> {
                // x_vec is malformed
                data: vec![/* x_vec */ nine, zero, zero, /* xx */ one],
                len: 1,
                bits: 3,
                is_leader: true,
            },
            &ValidityTestCase {
                expect_valid: false,
                expected_proof_len: 11,
            },
        );
        pcp_validity_test(
            &MeanVarUnsignedVector::<TestField> {
                // xx is incorrect
                data: vec![/* x_vec */ one, zero, zero, /* xx */ nine],
                len: 1,
                bits: 3,
                is_leader: true,
            },
            &ValidityTestCase {
                expect_valid: false,
                expected_proof_len: 11,
            },
        );
    }

    fn pcp_validity_test<V: Value>(input: &V, t: &ValidityTestCase) {
        let mut gadgets = input.gadget();
        let joint_rand = random_vector(input.joint_rand_len()).unwrap();
        let prove_rand = random_vector(input.prove_rand_len()).unwrap();
        let query_rand = random_vector(input.query_rand_len()).unwrap();

        assert_eq!(input.query_rand_len(), gadgets.len());

        // Ensure that the input can be constructed from its parameters and its encoding as a
        // sequence of field elements.
        assert_eq!(
            input,
            &V::try_from((input.param(), input.as_slice())).unwrap()
        );

        // Run the validity circuit.
        let v = input.valid(&mut gadgets, &joint_rand).unwrap();
        assert_eq!(
            v == V::Field::zero(),
            t.expect_valid,
            "{:?} validity circuit output {}",
            input.as_slice(),
            v
        );

        // Generate and verify a PCP.
        let proof = prove(input, &prove_rand, &joint_rand).unwrap();
        let verifier = query(input, &proof, &query_rand, &joint_rand).unwrap();
        let res = decide(input, &verifier).unwrap();
        assert_eq!(
            res,
            t.expect_valid,
            "{:?} query output {:?}",
            input.as_slice(),
            verifier
        );

        // Check that the proof size is as expected.
        assert_eq!(proof.as_slice().len(), t.expected_proof_len);

        // Run distributed PCP.
        let x_shares: Vec<V> = split_vector(input.as_slice(), NUM_SHARES)
            .unwrap()
            .into_iter()
            .enumerate()
            .map(|(i, data)| {
                let mut share = V::try_from((input.param(), &data)).unwrap();
                share.set_leader(i == 0);
                share
            })
            .collect();

        let proof_shares: Vec<Proof<V::Field>> = split_vector(proof.as_slice(), NUM_SHARES)
            .unwrap()
            .into_iter()
            .map(Proof::from)
            .collect();

        let mut verifier_shares: Vec<Verifier<V::Field>> = Vec::with_capacity(NUM_SHARES);
        for i in 0..NUM_SHARES {
            verifier_shares
                .push(query(&x_shares[i], &proof_shares[i], &query_rand, &joint_rand).unwrap());
        }

        let verifier = Verifier::try_from(verifier_shares.as_slice()).unwrap();
        let res = decide(&x_shares[0], &verifier).unwrap();
        assert_eq!(
            res,
            t.expect_valid,
            "{:?} sum of of verifier shares is {:?}",
            input.as_slice(),
            &verifier
        );

        // Try verifying a proof with an invalid seed for one of the intermediate polynomials.
        // Verification should fail regardless of whether the input is valid.
        let mut mutated_proof = proof.clone();
        mutated_proof.data[0] += V::Field::one();
        assert!(
            !decide(
                input,
                &query(input, &mutated_proof, &query_rand, &joint_rand).unwrap()
            )
            .unwrap(),
            "{:?} proof mutant verified",
            input.as_slice(),
        );

        // Try verifying a proof that is too short.
        let mut mutated_proof = proof.clone();
        mutated_proof.data.truncate(gadgets[0].arity() - 1);
        assert!(
            query(input, &mutated_proof, &query_rand, &joint_rand).is_err(),
            "{:?} proof mutant verified",
            input.as_slice(),
        );

        // Try verifying a proof that is too long.
        let mut mutated_proof = proof.clone();
        mutated_proof.data.extend_from_slice(&[V::Field::one(); 17]);
        assert!(
            query(input, &mutated_proof, &query_rand, &joint_rand).is_err(),
            "{:?} proof mutant verified",
            input.as_slice(),
        );

        if input.as_slice().len() > gadgets[0].arity() {
            // Try verifying a proof with an invalid proof polynomial.
            let mut mutated_proof = proof.clone();
            mutated_proof.data[gadgets[0].arity()] += V::Field::one();
            assert!(
                !decide(
                    input,
                    &query(input, &mutated_proof, &query_rand, &joint_rand).unwrap()
                )
                .unwrap(),
                "{:?} proof mutant verified",
                input.as_slice(),
            );

            // Try verifying a proof with a short proof polynomial.
            let mut mutated_proof = proof;
            mutated_proof.data.truncate(gadgets[0].arity());
            assert!(query(input, &mutated_proof, &query_rand, &joint_rand).is_err());
        }
    }
}